breakpad/src/processor/stackwalker_arm_unittest.cc

983 lines
42 KiB
C++
Raw Normal View History

// Copyright 2010 Google LLC
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google LLC nor the names of its
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// stackwalker_arm_unittest.cc: Unit tests for StackwalkerARM class.
Add #include <config.h> to the beginning of all cc files Added #ifdef HAVE_CONFIG_H #include <config.h> #endif to the beginning of all source files that didn't have it. This ensures that configuration options are respected in all source files. In particular, it ensures that the defines needed to fix Large File System issues are set before including system headers. More generally, it ensures consistency between the source files, and avoids the possibility of ODR violations between source files that were including config.h and source files that were not. Process: Ran find . \( -name third_party -prune \) -o \( -name '.git*' -prune \) -o \( \( -name '*.cc' -o -name '*.c' \) -exec sed -i '0,/^#include/ s/^#include/#ifdef HAVE_CONFIG_H\n#include <config.h> \/\/ Must come first\n#endif\n\n#include/' {} + \) and then manually fixed up src/common/linux/guid_creator.cc, src/tools/solaris/dump_syms/testdata/dump_syms_regtest.cc, src/tools/windows/dump_syms/testdata/dump_syms_regtest.cc, src/common/stabs_reader.h, and src/common/linux/breakpad_getcontext.h. BUG=google-breakpad:877 Fixed: google-breakpad:877 TEST=./configure && make && make check TEST=Did the find/sed in ChromeOS's copy, ensured emerge-hana google-breakpad worked and had fewer LFS violations. TEST=Did the find/sed in Chrome's copy, ensured compiling hana, windows, linux, and eve still worked (since Chrome doesn't used config.h) Change-Id: I16cededbba0ea0c28e919b13243e35300999e799 Reviewed-on: https://chromium-review.googlesource.com/c/breakpad/breakpad/+/4289676 Reviewed-by: Mike Frysinger <vapier@chromium.org>
2023-02-24 20:14:53 +01:00
#ifdef HAVE_CONFIG_H
#include <config.h> // Must come first
#endif
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
#include <string.h>
#include <string>
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
#include <vector>
#include "breakpad_googletest_includes.h"
#include "common/test_assembler.h"
#include "common/using_std_string.h"
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
#include "google_breakpad/common/minidump_format.h"
#include "google_breakpad/processor/basic_source_line_resolver.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/code_module.h"
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
#include "google_breakpad/processor/source_line_resolver_interface.h"
#include "google_breakpad/processor/stack_frame_cpu.h"
#include "processor/stackwalker_unittest_utils.h"
#include "processor/stackwalker_arm.h"
#include "processor/windows_frame_info.h"
using google_breakpad::BasicSourceLineResolver;
using google_breakpad::CallStack;
using google_breakpad::CodeModule;
using google_breakpad::StackFrameSymbolizer;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
using google_breakpad::StackFrame;
using google_breakpad::StackFrameARM;
using google_breakpad::Stackwalker;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
using google_breakpad::StackwalkerARM;
using google_breakpad::SystemInfo;
using google_breakpad::WindowsFrameInfo;
using google_breakpad::test_assembler::kLittleEndian;
using google_breakpad::test_assembler::Label;
using google_breakpad::test_assembler::Section;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
using std::vector;
using testing::_;
using testing::AnyNumber;
using testing::DoAll;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
using testing::Return;
using testing::SetArgumentPointee;
using testing::Test;
class StackwalkerARMFixture {
public:
StackwalkerARMFixture()
: stack_section(kLittleEndian),
// Give the two modules reasonable standard locations and names
// for tests to play with.
module1(0x40000000, 0x10000, "module1", "version1"),
module2(0x50000000, 0x10000, "module2", "version2") {
// Identify the system as a Linux system.
system_info.os = "Linux";
system_info.os_short = "linux";
system_info.os_version = "Lugubrious Labrador";
system_info.cpu = "arm";
system_info.cpu_info = "";
// Put distinctive values in the raw CPU context.
BrandContext(&raw_context);
// Create some modules with some stock debugging information.
modules.Add(&module1);
modules.Add(&module2);
// By default, none of the modules have symbol info; call
// SetModuleSymbols to override this.
