353 lines
14 KiB
C++
353 lines
14 KiB
C++
|
/* This file is part of the dynarmic project.
|
||
|
* Copyright (c) 2016 MerryMage
|
||
|
* This software may be used and distributed according to the terms of the GNU
|
||
|
* General Public License version 2 or any later version.
|
||
|
*/
|
||
|
|
||
|
#include <cinttypes>
|
||
|
#include <cstring>
|
||
|
|
||
|
#include <catch.hpp>
|
||
|
#include <common/bit_util.h>
|
||
|
|
||
|
#include "common/common_types.h"
|
||
|
#include "frontend/disassembler.h"
|
||
|
#include "interface/interface.h"
|
||
|
#include "rand_int.h"
|
||
|
#include "skyeye_interpreter/dyncom/arm_dyncom_interpreter.h"
|
||
|
#include "skyeye_interpreter/skyeye_common/armstate.h"
|
||
|
|
||
|
struct WriteRecord {
|
||
|
size_t size;
|
||
|
u32 address;
|
||
|
u64 data;
|
||
|
};
|
||
|
|
||
|
static bool operator==(const WriteRecord& a, const WriteRecord& b) {
|
||
|
return std::tie(a.size, a.address, a.data) == std::tie(b.size, b.address, b.data);
|
||
|
}
|
||
|
|
||
|
static std::array<u32, 3000> code_mem{};
|
||
|
static std::vector<WriteRecord> write_records;
|
||
|
|
||
|
static bool IsReadOnlyMemory(u32 vaddr);
|
||
|
static u8 MemoryRead8(u32 vaddr);
|
||
|
static u16 MemoryRead16(u32 vaddr);
|
||
|
static u32 MemoryRead32(u32 vaddr);
|
||
|
static u64 MemoryRead64(u32 vaddr);
|
||
|
static void MemoryWrite8(u32 vaddr, u8 value);
|
||
|
static void MemoryWrite16(u32 vaddr, u16 value);
|
||
|
static void MemoryWrite32(u32 vaddr, u32 value);
|
||
|
static void MemoryWrite64(u32 vaddr, u64 value);
|
||
|
static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit);
|
||
|
static Dynarmic::UserCallbacks GetUserCallbacks();
|
||
|
|
||
|
static bool IsReadOnlyMemory(u32 vaddr) {
|
||
|
return vaddr < code_mem.size();
|
||
|
}
|
||
|
static u8 MemoryRead8(u32 vaddr) {
|
||
|
return static_cast<u8>(vaddr);
|
||
|
}
|
||
|
static u16 MemoryRead16(u32 vaddr) {
|
||
|
return static_cast<u16>(vaddr);
|
||
|
}
|
||
|
static u32 MemoryRead32(u32 vaddr) {
|
||
|
if (vaddr < code_mem.size() * sizeof(u32)) {
|
||
|
size_t index = vaddr / sizeof(u32);
|
||
|
return code_mem[index];
|
||
|
}
|
||
|
return vaddr;
|
||
|
}
|
||
|
static u64 MemoryRead64(u32 vaddr) {
|
||
|
return vaddr;
|
||
|
}
|
||
|
|
||
|
static void MemoryWrite8(u32 vaddr, u8 value){
|
||
|
write_records.push_back({8, vaddr, value});
|
||
|
}
|
||
|
static void MemoryWrite16(u32 vaddr, u16 value){
|
||
|
write_records.push_back({16, vaddr, value});
|
||
|
}
|
||
|
static void MemoryWrite32(u32 vaddr, u32 value){
|
||
|
write_records.push_back({32, vaddr, value});
|
||
|
}
|
||
|
static void MemoryWrite64(u32 vaddr, u64 value){
|
||
|
write_records.push_back({64, vaddr, value});
|
||
|
}
|
||
|
|
||
|
static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit) {
|
||
|
ARMul_State interp_state{USER32MODE};
|
||
|
interp_state.user_callbacks = GetUserCallbacks();
|
||
|
interp_state.NumInstrsToExecute = 1;
|
||
|
|
||
|
interp_state.Reg = jit->Regs();
|
||
|
interp_state.Cpsr = jit->Cpsr();
|
||
|
interp_state.Reg[15] = pc;
|
||
|
|
||
|
InterpreterClearCache();
|
||
|
InterpreterMainLoop(&interp_state);
|
||
|
|
||
|
jit->Regs() = interp_state.Reg;
|
||
|
jit->Cpsr() = interp_state.Cpsr;
|
||
|
}
|
||
|
|
||
|
static void Fail() {
|
||
|
FAIL();
|
||
|
}
|
||
|
|
||
|
static Dynarmic::UserCallbacks GetUserCallbacks() {
|
||
|
Dynarmic::UserCallbacks user_callbacks{};
|
||
|
user_callbacks.InterpreterFallback = &InterpreterFallback;
|
||
|
user_callbacks.CallSVC = (bool (*)(u32)) &Fail;
|
||
|
user_callbacks.IsReadOnlyMemory = &IsReadOnlyMemory;
|
||
|
user_callbacks.MemoryRead8 = &MemoryRead8;
|
||
|
user_callbacks.MemoryRead16 = &MemoryRead16;
|
||
|
user_callbacks.MemoryRead32 = &MemoryRead32;
|
||
|
user_callbacks.MemoryRead64 = &MemoryRead64;
|
||
|
user_callbacks.MemoryWrite8 = &MemoryWrite8;
|
||
|
user_callbacks.MemoryWrite16 = &MemoryWrite16;
