2e3b56f89c
Added Half and Vector[234]h structs. Added Vector[234]d, Matrix4d and Quaterniond structs.
890 lines
57 KiB
C#
890 lines
57 KiB
C#
#region --- License ---
|
||
/*
|
||
Copyright (c) 2006 - 2008 The Open Toolkit library.
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
this software and associated documentation files (the "Software"), to deal in
|
||
the Software without restriction, including without limitation the rights to
|
||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||
of the Software, and to permit persons to whom the Software is furnished to do
|
||
so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in all
|
||
copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
SOFTWARE.
|
||
*/
|
||
#endregion
|
||
|
||
using System;
|
||
using System.Runtime.InteropServices;
|
||
|
||
namespace OpenTK.Math
|
||
{
|
||
/// <summary>A 3-dimensional vector using double-precision floating point numbers.</summary>
|
||
[Serializable]
|
||
[StructLayout(LayoutKind.Sequential)]
|
||
public struct Vector3d : IEquatable<Vector3d>
|
||
{
|
||
#region Fields
|
||
|
||
/// <summary>
|
||
/// The X component of the Vector3.
|
||
/// </summary>
|
||
public double X;
|
||
|
||
/// <summary>
|
||
/// The Y component of the Vector3.
|
||
/// </summary>
|
||
public double Y;
|
||
|
||
/// <summary>
|
||
/// The Z component of the Vector3.
|
||
/// </summary>
|
||
public double Z;
|
||
|
||
#endregion
|
||
|
||
#region Constructors
|
||
|
||
/// <summary>
|
||
/// Constructs a new Vector3.
|
||
/// </summary>
|
||
/// <param name="x">The x component of the Vector3.</param>
|
||
/// <param name="y">The y component of the Vector3.</param>
|
||
/// <param name="z">The z component of the Vector3.</param>
|
||
public Vector3d(double x, double y, double z)
|
||
{
|
||
X = x;
|
||
Y = y;
|
||
Z = z;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Constructs a new instance from the given Vector2d.
|
||
/// </summary>
|
||
/// <param name="v">The Vector2d to copy components from.</param>
|
||
public Vector3d(Vector2d v)
|
||
{
|
||
X = v.X;
|
||
Y = v.Y;
|
||
Z = 0.0f;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Constructs a new instance from the given Vector3d.
|
||
/// </summary>
|
||
/// <param name="v">The Vector3d to copy components from.</param>
|
||
public Vector3d(Vector3d v)
|
||
{
|
||
X = v.X;
|
||
Y = v.Y;
|
||
Z = v.Z;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Constructs a new instance from the given Vector4d.
|
||
/// </summary>
|
||
/// <param name="v">The Vector4d to copy components from.</param>
|
||
public Vector3d(Vector4d v)
|
||
{
|
||
X = v.X;
|
||
Y = v.Y;
|
||
Z = v.Z;
|
||
}
|
||
|
||
|
||
#endregion
|
||
|
||
#region Public Members
|
||
|
||
#region Instance
|
||
|
||
#region public double Length
|
||
|
||
/// <summary>
|
||
/// Gets the length (magnitude) of the vector.
|
||
/// </summary>
|
||
/// <see cref="FastLength"/>
|
||
/// <seealso cref="LengthSquared"/>
|
||
public double Length
|
||
{
|
||
get
|
||
{
|
||
return (float)System.Math.Sqrt(X * X + Y * Y + Z * Z);
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public double LengthFast
|
||
|
||
/// <summary>
|
||
/// Gets an approximation of the vector length (magnitude).
|
||
/// </summary>
|
||
/// <remarks>
|
||
/// This property uses an approximation of the square root function to calculate vector magnitude, with
|
||
/// an upper error bound of 0.001.
|
||
/// </remarks>
|
||
/// <see cref="Length"/>
|
||
/// <seealso cref="LengthSquared"/>
|
||
/// <seealso cref="OpenTK.Math.FastSqrt"/>
|
||
public double LengthFast
|
||
{
|
||
get
|
||
{
|
||
return 1.0f / OpenTK.Math.Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public double LengthSquared
|
||
|
||
/// <summary>
|
||
/// Gets the square of the vector length (magnitude).