EXPECT_CALL(supplier, GetCStringSymbolData(_, _, _, _, _))
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
.WillRepeatedly(Return(MockSymbolSupplier::NOT_FOUND));
// Avoid GMOCK WARNING "Uninteresting mock function call - returning
// directly" for FreeSymbolData().
EXPECT_CALL(supplier, FreeSymbolData(_)).Times(AnyNumber());
// Reset max_frames_scanned since it's static.
Stackwalker::set_max_frames_scanned(1024);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
}
// Set the Breakpad symbol information that supplier should return for
// MODULE to INFO.
void SetModuleSymbols(MockCodeModule* module, const string& info) {
size_t buffer_size;
char *buffer = supplier.CopySymbolDataAndOwnTheCopy(info, &buffer_size);
EXPECT_CALL(supplier, GetCStringSymbolData(module, &system_info, _, _, _))
.WillRepeatedly(DoAll(SetArgumentPointee<3>(buffer),
SetArgumentPointee<4>(buffer_size),
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
Return(MockSymbolSupplier::FOUND)));
}
// Populate stack_region with the contents of stack_section. Use
// stack_section.start() as the region's starting address.
void RegionFromSection() {
string contents;
ASSERT_TRUE(stack_section.GetContents(&contents));
stack_region.Init(stack_section.start().Value(), contents);
}
// Fill RAW_CONTEXT with pseudo-random data, for round-trip checking.
void BrandContext(MDRawContextARM *raw_context) {
uint8_t x = 173;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
for (size_t i = 0; i < sizeof(*raw_context); i++)
reinterpret_cast<uint8_t*>(raw_context)[i] = (x += 17);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
}
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
SystemInfo system_info;
MDRawContextARM raw_context;
Section stack_section;
MockMemoryRegion stack_region;
MockCodeModule module1;
MockCodeModule module2;
MockCodeModules modules;
MockSymbolSupplier supplier;
BasicSourceLineResolver resolver;
CallStack call_stack;
const vector<StackFrame*>* frames;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
};
class SanityCheck: public StackwalkerARMFixture, public Test { };
TEST_F(SanityCheck, NoResolver) {
// Since we have no call frame information, and all unwinding
// requires call frame information, the stack walk will end after
// the first frame.
StackFrameSymbolizer frame_symbolizer(NULL, NULL);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
// This should succeed even without a resolver or supplier.
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
StackFrameARM *frame = static_cast<StackFrameARM*>(frames->at(0));
// Check that the values from the original raw context made it
// through to the context in the stack frame.
EXPECT_EQ(0, memcmp(&raw_context, &frame->context, sizeof(raw_context)));
}
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
class GetContextFrame: public StackwalkerARMFixture, public Test { };
TEST_F(GetContextFrame, Simple) {
// Since we have no call frame information, and all unwinding
// requires call frame information, the stack walk will end after
// the first frame.
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
StackFrameARM *frame = static_cast<StackFrameARM*>(frames->at(0));
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
// Check that the values from the original raw context made it
// through to the context in the stack frame.
EXPECT_EQ(0, memcmp(&raw_context, &frame->context, sizeof(raw_context)));
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
}
// The stackwalker should be able to produce the context frame even
// without stack memory present.
TEST_F(GetContextFrame, NoStackMemory) {
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, NULL, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
StackFrameARM *frame = static_cast<StackFrameARM*>(frames->at(0));
// Check that the values from the original raw context made it
// through to the context in the stack frame.
EXPECT_EQ(0, memcmp(&raw_context, &frame->context, sizeof(raw_context)));
}
class GetCallerFrame: public StackwalkerARMFixture, public Test { };
TEST_F(GetCallerFrame, ScanWithoutSymbols) {
// When the stack walker resorts to scanning the stack,
// only addresses located within loaded modules are
// considered valid return addresses.