|
||
|
user_callbacks.MemoryWrite32 = &MemoryWrite32;
|
||
|
user_callbacks.MemoryWrite64 = &MemoryWrite64;
|
||
|
return user_callbacks;
|
||
|
}
|
||
|
|
||
|
struct InstructionGenerator final {
|
||
|
public:
|
||
|
InstructionGenerator(const char* format, std::function<bool(u32)> is_valid = [](u32){ return true; }) : is_valid(is_valid) {
|
||
|
REQUIRE(strlen(format) == 32);
|
||
|
|
||
|
for (int i = 0; i < 32; i++) {
|
||
|
const u32 bit = 1 << (31 - i);
|
||
|
switch (format[i]) {
|
||
|
case '0':
|
||
|
mask |= bit;
|
||
|
break;
|
||
|
case '1':
|
||
|
bits |= bit;
|
||
|
mask |= bit;
|
||
|
break;
|
||
|
default:
|
||
|
// Do nothing
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
u32 Generate() const {
|
||
|
u32 inst;
|
||
|
do {
|
||
|
u32 random = RandInt<u32>(0, 0xFFFF);
|
||
|
inst = bits | (random & ~mask);
|
||
|
} while (!is_valid(inst));
|
||
|
return inst;
|
||
|
}
|
||
|
u32 Bits() { return bits; }
|
||
|
u32 Mask() { return mask; }
|
||
|
private:
|
||
|
u32 bits = 0;
|
||
|
u32 mask = 0;
|
||
|
std::function<bool(u32)> is_valid;
|
||
|
};
|
||
|
|
||
|
static bool DoesBehaviorMatch(const ARMul_State& interp, const Dynarmic::Jit& jit, const std::vector<WriteRecord>& interp_write_records, const std::vector<WriteRecord>& jit_write_records) {
|
||
|
const auto interp_regs = interp.Reg;
|
||
|
const auto jit_regs = jit.Regs();
|
||
|
|
||
|
return std::equal(interp_regs.begin(), interp_regs.end(), jit_regs.begin(), jit_regs.end())
|
||
|
&& interp.Cpsr == jit.Cpsr()
|
||
|
&& interp_write_records == jit_write_records;
|
||
|
}
|
||
|
|
||
|
|
||
|
void FuzzJitArm(const size_t instruction_count, const size_t instructions_to_execute_count, const size_t run_count, const std::function<u16()> instruction_generator) {
|
||
|
// Prepare memory
|
||
|
code_mem.fill(0xEAFFFFFE); // b +#0
|
||
|
|
||
|
// Prepare test subjects
|
||
|
ARMul_State interp{USER32MODE};
|
||
|
interp.user_callbacks = GetUserCallbacks();
|
||
|
Dynarmic::Jit jit{GetUserCallbacks()};
|
||
|
|
||
|
for (size_t run_number = 0; run_number < run_count; run_number++) {
|
||
|
interp.instruction_cache.clear();
|
||
|
InterpreterClearCache();
|
||
|
jit.ClearCache(false);
|
||
|
|
||
|
// Setup initial state
|
||
|
|
||
|
std::array<u32, 16> initial_regs;
|
||
|
std::generate_n(initial_regs.begin(), 15, []{ return RandInt<u32>(0, 0xFFFFFFFF); });
|
||
|
initial_regs[15] = 0;
|
||
|
|
||
|
interp.Cpsr = 0x000001D0;
|
||
|
interp.Reg = initial_regs;
|
||
|
jit.Cpsr() = 0x000001D0;
|
||
|
jit.Regs() = initial_regs;
|
||
|
|
||
|
std::generate_n(code_mem.begin(), instruction_count, instruction_generator);
|
||
|
|
||
|
// Run interpreter
|
||
|
write_records.clear();
|
||
|
interp.NumInstrsToExecute = instructions_to_execute_count;
|
||
|
InterpreterMainLoop(&interp);
|
||
|
auto interp_write_records = write_records;
|
||
|
|
||
|
// Run jit
|
||
|
write_records.clear();
|
||
|
jit.Run(instructions_to_execute_count);
|
||
|
auto jit_write_records = write_records;
|
||
|
|
||
|
// Compare
|
||
|
if (!DoesBehaviorMatch(interp, jit, interp_write_records, jit_write_records)) {
|
||
|
printf("Failed at execution number %zu\n", run_number);
|
||
|
|
||
|
printf("\nInstruction Listing: \n");
|
||
|
for (size_t i = 0; i < instruction_count; i++) {
|
||
|
printf("%s\n", Dynarmic::Arm::DisassembleArm(code_mem[i]).c_str());
|
||
|
}
|
||
|
|
||
|
printf("\nInitial Register Listing: \n");
|
||
|
for (int i = 0; i <= 15; i++) {
|
||
|
printf("%4i: %08x\n", i, initial_regs[i]);
|
||
|
}
|
||
|
|
||
|
printf("\nFinal Register Listing: \n");
|
||
|
for (int i = 0; i <= 15; i++) {
|
||
|
printf("%4i: %08x %08x %s\n", i, interp.Reg[i], jit.Regs()[i], interp.Reg[i] != jit.Regs()[i] ? "*" : "");
|
||
|
}
|
||
|
printf("CPSR: %08x %08x %s\n", interp.Cpsr, jit.Cpsr(), interp.Cpsr != jit.Cpsr() ? "*" : "");
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
