Docs: Design documentation
This commit is contained in:
parent
4b1c27e64f
commit
3ef9da9a92
1 changed files with 336 additions and 0 deletions
336
docs/Design.md
Normal file
336
docs/Design.md
Normal file
|
@ -0,0 +1,336 @@
|
|||
# Dynarmic Design Documentation
|
||||
|
||||
While Dynarmic is a primarily a dynamic recompiler for the ARMv6K architecture, the possibility of supporting
|
||||
other versions of the ARM architecture, having a interpreter and/or static recompiler mode, or supporting
|
||||
other architectures is kept open. This is done by having each component as modular as possible.
|
||||
|
||||
Users of this library interact with it primarily through [`src/interface/interface.h`](../src/interface/interface.h).
|
||||
Users specify how dynarmic's CPU core interacts with the rest of their systems by setting members of the
|
||||
`Dynarmic::UserCallbacks` structure as appropriate. Users setup the CPU state using member fucntions of
|
||||
`Dynarmic::Jit`, then call `Dynarmic::Jit::Execute` to start CPU execution. The callbacks defined on `UserCallbacks`
|
||||
may be called from dynamically generated code, so users of the library should not depend on the stack being in a
|
||||
walkable state for unwinding.
|
||||
|
||||
Dynarmic reads instructions from memory by calling `UserCallbacks::MemoryRead32`. These instructions then pass
|
||||
through several stages:
|
||||
|
||||
1. Decoding (Identifying what type of instruction it is and breaking it up into fields)
|
||||
2. Translation (Generation of high-level IR from the instruction)
|
||||
3. Optimization (Eliminiation of redundant microinstructions, other speed improvements)
|
||||
4. Emission (Generation of host-executable code into memory)
|
||||
5. Execution (Host CPU jumps to the start of emitted code and runs it)
|
||||
|
||||
Using the x64 backend as an example:
|
||||
|
||||
* Decoding is done by [double dispatch](https://en.wikipedia.org/wiki/Visitor_pattern) in
|
||||
`src/frontend/decoder/{arm.h,thumb16.h,thumb32.h}`.
|
||||
* Translation is done by the visitors in `src/frontend/translate/{translate_arm.cpp,translate_thumb.cpp}`.
|
||||
The function `IR::Block Translate(LocationDescriptor descriptor, MemoryRead32FuncType memory_read_32)` takes a
|
||||
memory location and memory reader callback and returns a basic block of IR.
|
||||
* The IR can be found under `src/frontend/ir/`.
|
||||
* Optimization is not implemented yet.
|
||||
* Emission is done by `EmitX64` which can be found in `src/backend_x64/emit_x64.{h,cpp}`.
|
||||
* Execution is performed by calling `Routines::RunCode` in `src/backend_x64/routines.{h,cpp}`.
|
||||
|
||||
## Decoder
|
||||
|
||||
The decoder is a double dispatch decoder. Each instruction is represented by a line in the relevant instruction table.
|
||||
Here is an example line from `g_arm_instruction_table`:
|
||||
|
||||
INST(&V::arm_ADC_imm, "ADC (imm)", "cccc0010101Snnnnddddrrrrvvvvvvvv")
|
||||
|
||||
(Details on this instruction can be found in section A8.8.1 of the ARMv7-A manual. This is encoding A1.)
|
||||
|
||||
The first argument to INST is the member function to call on the visitor. The second argument is a user-readable
|
||||
instruction name. The third argument is a bit-representation of the instruction.
|
||||
|
||||
### Instruction Bit-Representation
|
||||
|
||||
Each character in the bitstring represents a bit. A `0` means that that bitposition **must** contain a zero. A `1`
|
||||
means that that bitposition **must** contain a one. A `-` means we don't care about the value at that bitposition.
|
||||
A string of the same character represents a field. In the above example, the first four bits `cccc` represent the
|
||||
four-bit-long cond field of the ARM Add with Carry (immediate) instruction.
|
||||
|
||||
The visitor would have to have a function named `arm_ADC_imm` with 6 arguments, one for each field (`cccc`, `S`,
|
||||
`nnnn`, `dddd`, `rrrr`, `vvvvvvvv`). If there is a mismatch of field number with argument number, a compile-time
|
||||
error results.