// Force scanning through three frames to ensure that the
// stack pointer is set properly in scan-recovered frames.
stack_section.start() = 0x80000000;
uint32_t return_address1 = 0x50000100;
uint32_t return_address2 = 0x50000900;
Label frame1_sp, frame2_sp;
stack_section
// frame 0
.Append(16, 0) // space
.D32(0x40090000) // junk that's not
.D32(0x60000000) // a return address
.D32(return_address1) // actual return address
// frame 1
.Mark(&frame1_sp)
.Append(16, 0) // space
.D32(0xF0000000) // more junk
.D32(0x0000000D)
.D32(return_address2) // actual return address
// frame 2
.Mark(&frame2_sp)
.Append(32, 0); // end of stack
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40005510;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(2U, modules_without_symbols.size());
ASSERT_EQ("module1", modules_without_symbols[0]->debug_file());
ASSERT_EQ("module2", modules_without_symbols[1]->debug_file());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(3U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_SCAN, frame1->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_SP),
frame1->context_validity);
EXPECT_EQ(return_address1, frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(frame1_sp.Value(), frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
StackFrameARM *frame2 = static_cast<StackFrameARM*>(frames->at(2));
EXPECT_EQ(StackFrame::FRAME_TRUST_SCAN, frame2->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_SP),
frame2->context_validity);
EXPECT_EQ(return_address2, frame2->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(frame2_sp.Value(), frame2->context.iregs[MD_CONTEXT_ARM_REG_SP]);
}
TEST_F(GetCallerFrame, ScanWithFunctionSymbols) {
// During stack scanning, if a potential return address
// is located within a loaded module that has symbols,
// it is only considered a valid return address if it
// lies within a function's bounds.
stack_section.start() = 0x80000000;
uint32_t return_address = 0x50000200;
Label frame1_sp;
stack_section
// frame 0
.Append(16, 0) // space
.D32(0x40090000) // junk that's not
.D32(0x60000000) // a return address
.D32(0x40001000) // a couple of plausible addresses
.D32(0x5000F000) // that are not within functions
.D32(return_address) // actual return address
// frame 1
.Mark(&frame1_sp)
.Append(32, 0); // end of stack
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40000200;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
SetModuleSymbols(&module1,
// The youngest frame's function.
"FUNC 100 400 10 monotreme\n");
SetModuleSymbols(&module2,
// The calling frame's function.
"FUNC 100 400 10 marsupial\n");
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(2U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
EXPECT_EQ("monotreme", frame0->function_name);
EXPECT_EQ(0x40000100U, frame0->function_base);
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_SCAN, frame1->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_SP),
frame1->context_validity);
EXPECT_EQ(return_address, frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(frame1_sp.Value(), frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ("marsupial", frame1->function_name);
EXPECT_EQ(0x50000100U, frame1->function_base);
}
TEST_F(GetCallerFrame, ScanFirstFrame) {
// If the stackwalker resorts to stack scanning, it will scan much
// farther to find the caller of the context frame.
stack_section.start() = 0x80000000;
uint32_t return_address1 = 0x50000100;
uint32_t return_address2 = 0x50000900;
Label frame1_sp, frame2_sp;
stack_section
// frame 0
.Append(32, 0) // space
.D32(0x40090000) // junk that's not
.D32(0x60000000) // a return address
.Append(96, 0) // more space
.D32(return_address1) // actual return address
// frame 1
.Mark(&frame1_sp)
.Append(32, 0) // space
.D32(0xF0000000) // more junk
.D32(0x0000000D)
.Append(136, 0) // more space
.D32(return_address2) // actual return address
// (won't be found)
// frame 2
.Mark(&frame2_sp)
.Append(32, 0); // end of stack
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40005510;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(2U, modules_without_symbols.size());
ASSERT_EQ("module1", modules_without_symbols[0]->debug_file());
ASSERT_EQ("module2", modules_without_symbols[1]->debug_file());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(2U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_SCAN, frame1->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_SP),
frame1->context_validity);
EXPECT_EQ(return_address1, frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(frame1_sp.Value(), frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
}
// Test that set_max_frames_scanned prevents using stack scanning
// to find caller frames.
