/* This file is part of the dynarmic project. * Copyright (c) 2016 MerryMage * This software may be used and distributed according to the terms of the GNU * General Public License version 2 or any later version. */ #include #include "backend_x64/abi.h" #include "backend_x64/block_of_code.h" #include "backend_x64/emit_x64.h" #include "backend_x64/jitstate.h" #include "common/assert.h" #include "common/bit_util.h" #include "frontend/arm/types.h" #include "frontend/ir/basic_block.h" #include "frontend/ir/location_descriptor.h" #include "frontend/ir/microinstruction.h" #include "frontend/ir/opcodes.h" // TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary. // TODO: Actually implement that proper instruction selector you've always wanted to sweetheart. namespace Dynarmic { namespace BackendX64 { static Xbyak::Address MJitStateReg(Arm::Reg reg) { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Reg) + sizeof(u32) * static_cast(reg)]; } static Xbyak::Address MJitStateExtReg(Arm::ExtReg reg) { using namespace Xbyak::util; if (Arm::IsSingleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::S0); return dword[r15 + offsetof(JitState, ExtReg) + sizeof(u32) * index]; } if (Arm::IsDoubleExtReg(reg)) { size_t index = static_cast(reg) - static_cast(Arm::ExtReg::D0); return qword[r15 + offsetof(JitState, ExtReg) + sizeof(u64) * index]; } ASSERT_MSG(false, "Should never happen."); } static Xbyak::Address MJitStateCpsr() { using namespace Xbyak::util; return dword[r15 + offsetof(JitState, Cpsr)]; } static void EraseInstruction(IR::Block& block, IR::Inst* inst) { block.Instructions().erase(inst); } EmitX64::EmitX64(BlockOfCode* code, UserCallbacks cb, Jit* jit_interface) : reg_alloc(code), code(code), cb(cb), jit_interface(jit_interface) { } EmitX64::BlockDescriptor EmitX64::Emit(IR::Block& block) { const IR::LocationDescriptor descriptor = block.Location(); reg_alloc.Reset(); code->align(); const CodePtr code_ptr = code->getCurr(); EmitX64::BlockDescriptor& block_desc = block_descriptors[descriptor.UniqueHash()]; block_desc.code_ptr = code_ptr; EmitCondPrelude(block); for (auto iter = block.begin(); iter != block.end(); ++iter) { IR::Inst* inst = &*iter; // Call the relevant Emit* member function. switch (inst->GetOpcode()) { #define OPCODE(name, type, ...) \ case IR::Opcode::name: \ EmitX64::Emit##name(block, inst); \ break; #include "frontend/ir/opcodes.inc" #undef OPCODE default: ASSERT_MSG(false, "Invalid opcode %zu", static_cast(inst->GetOpcode())); break; } reg_alloc.EndOfAllocScope(); } EmitAddCycles(block.CycleCount()); EmitTerminal(block.GetTerminal(), block.Location()); code->int3(); reg_alloc.AssertNoMoreUses(); Patch(descriptor, code_ptr); block_desc.size = std::intptr_t(code->getCurr()) - std::intptr_t(code_ptr); return block_desc; } boost::optional EmitX64::GetBasicBlock(IR::LocationDescriptor descriptor) const { auto iter = block_descriptors.find(descriptor.UniqueHash()); if (iter == block_descriptors.end()) return boost::none; return boost::make_optional(iter->second); } void EmitX64::EmitBreakpoint(IR::Block&, IR::Inst*) { code->int3(); } void EmitX64::EmitIdentity(IR::Block&, IR::Inst* inst) { if (!inst->GetArg(0).IsImmediate()) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } } void EmitX64::EmitGetRegister(IR::Block&, IR::Inst* inst) { Arm::Reg reg = inst->GetArg(0).GetRegRef(); Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateReg(reg)); } void EmitX64::EmitGetExtendedRegister32(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsSingleExtReg(reg)); Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->movss(result, MJitStateExtReg(reg)); } void EmitX64::EmitGetExtendedRegister64(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsDoubleExtReg(reg)); Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->movsd(result, MJitStateExtReg(reg)); } void EmitX64::EmitSetRegister(IR::Block&, IR::Inst* inst) { Arm::Reg reg = inst->GetArg(0).GetRegRef(); IR::Value arg = inst->GetArg(1); if (arg.IsImmediate()) { code->mov(MJitStateReg(reg), arg.GetU32()); } else { Xbyak::Reg32 to_store = reg_alloc.UseGpr(arg).cvt32(); code->mov(MJitStateReg(reg), to_store); } } void EmitX64::EmitSetExtendedRegister32(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsSingleExtReg(reg)); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(1)); code->movss(MJitStateExtReg(reg), source); } void EmitX64::EmitSetExtendedRegister64(IR::Block&, IR::Inst* inst) { Arm::ExtReg reg = inst->GetArg(0).GetExtRegRef(); ASSERT(Arm::IsDoubleExtReg(reg)); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(1)); code->movsd(MJitStateExtReg(reg), source); } void EmitX64::EmitGetCpsr(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); } void EmitX64::EmitSetCpsr(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 arg = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(MJitStateCpsr(), arg); } void EmitX64::EmitGetNFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 31); } void EmitX64::EmitSetNFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 31; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetZFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 30); code->and_(result, 1); } void EmitX64::EmitSetZFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 30; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetCFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 29); code->and_(result, 1); } void EmitX64::EmitSetCFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 29; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetVFlag(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 28); code->and_(result, 1); } void EmitX64::EmitSetVFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 28; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) { code->or_(MJitStateCpsr(), flag_mask); } else { code->and_(MJitStateCpsr(), ~flag_mask); } } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitOrQFlag(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 27; constexpr u32 flag_mask = 1u << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { if (arg.GetU1()) code->or_(MJitStateCpsr(), flag_mask); } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitGetGEFlags(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, MJitStateCpsr()); code->shr(result, 16); code->and_(result, 0xF); } void EmitX64::EmitSetGEFlags(IR::Block&, IR::Inst* inst) { constexpr size_t flag_bit = 16; constexpr u32 flag_mask = 0xFu << flag_bit; IR::Value arg = inst->GetArg(0); if (arg.IsImmediate()) { u32 imm = (arg.GetU32() << flag_bit) & flag_mask; code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), imm); } else { Xbyak::Reg32 to_store = reg_alloc.UseScratchGpr(arg).cvt32(); code->shl(to_store, flag_bit); code->and_(to_store, flag_mask); code->and_(MJitStateCpsr(), ~flag_mask); code->or_(MJitStateCpsr(), to_store); } } void EmitX64::EmitBXWritePC(IR::Block&, IR::Inst* inst) { const u32 T_bit = 1 << 5; auto arg = inst->GetArg(0); // Pseudocode: // if (new_pc & 1) { // new_pc &= 0xFFFFFFFE; // cpsr.T = true; // } else { // new_pc &= 0xFFFFFFFC; // cpsr.T = false; // } if (arg.IsImmediate()) { u32 new_pc = arg.GetU32(); if (Common::Bit<0>(new_pc)) { new_pc &= 0xFFFFFFFE; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->or_(MJitStateCpsr(), T_bit); } else { new_pc &= 0xFFFFFFFC; code->mov(MJitStateReg(Arm::Reg::PC), new_pc); code->and_(MJitStateCpsr(), ~T_bit); } } else { using Xbyak::util::ptr; Xbyak::Reg64 new_pc = reg_alloc.UseScratchGpr(arg); Xbyak::Reg64 tmp1 = reg_alloc.ScratchGpr(); Xbyak::Reg64 tmp2 = reg_alloc.ScratchGpr(); code->mov(tmp1, MJitStateCpsr()); code->mov(tmp2, tmp1); code->and_(tmp2, u32(~T_bit)); // CPSR.T = 0 