|
||||
|
||||
## Translator
|
||||
|
||||
The translator is a visitor that uses the decoder to decode instructions. The translator generates IR code with the
|
||||
help of the [`IRBuilder` class](../src/frontend/ir/ir_emitter.h). An example of a translation function follows:
|
||||
|
||||
bool ArmTranslatorVisitor::arm_ADC_imm(Cond cond, bool S, Reg n, Reg d, int rotate, Imm8 imm8) {
|
||||
u32 imm32 = ArmExpandImm(rotate, imm8);
|
||||
|
||||
// ADC{S}<c> <Rd>, <Rn>, #<imm>
|
||||
|
||||
if (ConditionPassed(cond)) {
|
||||
auto result = ir.AddWithCarry(ir.GetRegister(n), ir.Imm32(imm32), ir.GetCFlag());
|
||||
|
||||
if (d == Reg::PC) {
|
||||
ASSERT(!S);
|
||||
ir.ALUWritePC(result.result);
|
||||
ir.SetTerm(IR::Term::ReturnToDispatch{});
|
||||
return false;
|
||||
}
|
||||
|
||||
ir.SetRegister(d, result.result);
|
||||
if (S) {
|
||||
ir.SetNFlag(ir.MostSignificantBit(result.result));
|
||||
ir.SetZFlag(ir.IsZero(result.result));
|
||||
ir.SetCFlag(result.carry);
|
||||
ir.SetVFlag(result.overflow);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
where `ir` is an instance of the `IRBuilder` class. Each member function of the `IRBuilder` class constructs
|
||||
an IR microinstruction.
|
||||
|
||||
## Intermediate Representation
|
||||
|
||||
Dynarmic uses an ordered SSA intermediate representation. It is very vaguely similar to those found in other
|
||||
similar projects like redream, nucleus, and xenia. Major differences are: (1) the abundance of context microinstructions
|
||||
whereas those projects generally only have two (`load_context`/`store_context`), (2) the explicit handling of
|
||||
flags as their own values, and (3) very different basic block edge handling.
|
||||
|
||||
The intention of the context microinstructions and explicit flag handling is to allow for future optimizations. The
|
||||
differences in the way edges are handled are a quirk of the current implementation and dynarmic will likely add a
|
||||
function analyser in the medium-term future.
|
||||
|
||||
Dynarmic's intermediate representation is typed. Each microinstruction may take zero or more arguments and may
|
||||
return zero or more arguments. Each microinstruction is documented below:
|
||||
|
||||
### Immediate: Imm{U1,U8,U32,RegRef}
|
||||
|
||||
<u1> ImmU1(u1 value)
|
||||
<u8> ImmU8(u8 value)
|
||||
<u32> ImmU32(u32 value)
|
||||
<RegRef> ImmRegRef(Arm::Reg gpr)
|
||||
|
||||
These instructions take a `bool`, `u8` or `u32` value and wraps it up in an IR node so that they can be used
|
||||
by the IR.
|
||||
|
||||
### Context: {Get,Set}Register
|
||||
|
||||
<u32> GetRegister(<RegRef> reg)
|
||||
<void> SetRegister(<RegRef> reg, <u32> value)
|
||||
|
||||
Gets and sets `JitState::Reg[reg]`. Note that `SetRegister(ImmRegRef(Arm::R15), _)` is disallowed by IRBuilder.
|
||||
Use `{ALU,BX}WritePC` instead.
|
||||
|
||||
Note that sequences like `SetRegister(ImmRegRef(Arm::R4), _)` followed by `GetRegister(ImmRegRef(Arm::R4))` ~~are~~
|
||||
*will be* optimized away.
|
||||
|
||||
### Context: {Get,Set}{N,Z,C,V}Flag
|
||||
|
||||
<u1> GetNFlag()
|
||||
<void> SetNFlag(<u1> value)
|
||||
<u1> GetZFlag()
|
||||
<void> SetZFlag(<u1> value)
|
||||
<u1> GetCFlag()
|
||||
<void> SetCFlag(<u1> value)
|
||||
<u1> GetVFlag()
|
||||
<void> SetVFlag(<u1> value)
|
||||
|
||||
Gets and sets bits in `JitState::Cpsr`. Similarly to registers redundant get/sets will be optimized away.