TEST_F(GetCallerFrame, ScanningNotAllowed) {
// When the stack walker resorts to scanning the stack,
// only addresses located within loaded modules are
// considered valid return addresses.
stack_section.start() = 0x80000000;
uint32_t return_address1 = 0x50000100;
uint32_t return_address2 = 0x50000900;
Label frame1_sp, frame2_sp;
stack_section
// frame 0
.Append(16, 0) // space
.D32(0x40090000) // junk that's not
.D32(0x60000000) // a return address
.D32(return_address1) // actual return address
// frame 1
.Mark(&frame1_sp)
.Append(16, 0) // space
.D32(0xF0000000) // more junk
.D32(0x0000000D)
.D32(return_address2) // actual return address
// frame 2
.Mark(&frame2_sp)
.Append(32, 0); // end of stack
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40005510;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
Stackwalker::set_max_frames_scanned(0);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(1U, modules_without_symbols.size());
ASSERT_EQ("module1", modules_without_symbols[0]->debug_file());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
}
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
struct CFIFixture: public StackwalkerARMFixture {
CFIFixture() {
// Provide a bunch of STACK CFI records; we'll walk to the caller
// from every point in this series, expecting to find the same set
// of register values.
SetModuleSymbols(&module1,
// The youngest frame's function.
"FUNC 4000 1000 10 enchiridion\n"
// Initially, nothing has been pushed on the stack,
// and the return address is still in the link register.
"STACK CFI INIT 4000 100 .cfa: sp .ra: lr\n"
// Push r4, the frame pointer, and the link register.
"STACK CFI 4001 .cfa: sp 12 + r4: .cfa 12 - ^"
" r11: .cfa 8 - ^ .ra: .cfa 4 - ^\n"
// Save r4..r7 in r0..r3: verify that we populate
// the youngest frame with all the values we have.
"STACK CFI 4002 r4: r0 r5: r1 r6: r2 r7: r3\n"
// Restore r4..r7. Save the non-callee-saves register r1.
"STACK CFI 4003 .cfa: sp 16 + r1: .cfa 16 - ^"
" r4: r4 r5: r5 r6: r6 r7: r7\n"
// Move the .cfa back four bytes, to point at the return
// address, and restore the sp explicitly.
"STACK CFI 4005 .cfa: sp 12 + r1: .cfa 12 - ^"
" r11: .cfa 4 - ^ .ra: .cfa ^ sp: .cfa 4 +\n"
// Recover the PC explicitly from a new stack slot;
// provide garbage for the .ra.
"STACK CFI 4006 .cfa: sp 16 + pc: .cfa 16 - ^\n"
// The calling function.
"FUNC 5000 1000 10 epictetus\n"
// Mark it as end of stack.
"STACK CFI INIT 5000 1000 .cfa: 0 .ra: 0\n"
// A function whose CFI makes the stack pointer
// go backwards.
"FUNC 6000 1000 20 palinal\n"
"STACK CFI INIT 6000 1000 .cfa: sp 4 - .ra: lr\n"
// A function with CFI expressions that can't be
// evaluated.
"FUNC 7000 1000 20 rhetorical\n"
"STACK CFI INIT 7000 1000 .cfa: moot .ra: ambiguous\n");
// Provide some distinctive values for the caller's registers.
expected.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40005510;
expected.iregs[MD_CONTEXT_ARM_REG_SP] = 0x80000000;
expected.iregs[4] = 0xb5d55e68;
expected.iregs[5] = 0xebd134f3;
expected.iregs[6] = 0xa31e74bc;
expected.iregs[7] = 0x2dcb16b3;
expected.iregs[8] = 0x2ada2137;
expected.iregs[9] = 0xbbbb557d;
expected.iregs[10] = 0x48bf8ca7;
expected.iregs[MD_CONTEXT_ARM_REG_FP] = 0x8112e110;
// Expect CFI to recover all callee-saves registers. Since CFI is the
// only stack frame construction technique we have, aside from the
// context frame itself, there's no way for us to have a set of valid
// registers smaller than this.
expected_validity = (StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_SP |
StackFrameARM::CONTEXT_VALID_R4 |
StackFrameARM::CONTEXT_VALID_R5 |
StackFrameARM::CONTEXT_VALID_R6 |
StackFrameARM::CONTEXT_VALID_R7 |
StackFrameARM::CONTEXT_VALID_R8 |
StackFrameARM::CONTEXT_VALID_R9 |
StackFrameARM::CONTEXT_VALID_R10 |
StackFrameARM::CONTEXT_VALID_FP);
// By default, context frames provide all registers, as normal.
context_frame_validity = StackFrameARM::CONTEXT_VALID_ALL;
// By default, registers are unchanged.