DebugBreak();
|
||
|
#endif
|
||
|
FAIL();
|
||
|
}
|
||
|
|
||
|
if (run_number % 10 == 0) printf("%zu\r", run_number);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST_CASE("Fuzz ARM data processing instructions", "[JitX64]") {
|
||
|
const std::array<InstructionGenerator, 16> imm_instructions = {
|
||
|
{
|
||
|
InstructionGenerator("cccc0010101Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010100Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010000Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0011110Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc00110111nnnn0000rrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc00110101nnnn0000rrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010001Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0011101S0000ddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0011111S0000ddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0011100Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010011Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010111Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010110Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc0010010Snnnnddddrrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc00110011nnnn0000rrrrvvvvvvvv"),
|
||
|
InstructionGenerator("cccc00110001nnnn0000rrrrvvvvvvvv"),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
const std::array<InstructionGenerator, 16> reg_instructions = {
|
||
|
{
|
||
|
InstructionGenerator("cccc0000101Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000100Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000000Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0001110Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc00010111nnnn0000vvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc00010101nnnn0000vvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000001Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0001101S0000ddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0001111S0000ddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0001100Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000011Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000111Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000110Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc0000010Snnnnddddvvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc00010011nnnn0000vvvvvrr0mmmm"),
|
||
|
InstructionGenerator("cccc00010001nnnn0000vvvvvrr0mmmm"),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
const std::array<InstructionGenerator, 16> rsr_instructions = {
|
||
|
{
|
||
|
InstructionGenerator("cccc0000101Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000100Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000000Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0001110Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc00010111nnnn0000ssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc00010101nnnn0000ssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000001Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0001101S0000ddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0001111S0000ddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0001100Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000011Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000111Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000110Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc0000010Snnnnddddssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc00010011nnnn0000ssss0rr1mmmm"),
|
||
|
InstructionGenerator("cccc00010001nnnn0000ssss0rr1mmmm"),
|
||
|
}
|
||
|
};
|
||
|
|
||
|
auto instruction_select = [&](bool Rd_can_be_r15) -> auto {
|
||
|
return [&, Rd_can_be_r15]() -> u32 {
|
||
|
size_t instruction_set = RandInt<size_t>(0, 2);
|
||
|
|
||
|
u32 cond = 0xE;
|
||
|
// Have a one-in-twenty-five chance of actually having a cond.
