Opentk/tests/OpenTK.Tests/Vector2Tests.fs
2017-09-17 14:37:51 +01:00

613 lines
No EOL
23 KiB
Forth

namespace OpenTK.Tests
open Xunit
open FsCheck
open FsCheck.Xunit
open System
open System.Runtime.InteropServices
open OpenTK
module Vector2 =
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Constructors =
//
[<Property>]
let ``Single value constructor sets all components to the same value`` (f : float32) =
let v = Vector2(f)
Assert.Equal(f,v.X)
Assert.Equal(f,v.Y)
[<Property>]
let ``Two value constructor sets all components correctly`` (x,y) =
let v = Vector2(x,y)
Assert.Equal(x,v.X)
Assert.Equal(y,v.Y)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Clamping =
//
[<Property>]
let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector2, b : Vector2, w : Vector2) =
let res = Vector2.Clamp(w, a, b)
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
Assert.Equal(expX, res.X)
Assert.Equal(expY, res.Y)
[<Property>]
let ``Clamping one vector between two other vectors by reference clamps all components`` (a : Vector2, b : Vector2, w : Vector2) =
let res = Vector2.Clamp(ref w, ref a, ref b)
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
Assert.Equal(expX, res.X)
Assert.Equal(expY, res.Y)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Length =
//
[<Property>]
let ``Length is always >= 0`` (a : Vector2) =
//
Assert.True(a.Length >= 0.0f)
[<Property>]
let ``Length follows the pythagorean theorem`` (a, b) =
let v = Vector2(a, b)
let l = System.Math.Sqrt((float)(a * a + b * b))
Assert.Equal((float32)l, v.Length)
[<Property>]
let ``Fast length method works`` (a, b) =
let v = Vector2(a, b)
let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b)
Assert.Equal(l, v.LengthFast)
[<Property>]
let ``Length squared method works`` (a, b) =
let v = Vector2(a, b)
let lsq = a * a + b * b
Assert.Equal(lsq, v.LengthSquared)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Distance =
[<Property>]
let ``Distance(a, b) = (b - a).Length`` (a : Vector2, b : Vector2) =
Assert.ApproximatelyEqual(Vector2.Distance(a, b), (b - a).Length)
[<Property>]
let ``DistanceSquared(a, b) = (b - a).LengthSquared`` (a : Vector2, b : Vector2) =
Assert.ApproximatelyEqual(Vector2.DistanceSquared(a, b), (b - a).LengthSquared)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module ``Unit vectors and perpendicularity`` =
//
[<Property>]
let ``Perpendicular vector to the right is correct`` (a, b) =
let v = Vector2(a, b)
let perp = Vector2(b, -a)
Assert.Equal(perp, v.PerpendicularRight)
[<Property>]
let ``Perpendicular vector to the left is correct`` (a, b) =
let v = Vector2(a, b)
let perp = Vector2(-b, a)
Assert.Equal(perp, v.PerpendicularLeft)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Indexing =
//
[<Property>]
let ``Index operator accesses the correct components`` (x, y) =
let v = Vector2(x, y)
Assert.Equal(x, v.[0])
Assert.Equal(y, v.[1])
[<Property>]
let ``Indexed set operator throws exception for negative indices`` (x, y) =
let mutable v = Vector2(x, y)
(fun() -> v.[-1] <- x) |> Assert.ThrowsIndexExn
[<Property>]
let ``Indexed get operator throws exception for negative indices`` (x, y) =
let mutable v = Vector2(x, y)
(fun() -> v.[-1] |> ignore) |> Assert.ThrowsIndexExn
[<Property>]
let ``Indexed set operator throws exception for large indices`` (x, y) =
let mutable v = Vector2(x, y)
(fun() -> v.[2] <- x) |> Assert.ThrowsIndexExn
[<Property>]
let ``Indexed get operator throws exception for large indices`` (x, y) =
let mutable v = Vector2(x, y)
(fun() -> v.[2] |> ignore) |> Assert.ThrowsIndexExn
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module ``Simple Properties`` =
//
[<Property>]
let ``Vector equality is by component`` (a : Vector2,b : Vector2) =
//
Assert.Equal((a.X = b.X && a.Y = b.Y),(a = b))
[<Property>]
let ``Vector length is always >= 0`` (a : Vector2) =
//
Assert.True(a.Length >= 0.0f)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Addition =
//
[<Property>]
let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) =
let c = a + b
Assert.ApproximatelyEquivalent(a.X + b.X,c.X)
Assert.ApproximatelyEquivalent(a.Y + b.Y,c.Y)
[<Property>]
let ``Vector addition is commutative`` (a : Vector2,b : Vector2) =
let c = a + b
let c2 = b + a