raw_context = expected;
}
// Walk the stack, using stack_section as the contents of the stack
// and raw_context as the current register values. (Set the stack
// pointer to the stack's starting address.) Expect two stack
// frames; in the older frame, expect the callee-saves registers to
// have values matching those in 'expected'.
void CheckWalk() {
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region,
&modules, &frame_symbolizer);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
walker.SetContextFrameValidity(context_frame_validity);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
frames = call_stack.frames();
ASSERT_EQ(2U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
ASSERT_EQ(context_frame_validity, frame0->context_validity);
EXPECT_EQ("enchiridion", frame0->function_name);
EXPECT_EQ(0x40004000U, frame0->function_base);
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_CFI, frame1->trust);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
ASSERT_EQ(expected_validity, frame1->context_validity);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R1)
EXPECT_EQ(expected.iregs[1], frame1->context.iregs[1]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R4)
EXPECT_EQ(expected.iregs[4], frame1->context.iregs[4]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R5)
EXPECT_EQ(expected.iregs[5], frame1->context.iregs[5]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R6)
EXPECT_EQ(expected.iregs[6], frame1->context.iregs[6]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R7)
EXPECT_EQ(expected.iregs[7], frame1->context.iregs[7]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R8)
EXPECT_EQ(expected.iregs[8], frame1->context.iregs[8]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R9)
EXPECT_EQ(expected.iregs[9], frame1->context.iregs[9]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_R10)
EXPECT_EQ(expected.iregs[10], frame1->context.iregs[10]);
if (expected_validity & StackFrameARM::CONTEXT_VALID_FP)
EXPECT_EQ(expected.iregs[MD_CONTEXT_ARM_REG_FP],
frame1->context.iregs[MD_CONTEXT_ARM_REG_FP]);
// We would never have gotten a frame in the first place if the SP
// and PC weren't valid or ->instruction weren't set.
EXPECT_EQ(expected.iregs[MD_CONTEXT_ARM_REG_SP],
frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ(expected.iregs[MD_CONTEXT_ARM_REG_PC],
frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(expected.iregs[MD_CONTEXT_ARM_REG_PC],
frame1->instruction + 2);
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
EXPECT_EQ("epictetus", frame1->function_name);
}
// The values we expect to find for the caller's registers.
MDRawContextARM expected;
// The validity mask for expected.
int expected_validity;
// The validity mask to impose on the context frame.
int context_frame_validity;
};
class CFI: public CFIFixture, public Test { };
TEST_F(CFI, At4000) {
stack_section.start() = expected.iregs[MD_CONTEXT_ARM_REG_SP];
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004000;
raw_context.iregs[MD_CONTEXT_ARM_REG_LR] = 0x40005510;
CheckWalk();
}
TEST_F(CFI, At4001) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0xb5d55e68) // saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004001;
raw_context.iregs[4] = 0x635adc9f; // distinct callee r4
raw_context.iregs[MD_CONTEXT_ARM_REG_FP] = 0xbe145fc4; // distinct callee fp
CheckWalk();
}
// As above, but unwind from a context that has only the PC and SP.
TEST_F(CFI, At4001LimitedValidity) {
context_frame_validity =
StackFrameARM::CONTEXT_VALID_PC | StackFrameARM::CONTEXT_VALID_SP;
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004001;
raw_context.iregs[MD_CONTEXT_ARM_REG_FP] = 0xbe145fc4; // distinct callee fp
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0xb5d55e68) // saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
expected_validity = (StackFrameARM::CONTEXT_VALID_PC
| StackFrameARM::CONTEXT_VALID_SP
| StackFrameARM::CONTEXT_VALID_FP
| StackFrameARM::CONTEXT_VALID_R4);
CheckWalk();
}
TEST_F(CFI, At4002) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0xfb81ff3d) // no longer saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004002;
raw_context.iregs[0] = 0xb5d55e68; // saved r4
raw_context.iregs[1] = 0xebd134f3; // saved r5
raw_context.iregs[2] = 0xa31e74bc; // saved r6
raw_context.iregs[3] = 0x2dcb16b3; // saved r7
raw_context.iregs[4] = 0xfdd35466; // distinct callee r4
raw_context.iregs[5] = 0xf18c946c; // distinct callee r5
raw_context.iregs[6] = 0xac2079e8; // distinct callee r6
raw_context.iregs[7] = 0xa449829f; // distinct callee r7
raw_context.iregs[MD_CONTEXT_ARM_REG_FP] = 0xbe145fc4; // distinct callee fp
CheckWalk();
}
TEST_F(CFI, At4003) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0x48c8dd5a) // saved r1 (even though it's not callee-saves)
.D32(0xcb78040e) // no longer saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004003;
raw_context.iregs[1] = 0xfb756319; // distinct callee r1
raw_context.iregs[MD_CONTEXT_ARM_REG_FP] = 0x0a2857ea; // distinct callee fp
expected.iregs[1] = 0x48c8dd5a; // caller's r1
expected_validity |= StackFrameARM::CONTEXT_VALID_R1;
CheckWalk();
}
// We have no new rule at module offset 0x4004, so the results here should
// be the same as those at module offset 0x4003.
