Yucom/jxrlib/image/sys/image.c
2020-09-29 14:29:06 -05:00

183 lines
6 KiB
C

//*@@@+++@@@@******************************************************************
//
// Copyright © Microsoft Corp.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// • Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// • Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//*@@@---@@@@******************************************************************
#include "strcodec.h"
// #include "xplatform_image.h"
#ifdef MEM_TRACE
#define TRACE_MALLOC 1
#define TRACE_NEW 0
#define TRACE_HEAP 0
#include "memtrace.h"
#endif
#include <stdlib.h>
#include <string.h>
#if !(defined(__ANSI__))
// Desktop
#include <windows.h>
#else
// ANSI
#include <time.h>
#endif
Int grgiZigzagInv4x4_lowpass [] = {
0, 1, 4, 5, 2, 8, 6, 9,
3, 12, 10, 7, 13, 11, 14, 15
};
Int grgiZigzagInv4x4H [] = {
0, 1, 4, 5, 2, 8, 6, 9,
3, 12, 10, 7, 13, 11, 14, 15
};
Int grgiZigzagInv4x4V [] = {
0, 4, 8, 5, 1, 12, 9, 6, 2, 13, 3, 15, 7, 10, 14, 11
};
const Int gSignificantRunBin[] = {
-1,-1,-1,-1,
2,2,2,
1,1,1,1,
0,0,0,0
};
const Int gSignificantRunFixedLength[] = {
0,0,1,1,3,
0,0,1,1,2,
0,0,0,0,1,
};
/*************************************************************************
UpdateModelMB : update adaptive model at end of macroblock
(for lowest resolution only)
*************************************************************************/
#define MODELWEIGHT 70//90
Void UpdateModelMB (COLORFORMAT cf, Int iChannels, Int iLaplacianMean[], CAdaptiveModel *pModel)
{
Int j;
static const Int aWeight0[3] = { 240/*DC*/, 12/*LP*/, 1 };
static const Int aWeight1[3][MAX_CHANNELS] = {
{ 0,240,120,80, 60,48,40,34, 30,27,24,22, 20,18,17,16 },
{ 0,12,6,4, 3,2,2,2, 2,1,1,1, 1,1,1,1 },
{ 0,16,8,5, 4,3,3,2, 2,2,2,1, 1,1,1,1 }
};
static const Int aWeight2[6] = { 120,37,2,/*420*/ 120,18,1/*422*/ };
iLaplacianMean[0] *= aWeight0[pModel->m_band - BAND_DC];
if (cf == YUV_420) {
iLaplacianMean[1] *= aWeight2[pModel->m_band - BAND_DC];
}
else if (cf == YUV_422) {
iLaplacianMean[1] *= aWeight2[3 + (pModel->m_band) - BAND_DC];
}
else {
iLaplacianMean[1] *= aWeight1[pModel->m_band - BAND_DC][iChannels - 1];
if (pModel->m_band == BAND_AC)
iLaplacianMean[1] >>= 4;
}
for (j = 0; j < 2; j++) {
Int iLM = iLaplacianMean[j];
Int iMS = pModel->m_iFlcState[j];
Int iDelta = (iLM - MODELWEIGHT) >> 2;
if (iDelta <= -8) {
iDelta += 4;
if (iDelta < -16)
iDelta = -16;
iMS += iDelta;
if (iMS < -8) {
if (pModel->m_iFlcBits[j] == 0)
iMS = -8;
else {
iMS = 0;
pModel->m_iFlcBits[j]--;
}
}
}
else if (iDelta >= 8) {
iDelta -= 4;
if (iDelta > 15)
iDelta = 15;
iMS += iDelta;
if (iMS > 8) {
if (pModel->m_iFlcBits[j] >= 15) {
pModel->m_iFlcBits[j] = 15;
iMS = 8;
}
else {
iMS = 0;
pModel->m_iFlcBits[j]++;
}
}
}
pModel->m_iFlcState[j] = iMS;
if (cf == Y_ONLY)
break;
}
}
Void ResetCodingContext(CCodingContext *pContext)
{
// reset bit reduction models
memset (&(pContext->m_aModelAC), 0, sizeof(CAdaptiveModel));
pContext->m_aModelAC.m_band = BAND_AC;
memset (&(pContext->m_aModelLP), 0, sizeof(CAdaptiveModel));
pContext->m_aModelLP.m_band = BAND_LP;
pContext->m_aModelLP.m_iFlcBits[0] = pContext->m_aModelLP.m_iFlcBits[1] = 4;
memset (&(pContext->m_aModelDC), 0, sizeof(CAdaptiveModel));
pContext->m_aModelDC.m_band = BAND_DC;
pContext->m_aModelDC.m_iFlcBits[0] = pContext->m_aModelDC.m_iFlcBits[1] = 8;
// reset CBP models
pContext->m_iCBPCountMax = pContext->m_iCBPCountZero = 1;
pContext->m_aCBPModel.m_iCount0[0] = pContext->m_aCBPModel.m_iCount0[1] = -4;
pContext->m_aCBPModel.m_iCount1[0] = pContext->m_aCBPModel.m_iCount1[1] = 4;
pContext->m_aCBPModel.m_iState[0] = pContext->m_aCBPModel.m_iState[1] = 0;
}
/*************************************************************************
Initialize zigzag scan parameters
*************************************************************************/
Void InitZigzagScan(CCodingContext * pContext)
{
if (NULL != pContext) {
Int i;
for (i=0; i<16; i++) {
pContext->m_aScanLowpass[i].uScan = grgiZigzagInv4x4_lowpass[i];
pContext->m_aScanHoriz[i].uScan = dctIndex[0][grgiZigzagInv4x4H[i]];
pContext->m_aScanVert[i].uScan = dctIndex[0][grgiZigzagInv4x4V[i]];
}
}
}