Assert.ApproximatelyEquivalent(c,c2)
[<Property>]
let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) =
let r1 = (a + b) + c
let r2 = a + (b + c)
Assert.ApproximatelyEquivalent(r1,r2)
[<Property>]
let ``Static Vector2 addition method is the same as component addition`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X + b.X, a.Y + b.Y)
let sum = Vector2.Add(a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2 addition method by reference is the same as component addition`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X + b.X, a.Y + b.Y)
let sum = Vector2.Add(ref a, ref b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Multiplication =
//
[<Property>]
let ``Vector2 multiplication is the same as component multiplication`` (a : Vector2, b : Vector2) =
let c = a * b
Assert.Equal(a.X * b.X,c.X)
Assert.Equal(a.Y * b.Y,c.Y)
[<Property>]
let ``Vector2 multiplication is commutative`` (a : Vector2, b : Vector2) =
let r1 = a * b
let r2 = b * a
Assert.Equal(r1,r2)
[<Property>]
let ``Left-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
let r = a * f
Assert.Equal(a.X * f,r.X)
Assert.Equal(a.Y * f,r.Y)
[<Property>]
let ``Right-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
let r = f * a
Assert.Equal(a.X * f,r.X)
Assert.Equal(a.Y * f,r.Y)
[<Property>]
let ``Static Vector2 multiplication method is the same as component multiplication`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X * b.X, a.Y * b.Y)
let sum = Vector2.Multiply(a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2 multiplication method by reference is the same as component multiplication`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X * b.X, a.Y * b.Y)
let sum = Vector2.Multiply(ref a, ref b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static method Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
let r = Vector2.Multiply(a, f)
Assert.Equal(a.X * f,r.X)
Assert.Equal(a.Y * f,r.Y)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Subtraction =
//
[<Property>]
let ``Vector2 subtraction is the same as component subtraction`` (a : Vector2, b : Vector2) =
let c = a - b
Assert.Equal(a.X - b.X,c.X)
Assert.Equal(a.Y - b.Y,c.Y)
[<Property>]
let ``Static Vector2 subtraction method is the same as component addition`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X - b.X, a.Y - b.Y)
let sum = Vector2.Subtract(a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2 subtraction method by reference is the same as component addition`` (a : Vector2, b : Vector2) =
let v1 = Vector2(a.X - b.X, a.Y - b.Y)
let sum = Vector2.Subtract(ref a, ref b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Division =
//
[<Property>]
let ``Vector2-float division is the same as component-float division`` (a : Vector2, f : float32) =
if not (approxEq f 0.0f) then
let r = a / f
Assert.ApproximatelyEquivalent(a.X / f,r.X)
Assert.ApproximatelyEquivalent(a.Y / f,r.Y)
[<Property>]
let ``Static Vector2-Vector2 division method is the same as component division`` (a : Vector2, b : Vector2) =
if not (anyZero2 a || anyZero2 b) then
let v1 = Vector2(a.X / b.X, a.Y / b.Y)
let sum = Vector2.Divide(a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2-Vector2 divison method by reference `` (a : Vector2, b : Vector2) =
if not (anyZero2 a || anyZero2 b) then
let v1 = Vector2(a.X / b.X, a.Y / b.Y)
let sum = Vector2.Divide(ref a, ref b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2-scalar division method is the same as component division`` (a : Vector2, b : float32) =
if not (approxEq b 0.0f) then
let v1 = Vector2(a.X / b, a.Y / b)
let sum = Vector2.Divide(a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Property>]
let ``Static Vector2-scalar divison method by reference is the same as component division`` (a : Vector2, b : float32) =
if not (approxEq b 0.0f) then
let v1 = Vector2(a.X / b, a.Y / b)
let sum = Vector2.Divide(ref a, b)
Assert.ApproximatelyEquivalent(v1, sum)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Negation =
//
[<Property>]
let ``Vector negation operator negates all components`` (x, y) =
let v = Vector2(x, y)
let vNeg = -v
Assert.Equal(-x, vNeg.X)
Assert.Equal(-y, vNeg.Y)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Equality =
//
[<Property>]