TEST_F(CFI, At4004) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0x48c8dd5a) // saved r1 (even though it's not callee-saves)
.D32(0xcb78040e) // no longer saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004004;
raw_context.iregs[1] = 0xfb756319; // distinct callee r1
expected.iregs[1] = 0x48c8dd5a; // caller's r1
expected_validity |= StackFrameARM::CONTEXT_VALID_R1;
CheckWalk();
}
// Here we move the .cfa, but provide an explicit rule to recover the SP,
// so again there should be no change in the registers recovered.
TEST_F(CFI, At4005) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0x48c8dd5a) // saved r1 (even though it's not callee-saves)
.D32(0xf013f841) // no longer saved r4
.D32(0x8112e110) // saved fp
.D32(0x40005510) // return address
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004005;
raw_context.iregs[1] = 0xfb756319; // distinct callee r1
expected.iregs[1] = 0x48c8dd5a; // caller's r1
expected_validity |= StackFrameARM::CONTEXT_VALID_R1;
CheckWalk();
}
// Here we provide an explicit rule for the PC, and have the saved .ra be
// bogus.
TEST_F(CFI, At4006) {
Label frame1_sp = expected.iregs[MD_CONTEXT_ARM_REG_SP];
stack_section
.D32(0x40005510) // saved pc
.D32(0x48c8dd5a) // saved r1 (even though it's not callee-saves)
.D32(0xf013f841) // no longer saved r4
.D32(0x8112e110) // saved fp
.D32(0xf8d15783) // .ra rule recovers this, which is garbage
.Mark(&frame1_sp); // This effectively sets stack_section.start().
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40004006;
raw_context.iregs[1] = 0xfb756319; // callee's r1, different from caller's
expected.iregs[1] = 0x48c8dd5a; // caller's r1
expected_validity |= StackFrameARM::CONTEXT_VALID_R1;
CheckWalk();
}
// Check that we reject rules that would cause the stack pointer to
// move in the wrong direction.
TEST_F(CFI, RejectBackwards) {
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40006000;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = 0x80000000;
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
raw_context.iregs[MD_CONTEXT_ARM_REG_LR] = 0x40005510;
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
}
// Check that we reject rules whose expressions' evaluation fails.
TEST_F(CFI, RejectBadExpressions) {
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40007000;
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = 0x80000000;
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, -1, &stack_region, &modules,
&frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(0U, modules_without_symbols.size());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
Breakpad: Support DWARF CFI-driven stack walking on ARM. This patch allows the Breakpad minidump processor to use data from STACK CFI records to generate stack traces for the ARM processor. In the symbol dumper, we need a table mapping DWARF CFI register numbers to their names: STACK CFI records refer to registers by name. In the processor, we expand StackwalkerARM::GetCallerFrame to see if there are STACK CFI records covering the callee, and then use those to recover the caller's register values. There's no good reason the ARM walker couldn't use the SimpleCFIWalker interface declared in cfi_frame_info.h. Unfortunately, that interface assumes that one can map register names to member pointers of the raw context type, while MDRawContextARM uses an array to hold the registers' values: C++ pointer-to-member types can't refer to elements of member arrays. So we have to write out SimpleCFIWalker::FindCallerRegisters in StackwalkerARM::GetCallerFrame. We define enum MDARMRegisterNumbers in minidump_cpu_arm.h, for convenience in referring to certain ARM registers with dedicated purposes, like the stack pointer and the PC. We define validity flags in StackFrameARM for all the registers, since CFI could theoretically recover any of them. In the same vein, we expand minidump_stackwalk.cc to print the values of all valid callee-saves registers in the context --- and use the proper names for special-purpose registers. We provide unit tests that give full code and branch coverage (with minor exceptions). We add a testing interface to StackwalkerARM that allows us to create context frames that lack some register values. a=jimblandy, r=mmentovai git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@553 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-03-16 17:46:22 +01:00
frames = call_stack.frames();
ASSERT_EQ(1U, frames->size());
}
class StackwalkerARMFixtureIOS : public StackwalkerARMFixture {
public:
StackwalkerARMFixtureIOS() {
// iOS_test is used instead of iOS because the stackwalker has a check to
// avoid using CFI for iOS dumps. This is a workaround for bad CFI being
// produced by dump_syms for iOS.