|
||
/// </summary>
|
||
/// <remarks>
|
||
/// This property avoids the costly square root operation required by the Length property. This makes it more suitable
|
||
/// for comparisons.
|
||
/// </remarks>
|
||
/// <see cref="Length"/>
|
||
/// <seealso cref="FastLength"/>
|
||
public double LengthSquared
|
||
{
|
||
get
|
||
{
|
||
return X * X + Y * Y + Z * Z;
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public void Normalize()
|
||
|
||
/// <summary>
|
||
/// Scales the Vector3d to unit length.
|
||
/// </summary>
|
||
public void Normalize()
|
||
{
|
||
double scale = 1.0f / this.Length;
|
||
X *= scale;
|
||
Y *= scale;
|
||
Z *= scale;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public void NormalizeFast()
|
||
|
||
/// <summary>
|
||
/// Scales the Vector3d to approximately unit length.
|
||
/// </summary>
|
||
public void NormalizeFast()
|
||
{
|
||
double scale = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
|
||
X *= scale;
|
||
Y *= scale;
|
||
Z *= scale;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public void Scale(double sx, double sy, double sz)
|
||
|
||
/// <summary>
|
||
/// Scales the current Vector3d by the given amounts.
|
||
/// </summary>
|
||
/// <param name="sx">The scale of the X component.</param>
|
||
/// <param name="sy">The scale of the Y component.</param>
|
||
/// <param name="sz">The scale of the Z component.</param>
|
||
public void Scale(double sx, double sy, double sz)
|
||
{
|
||
this.X = X * sx;
|
||
this.Y = Y * sy;
|
||
this.Z = Z * sz;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#region Static
|
||
|
||
#region Fields
|
||
|
||
/// <summary>
|
||
/// Defines a unit-length Vector3d that points towards the X-axis.
|
||
/// </summary>
|
||
public static readonly Vector3d UnitX = new Vector3d(1, 0, 0);
|
||
|
||
/// <summary>
|
||
/// Defines a unit-length Vector3d that points towards the Y-axis.
|
||
/// </summary>
|
||
public static readonly Vector3d UnitY = new Vector3d(0, 1, 0);
|
||
|
||
/// <summary>
|
||
/// /// Defines a unit-length Vector3d that points towards the Z-axis.
|
||
/// </summary>
|
||
public static readonly Vector3d UnitZ = new Vector3d(0, 0, 1);
|
||
|
||
/// <summary>
|
||
/// Defines a zero-length Vector3.
|
||
/// </summary>
|
||
public static readonly Vector3d Zero = new Vector3d(0, 0, 0);
|
||
|
||
/// <summary>
|
||
/// Defines the size of the Vector3d struct in bytes.