code->or_(tmp1, u32(T_bit)); // CPSR.T = 1 code->test(new_pc, u32(1)); code->cmove(tmp1, tmp2); // CPSR.T = pc & 1 code->mov(MJitStateCpsr(), tmp1); code->lea(tmp2, ptr[new_pc + new_pc * 1]); code->or_(tmp2, u32(0xFFFFFFFC)); // tmp2 = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC code->and_(new_pc, tmp2); code->mov(MJitStateReg(Arm::Reg::PC), new_pc); } } void EmitX64::EmitCallSupervisor(IR::Block&, IR::Inst* inst) { auto imm32 = inst->GetArg(0); reg_alloc.HostCall(nullptr, imm32); code->SwitchMxcsrOnExit(); code->CallFunction(cb.CallSVC); code->SwitchMxcsrOnEntry(); } static u32 GetFpscrImpl(JitState* jit_state) { return jit_state->Fpscr(); } void EmitX64::EmitGetFpscr(IR::Block&, IR::Inst* inst) { reg_alloc.HostCall(inst); code->mov(code->ABI_PARAM1, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(&GetFpscrImpl); code->SwitchMxcsrOnEntry(); } static void SetFpscrImpl(u32 value, JitState* jit_state) { jit_state->SetFpscr(value); } void EmitX64::EmitSetFpscr(IR::Block&, IR::Inst* inst) { auto a = inst->GetArg(0); reg_alloc.HostCall(nullptr, a); code->mov(code->ABI_PARAM2, code->r15); code->SwitchMxcsrOnExit(); code->CallFunction(&SetFpscrImpl); code->SwitchMxcsrOnEntry(); } void EmitX64::EmitGetFpscrNZCV(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, dword[r15 + offsetof(JitState, FPSCR_nzcv)]); } void EmitX64::EmitSetFpscrNZCV(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Reg32 value = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], value); } void EmitX64::EmitPushRSB(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; ASSERT(inst->GetArg(0).IsImmediate()); u64 unique_hash_of_target = inst->GetArg(0).GetU64(); auto iter = block_descriptors.find(unique_hash_of_target); CodePtr target_code_ptr = iter != block_descriptors.end() ? iter->second.code_ptr : code->GetReturnFromRunCodeAddress(); Xbyak::Reg64 code_ptr_reg = reg_alloc.ScratchGpr({HostLoc::RCX}); Xbyak::Reg64 loc_desc_reg = reg_alloc.ScratchGpr(); Xbyak::Reg32 index_reg = reg_alloc.ScratchGpr().cvt32(); code->mov(index_reg, dword[r15 + offsetof(JitState, rsb_ptr)]); code->add(index_reg, 1); code->and_(index_reg, u32(JitState::RSBSize - 1)); code->mov(loc_desc_reg, unique_hash_of_target); patch_information[unique_hash_of_target].mov_rcx.emplace_back(code->getCurr()); EmitPatchMovRcx(target_code_ptr); Xbyak::Label label; for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(loc_desc_reg, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->je(label, code->T_SHORT); } code->mov(dword[r15 + offsetof(JitState, rsb_ptr)], index_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_location_descriptors)], loc_desc_reg); code->mov(qword[r15 + index_reg.cvt64() * 8 + offsetof(JitState, rsb_codeptrs)], code_ptr_reg); code->L(label); } void EmitX64::EmitGetCarryFromOp(IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitGetOverflowFromOp(IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitGetGEFromOp(IR::Block&, IR::Inst*) { ASSERT_MSG(false, "should never happen"); } void EmitX64::EmitPack2x32To1x64(IR::Block&, IR::Inst* inst) { OpArg lo; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); lo = result.cvt32(); } else { std::tie(lo, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } lo.setBit(32); Xbyak::Reg64 hi = reg_alloc.UseScratchGpr(inst->GetArg(1)); code->shl(hi, 32); code->mov(result.cvt32(), *lo); // Zero extend to 64-bits code->or_(result, hi); } void EmitX64::EmitLeastSignificantWord(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitMostSignificantWord(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); code->shr(result, 32); if (carry_inst) { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); Xbyak::Reg64 carry = reg_alloc.DefGpr(carry_inst); code->setc(carry.cvt8()); } } void EmitX64::EmitLeastSignificantHalf(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitLeastSignificantByte(IR::Block&, IR::Inst* inst) { reg_alloc.RegisterAddDef(inst, inst->GetArg(0)); } void EmitX64::EmitMostSignificantBit(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // TODO: Flag optimization code->shr(result, 31); } void EmitX64::EmitIsZero(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); } void EmitX64::EmitIsZero64(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); // TODO: Flag optimization code->test(result, result); code->sete(result.cvt8()); code->movzx(result, result.cvt8()); } void EmitX64::EmitLogicalShiftLeft(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); // TODO: Consider using BMI2 instructions like SHLX when arm-in-host flags is implemented. if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. inst->GetArg(2).GetInst()->DecrementRemainingUses(); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); u8 shift = shift_arg.GetU8(); if (shift <= 31) { code->shl(result, shift); } else { code->xor_(result, result); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHL instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shl(result, shift); code->xor_(zero, zero); code->cmp(shift, 32); code->cmovnb(result, zero); } } else { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->bt(carry.cvt32(), 0); code->shl(result, shift); code->setc(carry.cvt8()); } else if (shift > 32) { code->xor_(result, result); code->xor_(carry, carry); } else { code->mov(carry, result); code->xor_(result, result); code->and_(carry, 1); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF < 32) { code->bt(carry.cvt32(), 0); // Set the carry flag for correct behaviour in the case when Rs & 0xFF == 0 code->shl(result, shift); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->mov(carry, result); code->and_(carry, 1); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitLogicalShiftRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. inst->GetArg(2).GetInst()->DecrementRemainingUses(); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); u8 shift = shift_arg.GetU8(); if (shift <= 31) { code->shr(result, shift); } else { code->xor_(result, result); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 zero = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SHR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count, so shifts above 31 result in zeros. code->shr(result, shift); code->xor_(zero, zero); code->cmp(shift, 32); code->cmovnb(result, zero); } } else { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); if (shift == 0) { // There is nothing more to do. } else if (shift < 32) { code->shr(result, shift); code->setc(carry.cvt8()); } else if (shift == 32) { code->bt(result, 31); code->setc(carry.cvt8()); code->mov(result, 0); } else { code->xor_(result, result); code->xor_(carry, carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt32(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, 32); code->ja(".Rs_gt32"); code->je(".Rs_eq32"); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); // if (Rs & 0xFF < 32) { code->shr(result, shift); code->setc(carry.cvt8()); code->jmp(".end"); // } else if (Rs & 0xFF > 32) { code->L(".Rs_gt32"); code->xor_(result, result); code->xor_(carry, carry); code->jmp(".end"); // } else if (Rs & 0xFF == 32) { code->L(".Rs_eq32"); code->bt(result, 31); code->setc(carry.cvt8()); code->xor_(result, result); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitLogicalShiftRight64(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); auto shift_arg = inst->GetArg(1); ASSERT_MSG(shift_arg.IsImmediate(), "variable 64 bit shifts are not implemented"); u8 shift = shift_arg.GetU8(); ASSERT_MSG(shift < 64, "shift width clamping is not implemented"); code->shr(result.cvt64(), shift); } void