let ``Vector equality operator is by component`` (x, y) =
let v1 = Vector2(x, y)
let v2 = Vector2(x, y)
let equality = v1 = v2
Assert.True(equality)
[<Property>]
let ``Vector inequality operator is by component`` (x, y) =
let v1 = Vector2(x, y)
let v2 = Vector2(x + 1.0f , y + 1.0f)
let inequality = v1 <> v2
Assert.True(inequality)
[<Property>]
let ``Vector equality method is by component`` (x, y) =
let v1 = Vector2(x, y)
let v2 = Vector2(x, y)
let notVector = Matrix2()
let equality = v1.Equals(v2)
let inequalityByOtherType = v1.Equals(notVector)
Assert.True(equality)
Assert.False(inequalityByOtherType)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Swizzling =
//
[<Property>]
let ``Vector swizzling returns the correct composites`` (x, y) =
let v1 = Vector2(x, y)
let v2 = Vector2(y, x)
let v1yx = v1.Yx;
Assert.Equal(v2, v1yx);
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Interpolation =
//
[<Property>]
let ``Linear interpolation is by component`` (a : Vector2, b : Vector2, q) =
let blend = q
let rX = blend * (b.X - a.X) + a.X
let rY = blend * (b.Y - a.Y) + a.Y
let vExp = Vector2(rX, rY)
Assert.Equal(vExp, Vector2.Lerp(a, b, q))
let vRes = Vector2.Lerp(ref a, ref b, q)
Assert.Equal(vExp, vRes)
[<Property>]
let ``Barycentric interpolation follows the barycentric formula`` (a : Vector2, b : Vector2, c : Vector2, u, v) =
let r = a + u * (b - a) + v * (c - a)
Assert.Equal(r, Vector2.BaryCentric(a, b, c, u, v))
let vRes = Vector2.BaryCentric(ref a, ref b, ref c, u, v)
Assert.Equal(r, vRes)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module ``Vector products`` =
//
[<Property>]
let ``Dot product follows the dot product formula`` (a : Vector2, b : Vector2) =
let dot = a.X * b.X + a.Y * b.Y
Assert.Equal(dot, Vector2.Dot(a, b));
let vRes = Vector2.Dot(ref a, ref b)
Assert.Equal(dot, vRes)
[<Property>]
let ``Perpendicular dot product follows the perpendicular dot product formula`` (a : Vector2, b : Vector2) =
let perpDot = a.X * b.Y - a.Y * b.X
Assert.Equal(perpDot, Vector2.PerpDot(a, b));
let vRes = Vector2.PerpDot(ref a, ref b)
Assert.Equal(perpDot, vRes)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Normalization =
//
[<Property>]
let ``Normalization creates a new unit length vector with the correct components`` (a, b) =
let v = Vector2(a, b)
let l = v.Length
// Dividing by zero is not supported
if not (approxEq l 0.0f) then
let norm = v.Normalized()
Assert.ApproximatelyEquivalent(v.X / l, norm.X)
Assert.ApproximatelyEquivalent(v.Y / l, norm.Y)
[<Property>]
let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) =
let v = Vector2(a, b)
let l = v.Length
if not (approxEq l 0.0f) then
let norm = Vector2(a, b)
norm.Normalize()
Assert.ApproximatelyEquivalent(v.X / l, norm.X)
Assert.ApproximatelyEquivalent(v.Y / l, norm.Y)
[<Property>]
let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) =
let v = Vector2(a, b)
let norm = Vector2(a, b)
norm.NormalizeFast()
let scale = MathHelper.InverseSqrtFast(a * a + b * b)
Assert.ApproximatelyEquivalent(v.X * scale, norm.X)
Assert.ApproximatelyEquivalent(v.Y * scale, norm.Y)
[<Property>]
let ``Normalization by reference is the same as division by magnitude`` (a : Vector2) =
// Zero-length vectors can't be normalized
if not (approxEq a.Length 0.0f) then
let norm = a / a.Length
let vRes = Vector2.Normalize(ref a)
Assert.ApproximatelyEquivalent(norm, vRes)
[<Property>]
let ``Normalization is the same as division by magnitude`` (a : Vector2) =
// Zero-length vectors can't be normalized
if not (approxEq a.Length 0.0f) then
let norm = a / a.Length
Assert.ApproximatelyEquivalent(norm, Vector2.Normalize(a));
[<Property>]
let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector2) =
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y)
let norm = a * scale
let vRes = Vector2.NormalizeFast(ref a)
Assert.ApproximatelyEquivalent(norm, vRes)
[<Property>]
let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector2) =
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y)
let norm = a * scale
Assert.ApproximatelyEquivalent(norm, Vector2.NormalizeFast(a));
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module ``Magnitude min and max`` =
//
[<Property>]
let ``MagnitudeMin selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector2, v2: Vector2) =