|
||||
|
||||
### Context: {ALU,BX}WritePC
|
||||
|
||||
<void> ALUWritePC(<u32> value)
|
||||
<void> BXWritePC(<u32> value)
|
||||
|
||||
This should probably be the last instruction in a translation block unless you're doing something fancy.
|
||||
|
||||
This microinstruction sets R15 and CPSR.T as appropriate.
|
||||
|
||||
### Callback: CallSupervisor
|
||||
|
||||
<void> CallSupervisor(<u32> svc_imm32)
|
||||
|
||||
This should probably be the last instruction in a translation block unless you're doing something fancy.
|
||||
|
||||
### Calculation: LastSignificant{Half,Byte}
|
||||
|
||||
<u16> LeastSignificantHalf(<u32> value)
|
||||
<u8> LeastSignificantByte(<u32> value)
|
||||
|
||||
Extract a u16 and u8 respectively from a u32.
|
||||
|
||||
### Calculation: MostSignificantBit, IsZero
|
||||
|
||||
<u1> MostSignificantBit(<u32> value)
|
||||
<u1> IsZero(<u32> value)
|
||||
|
||||
These are used to implement ARM flags N and Z. These can often be optimized away by the backend into a host flag read.
|
||||
|
||||
### Calculation: LogicalShiftLeft
|
||||
|
||||
(<u32> result, <u1> carry_out) LogicalShiftLeft(<u32> operand, <u8> shift_amount, <u1> carry_in)
|
||||
|
||||
Pseudocode:
|
||||
|
||||
if shift_amount == 0:
|
||||
return (operand, carry_in)
|
||||
|
||||
x = operand * (2 ** shift_amount)
|
||||
result = Bits<31,0>(x)
|
||||
carry_out = Bit<32>(x)
|
||||
|
||||
return (result, carry_out)
|
||||
|
||||
This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SHL` does on x64).
|
||||
|
||||
### Calculation: LogicalShiftRight
|
||||
|
||||
(<u32> result, <u1> carry_out) LogicalShiftLeft(<u32> operand, <u8> shift_amount, <u1> carry_in)
|
||||
|
||||
Pseudocode:
|
||||
|
||||
if shift_amount == 0:
|
||||
return (operand, carry_in)
|
||||
|
||||
x = ZeroExtend(operand, from_size: 32, to_size: shift_amount+32)
|
||||
result = Bits<shift_amount+31,shift_amount>(x)
|
||||
carry_out = Bit<shift_amount-1>(x)
|
||||
|
||||
return (result, carry_out)
|
||||
|
||||
This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SHR` does on x64).
|
||||
|
||||
### Calculation: ArithmeticShiftRight
|
||||
|
||||
(<u32> result, <u1> carry_out) ArithmeticShiftRight(<u32> operand, <u8> shift_amount, <u1> carry_in)
|
||||
|
||||
Pseudocode:
|
||||
|
||||
if shift_amount == 0:
|
||||
return (operand, carry_in)
|
||||
|
||||
x = SignExtend(operand, from_size: 32, to_size: shift_amount+32)
|
||||
result = Bits<shift_amount+31,shift_amount>(x)
|
||||
carry_out = Bit<shift_amount-1>(x)
|
||||
|
||||
return (result, carry_out)
|
||||
|
||||
This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SAR` does on x64).
|
||||
|
||||
### Calcuation: RotateRight
|
||||
|
||||
(<u32> result, <u1> carry_out) RotateRight(<u32> operand, <u8> shift_amount, <u1> carry_in)
|
||||
|
||||
Pseudocode:
|
||||
|
||||
if shift_amount == 0:
|
||||
return (operand, carry_in)
|
||||
|
||||
shift_amount %= 32
|
||||
result = (operand << shift_amount) | (operand >> (32 - shift_amount))
|
||||
carry_out = Bit<31>(result)
|
||||
|
||||
return (result, carry_out)
|
||||
|
||||
### Calculation: AddWithCarry
|
||||
|
||||
(<u32> result, <u1> carry_out, <u1> overflow) AddWithCarry(<u32> a, <u32> b, <u1> carry_in)
|
||||
|
||||
a + b + carry_in
|
||||
|
||||
### Calculation: SubWithCarry
|
||||
|
||||
(<u32> result, <u1> carry_out, <u1> overflow) SubWithCarry(<u32> a, <u32> b, <u1> carry_in)
|
||||
|
||||
This has equivalent semantics to `AddWithCarry(a, Not(b), carry_in)`.