EmitX64::EmitArithmeticShiftRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. inst->GetArg(2).GetInst()->DecrementRemainingUses(); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->sar(result, u8(shift < 31 ? shift : 31)); } else { Xbyak::Reg32 shift = reg_alloc.UseScratchGpr(shift_arg, {HostLoc::RCX}).cvt32(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg32 const31 = reg_alloc.ScratchGpr().cvt32(); // The 32-bit x64 SAR instruction masks the shift count by 0x1F before performing the shift. // ARM differs from the behaviour: It does not mask the count. // We note that all shift values above 31 have the same behaviour as 31 does, so we saturate `shift` to 31. code->mov(const31, 31); code->movzx(shift, shift.cvt8()); code->cmp(shift, u32(31)); code->cmovg(shift, const31); code->sar(result, shift.cvt8()); } } else { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); if (shift == 0) { // There is nothing more to do. } else if (shift <= 31) { code->sar(result, shift); code->setc(carry); } else { code->sar(result, 31); code->bt(result, 31); code->setc(carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); // TODO: Optimize this. code->inLocalLabel(); code->cmp(shift, u32(31)); code->ja(".Rs_gt31"); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); // if (Rs & 0xFF <= 31) { code->sar(result, shift); code->setc(carry); code->jmp(".end"); // } else if (Rs & 0xFF > 31) { code->L(".Rs_gt31"); code->sar(result, 31); // 31 produces the same results as anything above 31 code->bt(result, 31); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitRotateRight(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); if (!carry_inst) { if (!inst->GetArg(2).IsImmediate()) { // TODO: Remove redundant argument. inst->GetArg(2).GetInst()->DecrementRemainingUses(); } auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->ror(result, u8(shift & 0x1F)); } else { Xbyak::Reg8 shift = reg_alloc.UseGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); // x64 ROR instruction does (shift & 0x1F) for us. code->ror(result, shift); } } else { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); auto shift_arg = inst->GetArg(1); if (shift_arg.IsImmediate()) { u8 shift = shift_arg.GetU8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); if (shift == 0) { // There is nothing more to do. } else if ((shift & 0x1F) == 0) { code->bt(result, u8(31)); code->setc(carry); } else { code->ror(result, shift); code->setc(carry); } } else { Xbyak::Reg8 shift = reg_alloc.UseScratchGpr(shift_arg, {HostLoc::RCX}).cvt8(); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = reg_alloc.UseDefGpr(inst->GetArg(2), carry_inst).cvt8(); // TODO: Optimize code->inLocalLabel(); // if (Rs & 0xFF == 0) goto end; code->test(shift, shift); code->jz(".end"); code->and_(shift.cvt32(), u32(0x1F)); code->jz(".zero_1F"); // if (Rs & 0x1F != 0) { code->ror(result, shift); code->setc(carry); code->jmp(".end"); // } else { code->L(".zero_1F"); code->bt(result, u8(31)); code->setc(carry); // } code->L(".end"); code->outLocalLabel(); } } } void EmitX64::EmitRotateRightExtended(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); Xbyak::Reg8 carry = carry_inst ? reg_alloc.UseDefGpr(inst->GetArg(1), carry_inst).cvt8() : reg_alloc.UseGpr(inst->GetArg(1)).cvt8(); code->bt(carry.cvt32(), 0); code->rcr(result, 1); if (carry_inst) { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); code->setc(carry); } } const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1); static Xbyak::Reg8 DoCarry(RegAlloc& reg_alloc, const IR::Value& carry_in, IR::Inst* carry_out) { if (carry_in.IsImmediate()) { return carry_out ? reg_alloc.DefGpr(carry_out).cvt8() : INVALID_REG.cvt8(); } else { return carry_out ? reg_alloc.UseDefGpr(carry_in, carry_out).cvt8() : reg_alloc.UseGpr(carry_in).cvt8(); } } void EmitX64::EmitAddWithCarry(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); IR::Value carry_in = inst->GetArg(2); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. if (b.IsImmediate()) { u32 op_arg = b.GetU32(); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->stc(); code->adc(result, op_arg); } else { code->add(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->stc(); code->adc(result, *op_arg); } else { code->add(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->adc(result, *op_arg); } } if (carry_inst) { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); code->setc(carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); inst->DecrementRemainingUses(); code->seto(overflow); } } void EmitX64::EmitAdd64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(b); code->add(result, op_arg); } void EmitX64::EmitSubWithCarry(IR::Block& block, IR::Inst* inst) { auto carry_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp); auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); IR::Value carry_in = inst->GetArg(2); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg8 carry = DoCarry(reg_alloc, carry_in, carry_inst); Xbyak::Reg8 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt8() : INVALID_REG.cvt8(); // TODO: Consider using LEA. // TODO: Optimize CMP case. // Note that x64 CF is inverse of what the ARM carry flag is here. if (b.IsImmediate()) { u32 op_arg = b.GetU32(); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->sub(result, op_arg); } else { code->stc(); code->sbb(result, op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, op_arg); } } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); if (carry_in.IsImmediate()) { if (carry_in.GetU1()) { code->sub(result, *op_arg); } else { code->stc(); code->sbb(result, *op_arg); } } else { code->bt(carry.cvt32(), 0); code->cmc(); code->sbb(result, *op_arg); } } if (carry_inst) { EraseInstruction(block, carry_inst); inst->DecrementRemainingUses(); code->setnc(carry); } if (overflow_inst) { EraseInstruction(block, overflow_inst); inst->DecrementRemainingUses(); code->seto(overflow); } } void EmitX64::EmitSub64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); Xbyak::Reg64 op_arg = reg_alloc.UseGpr(b); code->sub(result, op_arg); } void EmitX64::EmitMul(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); if (a.IsImmediate()) std::swap(a, b); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { code->imul(result, result, b.GetU32()); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->imul(result, *op_arg); } } void EmitX64::EmitMul64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg64 result = reg_alloc.UseDefGpr(a, inst); OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); code->imul(result, *op_arg); } void EmitX64::EmitAnd(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->and_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->and_(result, *op_arg); } } void EmitX64::EmitEor(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->xor_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->xor_(result, *op_arg); } } void EmitX64::EmitOr(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); if (b.IsImmediate()) { u32 op_arg = b.GetU32(); code->or_(result, op_arg); } else { OpArg op_arg = reg_alloc.UseOpArg(b, any_gpr); op_arg.setBit(32); code->or_(result, *op_arg); } } void EmitX64::EmitNot(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); if (a.IsImmediate()) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->mov(result, u32(~a.GetU32())); } else { Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); code->not_(result); } } void EmitX64::EmitSignExtendWordToLong(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(32); code->movsxd(result.cvt64(), *source); } void EmitX64::EmitSignExtendHalfToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(16); code->movsx(result.cvt32(), *source); } void