// https://bugs.chromium.org/p/google-breakpad/issues/detail?id=764
system_info.os = "iOS_test";
system_info.os_short = "ios_test";
}
};
class GetFramesByFramePointer: public StackwalkerARMFixtureIOS, public Test { };
TEST_F(GetFramesByFramePointer, OnlyFramePointer) {
stack_section.start() = 0x80000000;
uint32_t return_address1 = 0x50000100;
uint32_t return_address2 = 0x50000900;
Label frame1_sp, frame2_sp;
Label frame1_fp, frame2_fp;
stack_section
// frame 0
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000) // a return address.
.Mark(&frame1_fp) // Next fp will point to the next value.
.D32(frame2_fp) // Save current frame pointer.
.D32(return_address2) // Save current link register.
.Mark(&frame1_sp)
// frame 1
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000) // a return address.
.Mark(&frame2_fp)
.D32(0)
.D32(0)
.Mark(&frame2_sp)
// frame 2
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000); // a return address.
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x40005510;
raw_context.iregs[MD_CONTEXT_ARM_REG_LR] = return_address1;
raw_context.iregs[MD_CONTEXT_ARM_REG_IOS_FP] = frame1_fp.Value();
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, MD_CONTEXT_ARM_REG_IOS_FP,
&stack_region, &modules, &frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(2U, modules_without_symbols.size());
ASSERT_EQ("module1", modules_without_symbols[0]->debug_file());
ASSERT_EQ("module2", modules_without_symbols[1]->debug_file());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(3U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_FP, frame1->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_LR |
StackFrameARM::RegisterValidFlag(MD_CONTEXT_ARM_REG_IOS_FP) |
StackFrameARM::CONTEXT_VALID_SP),
frame1->context_validity);
EXPECT_EQ(return_address1, frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(return_address2, frame1->context.iregs[MD_CONTEXT_ARM_REG_LR]);
EXPECT_EQ(frame1_sp.Value(), frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ(frame2_fp.Value(),
frame1->context.iregs[MD_CONTEXT_ARM_REG_IOS_FP]);
StackFrameARM *frame2 = static_cast<StackFrameARM*>(frames->at(2));
EXPECT_EQ(StackFrame::FRAME_TRUST_FP, frame2->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_LR |
StackFrameARM::RegisterValidFlag(MD_CONTEXT_ARM_REG_IOS_FP) |
StackFrameARM::CONTEXT_VALID_SP),
frame2->context_validity);
EXPECT_EQ(return_address2, frame2->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(0U, frame2->context.iregs[MD_CONTEXT_ARM_REG_LR]);
EXPECT_EQ(frame2_sp.Value(), frame2->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ(0U, frame2->context.iregs[MD_CONTEXT_ARM_REG_IOS_FP]);
}
TEST_F(GetFramesByFramePointer, FramePointerAndCFI) {
// Provide the standatd STACK CFI records that is obtained when exmining an
// executable produced by XCode.
SetModuleSymbols(&module1,
// Adding a function in CFI.
"FUNC 4000 1000 10 enchiridion\n"
"STACK CFI INIT 4000 100 .cfa: sp 0 + .ra: lr\n"
"STACK CFI 4001 .cfa: sp 8 + .ra: .cfa -4 + ^"
" r7: .cfa -8 + ^\n"
"STACK CFI 4002 .cfa: r7 8 +\n"
);
stack_section.start() = 0x80000000;
uint32_t return_address1 = 0x40004010;
uint32_t return_address2 = 0x50000900;
Label frame1_sp, frame2_sp;
Label frame1_fp, frame2_fp;
stack_section
// frame 0
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000) // a return address.