|
||
|
if (RandInt(1, 25) == 1) {
|
||
|
cond = RandInt<u32>(0x0, 0xD);
|
||
|
}
|
||
|
|
||
|
u32 S = RandInt<u32>(0, 1);
|
||
|
|
||
|
switch (instruction_set) {
|
||
|
case 0: {
|
||
|
InstructionGenerator instruction = imm_instructions[RandInt<size_t>(0, imm_instructions.size() - 1)];
|
||
|
u32 Rd = RandInt<u32>(0, Rd_can_be_r15 ? 15 : 14);
|
||
|
if (Rd == 15) S = false;
|
||
|
u32 Rn = RandInt<u32>(0, 15);
|
||
|
u32 shifter_operand = RandInt<u32>(0, 0xFFF);
|
||
|
u32 assemble_randoms = (shifter_operand << 0) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
|
||
|
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
|
||
|
}
|
||
|
case 1: {
|
||
|
InstructionGenerator instruction = reg_instructions[RandInt<size_t>(0, reg_instructions.size() - 1)];
|
||
|
u32 Rd = RandInt<u32>(0, Rd_can_be_r15 ? 15 : 14);
|
||
|
if (Rd == 15) S = false;
|
||
|
u32 Rn = RandInt<u32>(0, 15);
|
||
|
u32 shifter_operand = RandInt<u32>(0, 0xFFF);
|
||
|
u32
|
||
|
assemble_randoms = (shifter_operand << 0) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
|
||
|
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
|
||
|
}
|
||
|
case 2: {
|
||
|
InstructionGenerator instruction = rsr_instructions[RandInt<size_t>(0, rsr_instructions.size() - 1)];
|
||
|
u32 Rd = RandInt<u32>(0, 14); // Rd can never be 15.
|
||
|
u32 Rn = RandInt<u32>(0, 14);
|
||
|
u32 Rs = RandInt<u32>(0, 14);
|
||
|
int rotate = RandInt<int>(0, 3);
|
||
|
u32 Rm = RandInt<u32>(0, 14);
|
||
|
u32 assemble_randoms =
|
||
|
(Rm << 0) | (rotate << 5) | (Rs << 8) | (Rd << 12) | (Rn << 16) | (S << 20) | (cond << 28);
|
||
|
return instruction.Bits() | (assemble_randoms & ~instruction.Mask());
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
SECTION("short blocks") {
|
||
|
FuzzJitArm(5, 6, 5000, instruction_select(/*Rd_can_be_r15=*/false));
|
||
|
}
|
||
|
|
||
|
SECTION("long blocks") {
|
||
|
FuzzJitArm(1024, 1025, 200, instruction_select(/*Rd_can_be_r15=*/false));
|
||
|
}
|
||
|
|
||
|
SECTION("R15") {
|
||
|
FuzzJitArm(1, 1, 10000, instruction_select(/*Rd_can_be_r15=*/true));
|
||
|
}
|
||
|
}
|