|
||||
|
||||
a - b - !carry_in
|
||||
|
||||
### Calculation: And
|
||||
|
||||
<u32> And(<u32> a, <u32> b)
|
||||
|
||||
### Calculation: Eor
|
||||
|
||||
<u32> Eor(<u32> a, <u32> b)
|
||||
|
||||
Exclusive OR (i.e.: XOR)
|
||||
|
||||
### Calculation: Or
|
||||
|
||||
<u32> Or(<u32> a, <u32> b)
|
||||
|
||||
### Calculation: Not
|
||||
|
||||
<u32> Not(<u32> value)
|
||||
|
||||
### Callback: {Read,Write}Memory{8,16,32,64}
|
||||
|
||||
<u8> ReadMemory8(<u32> vaddr)
|
||||
<u8> ReadMemory16(<u32> vaddr)
|
||||
<u8> ReadMemory32(<u32> vaddr)
|
||||
<u8> ReadMemory64(<u32> vaddr)
|
||||
<void> WriteMemory8(<u32> vaddr, <u8> value_to_store)
|
||||
<void> WriteMemory16(<u32> vaddr, <u16> value_to_store)
|
||||
<void> WriteMemory32(<u32> vaddr, <u32> value_to_store)
|
||||
<void> WriteMemory64(<u32> vaddr, <u64> value_to_store)
|
||||
|
||||
Memory access.
|
||||
|
||||
### Terminal: Interpret
|
||||
|
||||
SetTerm(IR::Term::Interpret{next})
|
||||
|
||||
This terminal instruction calls the interpreter, starting at `next`.
|
||||
The interpreter must interpret ~~at least 1 instruction but may choose to interpret more.~~
|
||||
**exactly one instruction (in the current implementation).**
|
||||
|
||||
### Terminal: ReturnToDispatch
|
||||
|
||||
SetTerm(IR::Term::ReturnToDispatch{})
|
||||
|
||||
This terminal instruction returns control to the dispatcher.
|
||||
The dispatcher will use the value in R15 to determine what comes next.
|
||||
|
||||
### Terminal: LinkBlock
|
||||
|
||||
SetTerm(IR::Term::LinkBlock{next})
|
||||
|
||||
This terminal instruction jumps to the basic block described by `next` if we have enough
|
||||
cycles remaining. If we do not have enough cycles remaining, we return to the
|
||||
dispatcher, which will return control to the host.
|
||||
|
||||
### Terminal: LinkBlockFast
|
||||
|
||||
SetTerm(IR::Term::LinkBlockFast{next})
|
||||
|
||||
This terminal instruction jumps to the basic block described by `next` unconditionally.
|
||||
This is an optimization and MUST only be emitted when this is guaranteed not to result
|
||||
in hanging, even in the face of other optimizations. (In practice, this means that only
|
||||
forward jumps to short-ish blocks would use this instruction.)
|
||||
A backend that doesn't support this optimization may choose to implement this exactly
|
||||
as LinkBlock.
|
||||
|
||||
**(degasus says this is probably a pretty useless optimization)**
|
||||
|
||||
### Terminal: PopRSBHint
|
||||
|
||||
SetTerm(IR::Term::PopRSBHint{})
|
||||
|
||||
This terminal instruction checks the top of the Return Stack Buffer against R15.
|
||||
If RSB lookup fails, control is returned to the dispatcher.
|
||||
This is an optimization for faster function calls. A backend that doesn't support
|
||||
this optimization or doesn't have a RSB may choose to implement this exactly as
|
||||
ReturnToDispatch.
|
||||
|
||||
**(This would be quite profitable once implemented. degasus agrees.)**
|
||||
|
||||
### Terminal: If
|
||||
|
||||
SetTerm(IR::Term::If{cond, term_then, term_else})
|
||||
|
||||
~~This terminal instruction conditionally executes one terminal or another depending
|
||||
on the run-time state of the ARM flags.~~
|
||||
|
||||
**(Unimplemented.)**
|
Loading…
Reference in a new issue