EmitX64::EmitSignExtendByteToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(8); code->movsx(result.cvt32(), *source); } void EmitX64::EmitZeroExtendWordToLong(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(32); code->mov(result.cvt32(), *source); // x64 zeros upper 32 bits on a 32-bit move } void EmitX64::EmitZeroExtendHalfToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(16); code->movzx(result.cvt32(), *source); } void EmitX64::EmitZeroExtendByteToWord(IR::Block&, IR::Inst* inst) { OpArg source; Xbyak::Reg64 result; if (inst->GetArg(0).IsImmediate()) { // TODO: Optimize result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); source = result; } else { std::tie(source, result) = reg_alloc.UseDefOpArgGpr(inst->GetArg(0), inst); } source.setBit(8); code->movzx(result.cvt32(), *source); } void EmitX64::EmitByteReverseWord(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt32(); code->bswap(result); } void EmitX64::EmitByteReverseHalf(IR::Block&, IR::Inst* inst) { Xbyak::Reg16 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst).cvt16(); code->rol(result, 8); } void EmitX64::EmitByteReverseDual(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.UseDefGpr(inst->GetArg(0), inst); code->bswap(result); } void EmitX64::EmitCountLeadingZeros(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); if (cpu_info.has(Xbyak::util::Cpu::tLZCNT)) { Xbyak::Reg32 source = reg_alloc.UseGpr(a).cvt32(); Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); code->lzcnt(result, source); } else { Xbyak::Reg32 source = reg_alloc.UseScratchGpr(a).cvt32(); Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); // The result of a bsr of zero is undefined, but zf is set after it. code->bsr(result, source); code->mov(source, 0xFFFFFFFF); code->cmovz(result, source); code->neg(result); code->add(result, 31); } } void EmitX64::EmitSignedSaturatedAdd(IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 addend = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt32() : reg_alloc.ScratchGpr().cvt32(); code->mov(overflow, result); code->shr(overflow, 31); code->add(overflow, 0x7FFFFFFF); // overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative code->add(result, addend); code->cmovo(result, overflow); if (overflow_inst) { EraseInstruction(block, overflow_inst); inst->DecrementRemainingUses(); code->seto(overflow.cvt8()); } } void EmitX64::EmitSignedSaturatedSub(IR::Block& block, IR::Inst* inst) { auto overflow_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 subend = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 overflow = overflow_inst ? reg_alloc.DefGpr(overflow_inst).cvt32() : reg_alloc.ScratchGpr().cvt32(); code->mov(overflow, result); code->shr(overflow, 31); code->add(overflow, 0x7FFFFFFF); // overflow now contains 0x7FFFFFFF if a was positive, or 0x80000000 if a was negative code->sub(result, subend); code->cmovo(result, overflow); if (overflow_inst) { EraseInstruction(block, overflow_inst); inst->DecrementRemainingUses(); code->seto(overflow.cvt8()); } } void EmitX64::EmitPackedAddU8(IR::Block& block, IR::Inst* inst) { auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 reg_a = reg_alloc.UseScratchGpr(a).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseScratchGpr(b).cvt32(); Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Reg32 reg_ge, tmp; if (ge_inst) { EraseInstruction(block, ge_inst); inst->DecrementRemainingUses(); reg_ge = reg_alloc.DefGpr(ge_inst).cvt32(); tmp = reg_alloc.ScratchGpr().cvt32(); code->mov(reg_ge, reg_a); code->and_(reg_ge, reg_b); } // SWAR Arithmetic code->mov(result, reg_a); code->xor_(result, reg_b); code->and_(result, 0x80808080); code->and_(reg_a, 0x7F7F7F7F); code->and_(reg_b, 0x7F7F7F7F); code->add(reg_a, reg_b); if (ge_inst) { code->mov(tmp, result); code->and_(tmp, reg_a); code->or_(reg_ge, tmp); } code->xor_(result, reg_a); if (ge_inst) { if (cpu_info.has(Xbyak::util::Cpu::tBMI2)) { code->mov(tmp, 0x80808080); code->pext(reg_ge, reg_ge, tmp); } else { code->and_(reg_ge, 0x80808080); code->imul(reg_ge, reg_ge, 0x0204081); code->shr(reg_ge, 28); } } } void EmitX64::EmitPackedSubU8(IR::Block& block, IR::Inst* inst) { auto ge_inst = inst->GetAssociatedPseudoOperation(IR::Opcode::GetGEFromOp); IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 reg_a = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 reg_ge; Xbyak::Xmm xmm_a = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_b = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_ge; if (ge_inst) { EraseInstruction(block, ge_inst); inst->DecrementRemainingUses(); reg_ge = reg_alloc.DefGpr(ge_inst).cvt32(); xmm_ge = reg_alloc.ScratchXmm(); } code->movd(xmm_a, reg_a); code->movd(xmm_b, reg_b); if (ge_inst) { code->movdqa(xmm_ge, xmm_a); code->pmaxub(xmm_ge, xmm_b); code->pcmpeqb(xmm_ge, xmm_a); code->movd(reg_ge, xmm_ge); } code->psubb(xmm_a, xmm_b); code->movd(reg_a, xmm_a); if (ge_inst) { if (cpu_info.has(Xbyak::util::Cpu::tBMI2)) { Xbyak::Reg32 tmp = reg_alloc.ScratchGpr().cvt32(); code->mov(tmp, 0x80808080); code->pext(reg_ge, reg_ge, tmp); } else { code->and_(reg_ge, 0x80808080); code->imul(reg_ge, reg_ge, 0x0204081); code->shr(reg_ge, 28); } } } void EmitX64::EmitPackedHalvingAddU8(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); // This code path requires SSSE3 because of the PSHUFB instruction. // A fallback implementation is provided below. if (cpu_info.has(Xbyak::util::Cpu::tSSSE3)) { Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 arg = reg_alloc.UseGpr(b).cvt32(); // Load the operands into Xmm registers Xbyak::Xmm xmm_scratch_a = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_scratch_b = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg64 mask = reg_alloc.ScratchGpr(); code->movd(xmm_scratch_a, result); code->movd(xmm_scratch_b, arg); // Set the mask to expand the values // 0xAABBCCDD becomes 0x00AA00BB00CC00DD code->mov(mask, 0x8003800280018000); code->movq(xmm_mask, mask); // Expand each 8-bit value to 16-bit code->pshufb(xmm_scratch_a, xmm_mask); code->pshufb(xmm_scratch_b, xmm_mask); // Add the individual 16-bit values code->paddw(xmm_scratch_a, xmm_scratch_b); // Shift the 16-bit values to the right to halve them code->psrlw(xmm_scratch_a, 1); // Set the mask to pack the values again // 0x00AA00BB00CC00DD becomes 0xAABBCCDD code->mov(mask, 0x06040200); code->movq(xmm_mask, mask); // Shuffle them back to 8-bit values code->pshufb(xmm_scratch_a, xmm_mask); code->movd(result, xmm_scratch_a); return; } // Fallback implementation in case the CPU doesn't support SSSE3 Xbyak::Reg32 reg_a = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; code->mov(xor_a_b, reg_a); code->and(and_a_b, reg_b); code->xor(xor_a_b, reg_b); code->shr(xor_a_b, 1); code->and(xor_a_b, 0x7F7F7F7F); code->add(result, xor_a_b); } void EmitX64::EmitPackedHalvingAddU16(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 reg_a = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below. code->mov(xor_a_b, reg_a); code->and(and_a_b, reg_b); code->xor(xor_a_b, reg_b); code->shr(xor_a_b, 1); code->and(xor_a_b, 0x7FFF7FFF); code->add(result, xor_a_b); } void EmitX64::EmitPackedHalvingAddS8(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 reg_a = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7F to remove the LSB so that it doesn't leak into the field below. // carry propagates the sign bit from (x^y)>>1 upwards by one. code->mov(xor_a_b, reg_a); code->and(and_a_b, reg_b); code->xor(xor_a_b, reg_b); code->mov(carry, xor_a_b); code->and(carry, 0x80808080); code->shr(xor_a_b, 1); code->and(xor_a_b, 0x7F7F7F7F); code->add(result, xor_a_b); code->xor(result, carry); } void EmitX64::EmitPackedHalvingAddS16(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 reg_a = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 reg_b = reg_alloc.UseGpr(b).cvt32(); Xbyak::Reg32 xor_a_b = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 and_a_b = reg_a; Xbyak::Reg32 result = reg_a; Xbyak::Reg32 carry = reg_alloc.ScratchGpr().cvt32(); // This relies on the equality x+y == ((x&y) << 1) + (x^y). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate (x&y) + ((x^y)>>1). // We mask by 0x7FFF to remove the LSB so that it doesn't leak into the field below. // carry propagates the sign bit from (x^y)>>1 upwards by one. code->mov(xor_a_b, reg_a); code->and(and_a_b, reg_b); code->xor(xor_a_b, reg_b); code->mov(carry, xor_a_b); code->and(carry, 0x80008000); code->shr(xor_a_b, 1); code->and(xor_a_b, 0x7FFF7FFF); code->add(result, xor_a_b); code->xor(result, carry); } void EmitX64::EmitPackedHalvingSubU8(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 minuend = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(b).cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor(minuend, subtrahend); code->and(subtrahend, minuend); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // We must now perform a partitioned subtraction. // We can do this because minuend contains 7 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. code->or(minuend, 0x80808080); code->sub(minuend, subtrahend); code->xor(minuend, 0x80808080); // minuend now contains the desired result. } void EmitX64::EmitPackedHalvingSubU16(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 minuend = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 subtrahend = reg_alloc.UseScratchGpr(b).cvt32(); // This relies on the equality x-y == (x^y) - (((x^y)&y) << 1). // Note that x^y always contains the LSB of the result. // Since we want to calculate (x+y)/2, we can instead calculate ((x^y)>>1) - ((x^y)&y). code->xor(minuend, subtrahend); code->and(subtrahend, minuend); code->shr(minuend, 1); // At this point, // minuend := (a^b) >> 1 // subtrahend := (a^b) & b // We must now perform a partitioned subtraction. // We can do this because minuend contains 15 bit fields. // We use the extra bit in minuend as a bit to borrow from; we set this bit. // We invert this bit at the end as this tells us if that bit was borrowed from. code->or(minuend, 0x80008000); code->sub(minuend, subtrahend); code->xor(minuend, 0x80008000); // minuend now contains the desired result. } static void EmitPackedOperation(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Mmx& mmx, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Reg32 result = reg_alloc.UseDefGpr(a, inst).cvt32(); Xbyak::Reg32 arg = reg_alloc.UseGpr(b).cvt32(); Xbyak::Xmm xmm_scratch_a = reg_alloc.ScratchXmm(); Xbyak::Xmm xmm_scratch_b = reg_alloc.ScratchXmm(); code->movd(xmm_scratch_a, result); code->movd(xmm_scratch_b, arg); (code->*fn)(xmm_scratch_a, xmm_scratch_b); code->movd(result, xmm_scratch_a); } void EmitX64::EmitPackedSaturatedAddU8(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusb); } void EmitX64::EmitPackedSaturatedAddS8(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsb); } void EmitX64::EmitPackedSaturatedSubU8(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusb); } void EmitX64::EmitPackedSaturatedSubS8(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsb); } void EmitX64::EmitPackedSaturatedAddU16(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddusw); } void EmitX64::EmitPackedSaturatedAddS16(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::paddsw); } void EmitX64::EmitPackedSaturatedSubU16(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubusw); } void EmitX64::EmitPackedSaturatedSubS16(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psubsw); } void EmitX64::EmitPackedAbsDiffSumS8(IR::Block&, IR::Inst* inst) { EmitPackedOperation(code, reg_alloc, inst, &Xbyak::CodeGenerator::psadbw); } static void DenormalsAreZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; // We need to report back whether we've found a denormal on input. // SSE doesn't do this for us when SSE's DAZ is enabled. code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void DenormalsAreZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MFloatNonSignMask64(); mask.setBit(64); auto penult_denormal = code->MFloatPenultimatePositiveDenormal64(); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_IDC)], u32(1 << 7)); code->L(end); } static void FlushToZero32(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg32 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; code->movd(gpr_scratch, xmm_value); code->and_(gpr_scratch, u32(0x7FFFFFFF)); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, u32(0x007FFFFE)); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void FlushToZero64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) { using namespace Xbyak::util; Xbyak::Label end; auto mask = code->MFloatNonSignMask64(); mask.setBit(64); auto penult_denormal = code->MFloatPenultimatePositiveDenormal64(); penult_denormal.setBit(64); code->movq(gpr_scratch, xmm_value); code->and_(gpr_scratch, mask); code->sub(gpr_scratch, u32(1)); code->cmp(gpr_scratch, penult_denormal); code->ja(end); code->pxor(xmm_value, xmm_value); code->mov(dword[r15 + offsetof(JitState, FPSCR_UFC)], u32(1 << 3)); code->L(end); } static void DefaultNaN32(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomiss(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MFloatNaN32()); code->L(end); } static void DefaultNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value) { Xbyak::Label end; code->ucomisd(xmm_value, xmm_value); code->jnp(end); code->movaps(xmm_value, code->MFloatNaN64()); code->L(end); } static void ZeroIfNaN64(BlockOfCode* code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) { code->pxor(xmm_scratch, xmm_scratch); code->cmpordsd(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN) code->pand(xmm_value, xmm_scratch); } static void FPThreeOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Xmm operand = reg_alloc.UseXmm(b); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); DenormalsAreZero32(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } static void FPThreeOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Xmm operand = reg_alloc.UseXmm(b); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); DenormalsAreZero64(code, operand, gpr_scratch); } (code->*fn)(result, operand); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } static void FPTwoOp32(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } static void FPTwoOp64(BlockOfCode* code, RegAlloc& reg_alloc, IR::Block& block, IR::Inst* inst, void (Xbyak::CodeGenerator::*fn)(const Xbyak::Xmm&, const Xbyak::Operand&)) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } (code->*fn)(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } void EmitX64::EmitTransferFromFP32(IR::Block&, IR::Inst* inst) { Xbyak::Reg32 result = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(0)); // TODO: Eliminate this. code->movd(result, source); } void EmitX64::EmitTransferFromFP64(IR::Block&, IR::Inst* inst) { Xbyak::Reg64 result = reg_alloc.DefGpr(inst); Xbyak::Xmm source = reg_alloc.UseXmm(inst->GetArg(0)); // TODO: Eliminate this. code->movq(result, source); } void EmitX64::EmitTransferToFP32(IR::Block&, IR::Inst* inst) { if (inst->GetArg(0).IsImmediate() && inst->GetArg(0).GetU32() == 0) { Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->xorps(result, result); } else { Xbyak::Xmm result = reg_alloc.DefXmm(inst); Xbyak::Reg32 source = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); // TODO: Eliminate this. code->movd(result, source); } } void EmitX64::EmitTransferToFP64(IR::Block&, IR::Inst* inst) { if (inst->GetArg(0).IsImmediate() && inst->GetArg(0).GetU64() == 0) { Xbyak::Xmm result = reg_alloc.DefXmm(inst); code->xorpd(result, result); } else { Xbyak::Xmm result = reg_alloc.DefXmm(inst); Xbyak::Reg64 source = reg_alloc.UseGpr(inst->GetArg(0)); // TODO: Eliminate this. code->movq(result, source); } } void EmitX64::EmitFPAbs32(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pand(result, code->MFloatNonSignMask32()); } void EmitX64::EmitFPAbs64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pand(result, code->MFloatNonSignMask64()); } void EmitX64::EmitFPNeg32(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pxor(result, code->MFloatNegativeZero32()); } void EmitX64::EmitFPNeg64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); code->pxor(result, code->MFloatNegativeZero64()); } void EmitX64::EmitFPAdd32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addss); } void EmitX64::EmitFPAdd64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::addsd); } void EmitX64::EmitFPDiv32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divss); } void EmitX64::EmitFPDiv64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::divsd); } void EmitX64::EmitFPMul32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulss); } void EmitX64::EmitFPMul64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::mulsd); } void EmitX64::EmitFPSqrt32(IR::Block& block, IR::Inst* inst) { FPTwoOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtss); } void EmitX64::EmitFPSqrt64(IR::Block& block, IR::Inst* inst) { FPTwoOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::sqrtsd); } void EmitX64::EmitFPSub32(IR::Block& block, IR::Inst* inst) { FPThreeOp32(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subss); } void EmitX64::EmitFPSub64(IR::Block& block, IR::Inst* inst) { FPThreeOp64(code, reg_alloc, block, inst, &Xbyak::CodeGenerator::subsd); } static void SetFpscrNzcvFromFlags(BlockOfCode* code, RegAlloc& reg_alloc) { reg_alloc.ScratchGpr({HostLoc::RAX}); // lahf requires use of ah Xbyak::Reg32 nzcv_imm = reg_alloc.ScratchGpr().cvt32(); Xbyak::Reg32 nzcv = reg_alloc.ScratchGpr().cvt32(); using namespace Xbyak::util; code->lahf(); code->mov(nzcv_imm, 0x30000000); code->cmp(ah, 0b01000111); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x20000000); code->cmp(ah, 0b00000010); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x80000000); code->cmp(ah, 0b00000011); code->cmove(nzcv, nzcv_imm); code->mov(nzcv_imm, 0x60000000); code->cmp(ah, 0b01000010); code->cmove(nzcv, nzcv_imm); code->mov(dword[r15 + offsetof(JitState, FPSCR_nzcv)], nzcv); } void EmitX64::EmitFPCompare32(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); bool quiet = inst->GetArg(2).GetU1(); Xbyak::Xmm reg_a = reg_alloc.UseXmm(a); Xbyak::Xmm reg_b = reg_alloc.UseXmm(b); if (quiet) { code->ucomiss(reg_a, reg_b); } else { code->comiss(reg_a, reg_b); } SetFpscrNzcvFromFlags(code, reg_alloc); } void EmitX64::EmitFPCompare64(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); IR::Value b = inst->GetArg(1); bool quiet = inst->GetArg(2).GetU1(); Xbyak::Xmm reg_a = reg_alloc.UseXmm(a); Xbyak::Xmm reg_b = reg_alloc.UseXmm(b); if (quiet) { code->ucomisd(reg_a, reg_b); } else { code->comisd(reg_a, reg_b); } SetFpscrNzcvFromFlags(code, reg_alloc); } void EmitX64::EmitFPSingleToDouble(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, result, gpr_scratch.cvt32()); } code->cvtss2sd(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero64(code, result, gpr_scratch); } if (block.Location().FPSCR().DN()) { DefaultNaN64(code, result); } } void EmitX64::EmitFPDoubleToSingle(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); Xbyak::Xmm result = reg_alloc.UseDefXmm(a, inst); Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, result, gpr_scratch); } code->cvtsd2ss(result, result); if (block.Location().FPSCR().FTZ()) { FlushToZero32(code, result, gpr_scratch.cvt32()); } if (block.Location().FPSCR().DN()) { DefaultNaN32(code, result); } } void EmitX64::EmitFPSingleToS32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for clamping. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); // First time is to set flags if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Second time is for real if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } code->movd(to, gpr_scratch); } void EmitX64::EmitFPSingleToU32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // Conversion to double is lossless, and allows for accurate clamping. // // Since SSE2 doesn't provide an unsigned conversion, we shift the range as appropriate. // // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MFloatMinS32()); // First time is to set flags code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Actually convert code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range code->add(gpr_scratch, u32(2147483648u)); code->movd(to, gpr_scratch); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero32(code, from, gpr_scratch); } code->cvtss2sd(from, from); ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MFloatMaxS32()); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MFloatMinS32()); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinU32()); // Actually convert code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range if necessary code->add(gpr_scratch, gpr_mask); code->movd(to, gpr_scratch); } } void EmitX64::EmitFPDoubleToS32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } // First time is to set flags if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } // Clamp to output range ZeroIfNaN64(code, from, xmm_scratch); code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Second time is for real if (round_towards_zero) { code->cvttsd2si(gpr_scratch, from); // 32 bit gpr } else { code->cvtsd2si(gpr_scratch, from); // 32 bit gpr } code->movd(to, gpr_scratch); } void EmitX64::EmitFPDoubleToU32(IR::Block& block, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_towards_zero = inst->GetArg(1).GetU1(); Xbyak::Xmm from = reg_alloc.UseScratchXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); Xbyak::Xmm xmm_scratch = reg_alloc.ScratchXmm(); // ARM saturates on conversion; this differs from x64 which returns a sentinel value. // TODO: Use VCVTPD2UDQ when AVX512VL is available. // FIXME: Inexact exception not correctly signalled with the below code if (block.Location().FPSCR().RMode() != Arm::FPSCR::RoundingMode::TowardsZero && !round_towards_zero) { if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Bring into SSE range code->addsd(from, code->MFloatMinS32()); // First time is to set flags code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinS32()); // Actually convert code->cvtsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range code->add(gpr_scratch, u32(2147483648u)); code->movd(to, gpr_scratch); } else { Xbyak::Xmm xmm_mask = reg_alloc.ScratchXmm(); Xbyak::Reg32 gpr_mask = reg_alloc.ScratchGpr().cvt32(); if (block.Location().FPSCR().FTZ()) { DenormalsAreZero64(code, from, gpr_scratch.cvt64()); } ZeroIfNaN64(code, from, xmm_scratch); // Generate masks if out-of-signed-range code->movaps(xmm_mask, code->MFloatMaxS32()); code->cmpltsd(xmm_mask, from); code->movd(gpr_mask, xmm_mask); code->pand(xmm_mask, code->MFloatMinS32()); code->and_(gpr_mask, u32(2147483648u)); // Bring into range if necessary code->addsd(from, xmm_mask); // First time is to set flags code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Clamp to output range code->minsd(from, code->MFloatMaxS32()); code->maxsd(from, code->MFloatMinU32()); // Actually convert code->cvttsd2si(gpr_scratch, from); // 32 bit gpr // Bring back into original range if necessary