// Results do not matter for equal vectors
if not (v1 = v2) then
let l1 = v1.LengthSquared
let l2 = v2.LengthSquared
let vMin = Vector2.MagnitudeMin(v1, v2)
if vMin = v1 then
let v1ShorterThanv2 = l1 < l2
Assert.True(v1ShorterThanv2)
else
let v2ShorterThanOrEqualTov1 = l2 <= l1
Assert.True(v2ShorterThanOrEqualTov1)
[<Property>]
let ``MagnitudeMax selects the vector with equal or greater magnitude given two vectors`` (v1 : Vector2, v2: Vector2) =
// Results do not matter for equal vectors
if not (v1 = v2) then
let l1 = v1.LengthSquared
let l2 = v2.LengthSquared
let vMin = Vector2.MagnitudeMax(v1, v2)
if vMin = v1 then
let v1LongerThanOrEqualTov2 = l1 >= l2
Assert.True(v1LongerThanOrEqualTov2)
else
let v2LongerThanv1 = l2 > l1
Assert.True(v2LongerThanv1)
[<Property>]
let ``MagnitudeMin by reference selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector2, v2: Vector2) =
// Results do not matter for equal vectors
if not (v1 = v2) then
let l1 = v1.LengthSquared
let l2 = v2.LengthSquared
let vMin = Vector2.MagnitudeMin(ref v1, ref v2)
if vMin = v1 then
let v1ShorterThanv2 = l1 < l2
Assert.True(v1ShorterThanv2)
else
let v2ShorterThanOrEqualTov1 = l2 <= l1
Assert.True(v2ShorterThanOrEqualTov1)
[<Property>]
let ``MagnitudeMax by reference selects the vector with equal greater magnitude given two vectors`` (v1 : Vector2, v2: Vector2) =
// Results do not matter for equal vectors
if not (v1 = v2) then
let l1 = v1.LengthSquared
let l2 = v2.LengthSquared
let vMin = Vector2.MagnitudeMax(ref v1, ref v2)
if vMin = v1 then
let v1LongerThanOrEqualTov2 = l1 >= l2
Assert.True(v1LongerThanOrEqualTov2)
else
let v2LongerThanv1 = l2 > l1
Assert.True(v2LongerThanv1)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module ``Component min and max`` =
//
[<Property>]
let ``ComponentMin creates a new vector from the smallest components of given vectors`` (v1 : Vector2, v2: Vector2) =
let vMin = Vector2.ComponentMin(v1, v2)
let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2
Assert.True(isComponentSmallest vMin.X v1.X v2.X)
Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y)
[<Property>]
let ``ComponentMax creates a new vector from the greatest components of given vectors`` (v1 : Vector2, v2: Vector2) =
let vMax = Vector2.ComponentMax(v1, v2)
let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2
Assert.True(isComponentLargest vMax.X v1.X v2.X)
Assert.True(isComponentLargest vMax.Y v1.Y v2.Y)
[<Property>]
let ``ComponentMin by reference creates a new vector from the smallest components of given vectors`` (v1 : Vector2, v2: Vector2) =
let vMin = Vector2.ComponentMin(ref v1, ref v2)
let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2
Assert.True(isComponentSmallest vMin.X v1.X v2.X)
Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y)
[<Property>]
let ``ComponentMax by reference creates a new vector from the greatest components of given vectors`` (v1 : Vector2, v2: Vector2) =
let vMax = Vector2.ComponentMax(ref v1, ref v2)
let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2
Assert.True(isComponentLargest vMax.X v1.X v2.X)
Assert.True(isComponentLargest vMax.Y v1.Y v2.Y)
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Transformation =
//
[<Property>]
let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) =
let vectorQuat = Quaternion(v.X, v.Y, 0.0f, 0.0f)
let inverse = Quaternion.Invert(q)
let transformedQuat = q * vectorQuat * inverse
let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y)
Assert.ApproximatelyEquivalent(transformedVector, Vector2.Transform(v, q))
[<Property>]
let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) =
let vectorQuat = Quaternion(v.X, v.Y, 0.0f, 0.0f)
let inverse = Quaternion.Invert(q)
let transformedQuat = q * vectorQuat * inverse
let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y)
Assert.ApproximatelyEquivalent(transformedVector, Vector2.Transform(ref v, ref q))
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
module Serialization =
//
[<Property>]
let ``The absolute size of a Vector2 is always the size of its components`` (v : Vector2) =
let expectedSize = sizeof<float32> * 2
Assert.Equal(expectedSize, Vector2.SizeInBytes)
Assert.Equal(expectedSize, Marshal.SizeOf(Vector2()))