.Mark(&frame1_fp) // Next fp will point to the next value.
.D32(frame2_fp) // Save current frame pointer.
.D32(return_address2) // Save current link register.
.Mark(&frame1_sp)
// frame 1
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000) // a return address.
.Mark(&frame2_fp)
.D32(0)
.D32(0)
.Mark(&frame2_sp)
// frame 2
.Append(32, 0) // Whatever values on the stack.
.D32(0x0000000D) // junk that's not
.D32(0xF0000000); // a return address.
RegionFromSection();
raw_context.iregs[MD_CONTEXT_ARM_REG_PC] = 0x50000400;
raw_context.iregs[MD_CONTEXT_ARM_REG_LR] = return_address1;
raw_context.iregs[MD_CONTEXT_ARM_REG_IOS_FP] = frame1_fp.Value();
raw_context.iregs[MD_CONTEXT_ARM_REG_SP] = stack_section.start().Value();
StackFrameSymbolizer frame_symbolizer(&supplier, &resolver);
StackwalkerARM walker(&system_info, &raw_context, MD_CONTEXT_ARM_REG_IOS_FP,
&stack_region, &modules, &frame_symbolizer);
vector<const CodeModule*> modules_without_symbols;
vector<const CodeModule*> modules_with_corrupt_symbols;
ASSERT_TRUE(walker.Walk(&call_stack, &modules_without_symbols,
&modules_with_corrupt_symbols));
ASSERT_EQ(1U, modules_without_symbols.size());
ASSERT_EQ("module2", modules_without_symbols[0]->debug_file());
ASSERT_EQ(0U, modules_with_corrupt_symbols.size());
frames = call_stack.frames();
ASSERT_EQ(3U, frames->size());
StackFrameARM *frame0 = static_cast<StackFrameARM*>(frames->at(0));
EXPECT_EQ(StackFrame::FRAME_TRUST_CONTEXT, frame0->trust);
ASSERT_EQ(StackFrameARM::CONTEXT_VALID_ALL, frame0->context_validity);
EXPECT_EQ(0, memcmp(&raw_context, &frame0->context, sizeof(raw_context)));
StackFrameARM *frame1 = static_cast<StackFrameARM*>(frames->at(1));
EXPECT_EQ(StackFrame::FRAME_TRUST_FP, frame1->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_LR |
StackFrameARM::RegisterValidFlag(MD_CONTEXT_ARM_REG_IOS_FP) |
StackFrameARM::CONTEXT_VALID_SP),
frame1->context_validity);
EXPECT_EQ(return_address1, frame1->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(return_address2, frame1->context.iregs[MD_CONTEXT_ARM_REG_LR]);
EXPECT_EQ(frame1_sp.Value(), frame1->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ(frame2_fp.Value(),
frame1->context.iregs[MD_CONTEXT_ARM_REG_IOS_FP]);
EXPECT_EQ("enchiridion", frame1->function_name);
EXPECT_EQ(0x40004000U, frame1->function_base);
StackFrameARM *frame2 = static_cast<StackFrameARM*>(frames->at(2));
EXPECT_EQ(StackFrame::FRAME_TRUST_CFI, frame2->trust);
ASSERT_EQ((StackFrameARM::CONTEXT_VALID_PC |
StackFrameARM::CONTEXT_VALID_LR |
StackFrameARM::RegisterValidFlag(MD_CONTEXT_ARM_REG_IOS_FP) |
StackFrameARM::CONTEXT_VALID_SP),
frame2->context_validity);
EXPECT_EQ(return_address2, frame2->context.iregs[MD_CONTEXT_ARM_REG_PC]);
EXPECT_EQ(0U, frame2->context.iregs[MD_CONTEXT_ARM_REG_LR]);
EXPECT_EQ(frame2_sp.Value(), frame2->context.iregs[MD_CONTEXT_ARM_REG_SP]);
EXPECT_EQ(0U, frame2->context.iregs[MD_CONTEXT_ARM_REG_IOS_FP]);
}