code->add(gpr_scratch, gpr_mask); code->movd(to, gpr_scratch); } } void EmitX64::EmitFPS32ToSingle(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2ss(to, gpr_scratch); } void EmitX64::EmitFPU32ToSingle(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); // Use a 64-bit register to ensure we don't end up treating the input as signed Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); code->movq(gpr_scratch, from); code->cvtsi2ss(to, gpr_scratch); } void EmitX64::EmitFPS32ToDouble(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); Xbyak::Reg32 gpr_scratch = reg_alloc.ScratchGpr().cvt32(); code->movd(gpr_scratch, from); code->cvtsi2sd(to, gpr_scratch); } void EmitX64::EmitFPU32ToDouble(IR::Block&, IR::Inst* inst) { IR::Value a = inst->GetArg(0); bool round_to_nearest = inst->GetArg(1).GetU1(); ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented"); Xbyak::Xmm from = reg_alloc.UseXmm(a); Xbyak::Xmm to = reg_alloc.DefXmm(inst); // Use a 64-bit register to ensure we don't end up treating the input as signed Xbyak::Reg64 gpr_scratch = reg_alloc.ScratchGpr(); code->movq(gpr_scratch, from); code->cvtsi2sd(to, gpr_scratch); } void EmitX64::EmitClearExclusive(IR::Block&, IR::Inst*) { using namespace Xbyak::util; code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); } void EmitX64::EmitSetExclusive(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; ASSERT(inst->GetArg(1).IsImmediate()); Xbyak::Reg32 address = reg_alloc.UseGpr(inst->GetArg(0)).cvt32(); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(1)); code->mov(dword[r15 + offsetof(JitState, exclusive_address)], address); } template static void ReadMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) { if (!cb.page_table) { reg_alloc.HostCall(inst, inst->GetArg(0)); code->CallFunction(fn); return; } using namespace Xbyak::util; Xbyak::Reg64 result = reg_alloc.DefGpr(inst, { ABI_RETURN }); Xbyak::Reg32 vaddr = reg_alloc.UseScratchGpr(inst->GetArg(0), { ABI_PARAM1 }).cvt32(); Xbyak::Reg64 page_index = reg_alloc.ScratchGpr(); Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr(); Xbyak::Label abort, end; code->mov(rax, reinterpret_cast(cb.page_table)); code->mov(page_index.cvt32(), vaddr); code->shr(page_index.cvt32(), 12); code->mov(rax, qword[rax + page_index * 8]); code->test(rax, rax); code->jz(abort); code->mov(page_offset.cvt32(), vaddr); code->and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code->movzx(result, code->byte[rax + page_offset]); break; case 16: code->movzx(result, word[rax + page_offset]); break; case 32: code->mov(result.cvt32(), dword[rax + page_offset]); break; case 64: code->mov(result.cvt64(), qword[rax + page_offset]); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code->jmp(end); code->L(abort); code->call(code->GetMemoryReadCallback(bit_size)); code->L(end); } template static void WriteMemory(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, UserCallbacks& cb, size_t bit_size, FunctionPointer fn) { if (!cb.page_table) { reg_alloc.HostCall(inst, inst->GetArg(0), inst->GetArg(1)); code->CallFunction(fn); return; } using namespace Xbyak::util; reg_alloc.ScratchGpr({ HostLoc::RAX }); Xbyak::Reg32 vaddr = reg_alloc.UseScratchGpr(inst->GetArg(0), { ABI_PARAM1 }).cvt32(); Xbyak::Reg64 value = reg_alloc.UseScratchGpr(inst->GetArg(1), { ABI_PARAM2 }); Xbyak::Reg64 page_index = reg_alloc.ScratchGpr(); Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr(); Xbyak::Label abort, end; code->mov(rax, reinterpret_cast(cb.page_table)); code->mov(page_index.cvt32(), vaddr); code->shr(page_index.cvt32(), 12); code->mov(rax, qword[rax + page_index * 8]); code->test(rax, rax); code->jz(abort); code->mov(page_offset.cvt32(), vaddr); code->and_(page_offset.cvt32(), 4095); switch (bit_size) { case 8: code->mov(code->byte[rax + page_offset], value.cvt8()); break; case 16: code->mov(word[rax + page_offset], value.cvt16()); break; case 32: code->mov(dword[rax + page_offset], value.cvt32()); break; case 64: code->mov(qword[rax + page_offset], value.cvt64()); break; default: ASSERT_MSG(false, "Invalid bit_size"); break; } code->jmp(end); code->L(abort); code->call(code->GetMemoryWriteCallback(bit_size)); code->L(end); } void EmitX64::EmitReadMemory8(IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 8, cb.MemoryRead8); } void EmitX64::EmitReadMemory16(IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 16, cb.MemoryRead16); } void EmitX64::EmitReadMemory32(IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 32, cb.MemoryRead32); } void EmitX64::EmitReadMemory64(IR::Block&, IR::Inst* inst) { ReadMemory(code, reg_alloc, inst, cb, 64, cb.MemoryRead64); } void EmitX64::EmitWriteMemory8(IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 8, cb.MemoryWrite8); } void EmitX64::EmitWriteMemory16(IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 16, cb.MemoryWrite16); } void EmitX64::EmitWriteMemory32(IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 32, cb.MemoryWrite32); } void EmitX64::EmitWriteMemory64(IR::Block&, IR::Inst* inst) { WriteMemory(code, reg_alloc, inst, cb, 64, cb.MemoryWrite64); } template static void ExclusiveWrite(BlockOfCode* code, RegAlloc& reg_alloc, IR::Inst* inst, FunctionPointer fn) { using namespace Xbyak::util; Xbyak::Label end; reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); Xbyak::Reg32 passed = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. code->mov(passed, u32(1)); code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->je(end); code->mov(tmp, code->ABI_PARAM1); code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]); code->test(tmp, JitState::RESERVATION_GRANULE_MASK); code->jne(end); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->CallFunction(fn); code->xor_(passed, passed); code->L(end); } void EmitX64::EmitExclusiveWriteMemory8(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.MemoryWrite8); } void EmitX64::EmitExclusiveWriteMemory16(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.MemoryWrite16); } void EmitX64::EmitExclusiveWriteMemory32(IR::Block&, IR::Inst* inst) { ExclusiveWrite(code, reg_alloc, inst, cb.MemoryWrite32); } void EmitX64::EmitExclusiveWriteMemory64(IR::Block&, IR::Inst* inst) { using namespace Xbyak::util; Xbyak::Label end; reg_alloc.HostCall(nullptr, inst->GetArg(0), inst->GetArg(1)); Xbyak::Reg32 passed = reg_alloc.DefGpr(inst).cvt32(); Xbyak::Reg64 value_hi = reg_alloc.UseScratchGpr(inst->GetArg(2)); Xbyak::Reg64 value = code->ABI_PARAM2; Xbyak::Reg32 tmp = code->ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers. code->mov(passed, u32(1)); code->cmp(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->je(end); code->mov(tmp, code->ABI_PARAM1); code->xor_(tmp, dword[r15 + offsetof(JitState, exclusive_address)]); code->test(tmp, JitState::RESERVATION_GRANULE_MASK); code->jne(end); code->mov(code->byte[r15 + offsetof(JitState, exclusive_state)], u8(0)); code->mov(value.cvt32(), value.cvt32()); // zero extend to 64-bits code->shl(value_hi, 32); code->or_(value, value_hi); code->CallFunction(cb.MemoryWrite64); code->xor_(passed, passed); code->L(end); } void EmitX64::EmitAddCycles(size_t cycles) { using namespace Xbyak::util; ASSERT(cycles < std::numeric_limits::max()); code->sub(qword[r15 + offsetof(JitState, cycles_remaining)], static_cast(cycles)); } static Xbyak::Label EmitCond(BlockOfCode* code, Arm::Cond cond) { using namespace Xbyak::util; Xbyak::Label label; const Xbyak::Reg32 cpsr = eax; code->mov(cpsr, MJitStateCpsr()); constexpr size_t n_shift = 31; constexpr size_t z_shift = 30; constexpr size_t c_shift = 29; constexpr size_t v_shift = 28; constexpr u32 n_mask = 1u << n_shift; constexpr u32 z_mask = 1u << z_shift; constexpr u32 c_mask = 1u << c_shift; constexpr u32 v_mask = 1u << v_shift; switch (cond) { case Arm::Cond::EQ: //z code->test(cpsr, z_mask); code->jnz(label); break; case Arm::Cond::NE: //!z code->test(cpsr, z_mask); code->jz(label); break; case Arm::Cond::CS: //c code->test(cpsr, c_mask); code->jnz(label); break; case Arm::Cond::CC: //!c code->test(cpsr, c_mask); code->jz(label); break; case Arm::Cond::MI: //n code->test(cpsr, n_mask); code->jnz(label); break; case Arm::Cond::PL: //!n code->test(cpsr, n_mask); code->jz(label); break; case Arm::Cond::VS: //v code->test(cpsr, v_mask); code->jnz(label); break; case Arm::Cond::VC: //!v code->test(cpsr, v_mask); code->jz(label); break; case Arm::Cond::HI: { //c & !z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->je(label); break; } case Arm::Cond::LS: { //!c | z code->and_(cpsr, z_mask | c_mask); code->cmp(cpsr, c_mask); code->jne(label); break; } case Arm::Cond::GE: { // n == v code->and_(cpsr, n_mask | v_mask); code->jz(label); code->cmp(cpsr, n_mask | v_mask); code->je(label); break; } case Arm::Cond::LT: { // n != v Xbyak::Label fail; code->and_(cpsr, n_mask | v_mask); code->jz(fail); code->cmp(cpsr, n_mask | v_mask); code->jne(label); code->L(fail); break; } case Arm::Cond::GT: { // !z & (n == v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jz(label); break; } case Arm::Cond::LE: { // z | (n != v) const Xbyak::Reg32 tmp1 = ebx; const Xbyak::Reg32 tmp2 = esi; code->mov(tmp1, cpsr); code->mov(tmp2, cpsr); code->shr(tmp1, n_shift); code->shr(tmp2, v_shift); code->shr(cpsr, z_shift); code->xor_(tmp1, tmp2); code->or_(tmp1, cpsr); code->test(tmp1, 1); code->jnz(label); break; } default: ASSERT_MSG(false, "Unknown cond %zu", static_cast(cond)); break; } return label; } void EmitX64::EmitCondPrelude(const IR::Block& block) { if (block.GetCondition() == Arm::Cond::AL) { ASSERT(!block.HasConditionFailedLocation()); return; } ASSERT(block.HasConditionFailedLocation()); Xbyak::Label pass = EmitCond(code, block.GetCondition()); EmitAddCycles(block.ConditionFailedCycleCount()); EmitTerminalLinkBlock(IR::Term::LinkBlock{block.ConditionFailedLocation()}, block.Location()); code->L(pass); } void EmitX64::EmitTerminal(IR::Terminal terminal, IR::LocationDescriptor initial_location) { switch (terminal.which()) { case 1: EmitTerminalInterpret(boost::get(terminal), initial_location); return; case 2: EmitTerminalReturnToDispatch(boost::get(terminal), initial_location); return; case 3: EmitTerminalLinkBlock(boost::get(terminal), initial_location); return; case 4: EmitTerminalLinkBlockFast(boost::get(terminal), initial_location); return; case 5: EmitTerminalPopRSBHint(boost::get(terminal), initial_location); return; case 6: EmitTerminalIf(boost::get(terminal), initial_location); return; case 7: EmitTerminalCheckHalt(boost::get(terminal), initial_location); return; default: ASSERT_MSG(false, "Invalid Terminal. Bad programmer."); return; } } void EmitX64::EmitTerminalInterpret(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) { ASSERT_MSG(terminal.next.TFlag() == initial_location.TFlag(), "Unimplemented"); ASSERT_MSG(terminal.next.EFlag() == initial_location.EFlag(), "Unimplemented"); code->mov(code->ABI_PARAM1.cvt32(), terminal.next.PC()); code->mov(code->ABI_PARAM2, reinterpret_cast(jit_interface)); code->mov(code->ABI_PARAM3, reinterpret_cast(cb.user_arg)); code->mov(MJitStateReg(Arm::Reg::PC), code->ABI_PARAM1.cvt32()); code->SwitchMxcsrOnExit(); code->CallFunction(cb.InterpreterFallback); code->ReturnFromRunCode(false); // TODO: Check cycles } void EmitX64::EmitTerminalReturnToDispatch(IR::Term::ReturnToDispatch, IR::LocationDescriptor) { code->ReturnFromRunCode(); } void EmitX64::EmitTerminalLinkBlock(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } code->cmp(qword[r15 + offsetof(JitState, cycles_remaining)], 0); patch_information[terminal.next.UniqueHash()].jg.emplace_back(code->getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJg(next_bb->code_ptr); } else { EmitPatchJg(); } code->mov(MJitStateReg(Arm::Reg::PC), terminal.next.PC()); code->ReturnFromRunCode(); // TODO: Check cycles, Properly do a link } void EmitX64::EmitTerminalLinkBlockFast(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; if (terminal.next.TFlag() != initial_location.TFlag()) { if (terminal.next.TFlag()) { code->or_(MJitStateCpsr(), u32(1 << 5)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 5))); } } if (terminal.next.EFlag() != initial_location.EFlag()) { if (terminal.next.EFlag()) { code->or_(MJitStateCpsr(), u32(1 << 9)); } else { code->and_(MJitStateCpsr(), u32(~(1 << 9))); } } patch_information[terminal.next.UniqueHash()].jmp.emplace_back(code->getCurr()); if (auto next_bb = GetBasicBlock(terminal.next)) { EmitPatchJmp(terminal.next, next_bb->code_ptr); } else { EmitPatchJmp(terminal.next); } } void EmitX64::EmitTerminalPopRSBHint(IR::Term::PopRSBHint, IR::LocationDescriptor) { using namespace Xbyak::util; // This calculation has to match up with IREmitter::PushRSB code->mov(ebx, MJitStateCpsr()); code->mov(ecx, MJitStateReg(Arm::Reg::PC)); code->and_(ebx, u32((1 << 5) | (1 << 9))); code->shr(ebx, 2); code->or_(ebx, dword[r15 + offsetof(JitState, FPSCR_mode)]); code->shl(rbx, 32); code->or_(rbx, rcx); code->mov(rax, reinterpret_cast(code->GetReturnFromRunCodeAddress())); for (size_t i = 0; i < JitState::RSBSize; ++i) { code->cmp(rbx, qword[r15 + offsetof(JitState, rsb_location_descriptors) + i * sizeof(u64)]); code->cmove(rax, qword[r15 + offsetof(JitState, rsb_codeptrs) + i * sizeof(u64)]); } code->jmp(rax); } void EmitX64::EmitTerminalIf(IR::Term::If terminal, IR::LocationDescriptor initial_location) { Xbyak::Label pass = EmitCond(code, terminal.if_); EmitTerminal(terminal.else_, initial_location); code->L(pass); EmitTerminal(terminal.then_, initial_location); } void EmitX64::EmitTerminalCheckHalt(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) { using namespace Xbyak::util; code->cmp(code->byte[r15 + offsetof(JitState, halt_requested)], u8(0)); code->jne(code->GetReturnFromRunCodeAddress()); EmitTerminal(terminal.else_, initial_location); } void EmitX64::Patch(const IR::LocationDescriptor& desc, CodePtr bb) { const CodePtr save_code_ptr = code->getCurr(); const PatchInformation& patch_info = patch_information[desc.UniqueHash()]; for (CodePtr location : patch_info.jg) { code->SetCodePtr(location); EmitPatchJg(bb); } for (CodePtr location : patch_info.jmp) { code->SetCodePtr(location); EmitPatchJmp(desc, bb); } for (CodePtr location : patch_info.mov_rcx) { code->SetCodePtr(location); EmitPatchMovRcx(bb); } code->SetCodePtr(save_code_ptr); } void EmitX64::Unpatch(const IR::LocationDescriptor& desc) { Patch(desc, nullptr); } void EmitX64::EmitPatchJg(CodePtr target_code_ptr) { const CodePtr patch_location = code->getCurr(); if (target_code_ptr) { code->jg(target_code_ptr); } code->EnsurePatchLocationSize(patch_location, 6); } void EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) { const CodePtr patch_location = code->getCurr(); if (target_code_ptr) { code->jmp(target_code_ptr); } else { code->mov(MJitStateReg(Arm::Reg::PC), target_desc.PC()); code->jmp(code->GetReturnFromRunCodeAddress()); } code->EnsurePatchLocationSize(patch_location, 13); } void EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) { if (!target_code_ptr) { target_code_ptr = code->GetReturnFromRunCodeAddress(); } const CodePtr patch_location = code->getCurr(); code->mov(code->rcx, reinterpret_cast(target_code_ptr)); code->EnsurePatchLocationSize(patch_location, 10); } void EmitX64::ClearCache() { block_descriptors.clear(); patch_information.clear(); } } // namespace BackendX64 } // namespace Dynarmic