|
||
/// </summary>
|
||
public static readonly int SizeInBytes = Marshal.SizeOf(new Vector3d());
|
||
|
||
#endregion
|
||
|
||
#region Add
|
||
|
||
/// <summary>
|
||
/// Add two Vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <returns>Result of addition</returns>
|
||
public static Vector3d Add(Vector3d a, Vector3d b)
|
||
{
|
||
a.X += b.X;
|
||
a.Y += b.Y;
|
||
a.Z += b.Z;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Add two Vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <param name="result">Result of addition</param>
|
||
public static void Add(ref Vector3d a, ref Vector3d b, out Vector3d result)
|
||
{
|
||
result.X = a.X + b.X;
|
||
result.Y = a.Y + b.Y;
|
||
result.Z = a.Z + b.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Sub
|
||
|
||
/// <summary>
|
||
/// Subtract one Vector from another
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <returns>Result of subtraction</returns>
|
||
public static Vector3d Sub(Vector3d a, Vector3d b)
|
||
{
|
||
a.X -= b.X;
|
||
a.Y -= b.Y;
|
||
a.Z -= b.Z;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Subtract one Vector from another
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <param name="result">Result of subtraction</param>
|
||
public static void Sub(ref Vector3d a, ref Vector3d b, out Vector3d result)
|
||
{
|
||
result.X = a.X - b.X;
|
||
result.Y = a.Y - b.Y;
|
||
result.Z = a.Z - b.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Mult
|
||
|
||
/// <summary>
|
||
/// Multiply a vector and a scalar
|
||
/// </summary>
|
||
/// <param name="a">Vector operand</param>
|
||
/// <param name="f">Scalar operand</param>
|
||
/// <returns>Result of the multiplication</returns>
|
||
public static Vector3d Mult(Vector3d a, double f)
|
||
{
|
||
a.X *= f;
|
||
a.Y *= f;
|
||
a.Z *= f;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Multiply a vector and a scalar
|
||
/// </summary>
|
||
/// <param name="a">Vector operand</param>
|
||
/// <param name="f">Scalar operand</param>
|
||
/// <param name="result">Result of the multiplication</param>
|
||
public static void Mult(ref Vector3d a, double f, out Vector3d result)
|
||
{
|
||
result.X = a.X * f;
|
||
result.Y = a.Y * f;
|
||
result.Z = a.Z * f;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Div
|
||
|
||
/// <summary>
|
||
/// Divide a vector by a scalar
|
||
/// </summary>
|
||
/// <param name="a">Vector operand</param>
|
||
/// <param name="f">Scalar operand</param>
|
||
/// <returns>Result of the division</returns>
|
||
public static Vector3d Div(Vector3d a, double f)
|
||
{
|
||
double mult = 1.0f / f;
|
||
a.X *= mult;
|
||
a.Y *= mult;
|
||
a.Z *= mult;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Divide a vector by a scalar
|
||
/// </summary>
|
||
/// <param name="a">Vector operand</param>
|
||
/// <param name="f">Scalar operand</param>
|
||
/// <param name="result">Result of the division</param>
|
||
public static void Div(ref Vector3d a, double f, out Vector3d result)
|
||
{
|
||
double mult = 1.0f / f;
|
||
result.X = a.X * mult;
|
||
result.Y = a.Y * mult;
|
||
result.Z = a.Z * mult;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region ComponentMin
|
||
|
||
/// <summary>
|
||
/// Calculate the component-wise minimum of two vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <returns>The component-wise minimum</returns>
|
||
public static Vector3d ComponentMin(Vector3d a, Vector3d b)
|
||
{
|
||
a.X = a.X < b.X ? a.X : b.X;
|
||
a.Y = a.Y < b.Y ? a.Y : b.Y;
|
||
a.Z = a.Z < b.Z ? a.Z : b.Z;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Calculate the component-wise minimum of two vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <param name="result">The component-wise minimum</param>
|
||
public static void ComponentMin(ref Vector3d a, ref Vector3d b, out Vector3d result)
|
||
{
|
||
result.X = a.X < b.X ? a.X : b.X;
|
||
result.Y = a.Y < b.Y ? a.Y : b.Y;
|
||
result.Z = a.Z < b.Z ? a.Z : b.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region ComponentMax
|
||
|
||
/// <summary>
|
||
/// Calculate the component-wise maximum of two vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <returns>The component-wise maximum</returns>
|
||
public static Vector3d ComponentMax(Vector3d a, Vector3d b)
|
||
{
|
||
a.X = a.X > b.X ? a.X : b.X;
|
||
a.Y = a.Y > b.Y ? a.Y : b.Y;
|
||
a.Z = a.Z > b.Z ? a.Z : b.Z;
|
||
return a;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Calculate the component-wise maximum of two vectors
|
||
/// </summary>
|
||
/// <param name="a">First operand</param>
|
||
/// <param name="b">Second operand</param>
|
||
/// <param name="result">The component-wise maximum</param>
|
||
public static void ComponentMax(ref Vector3d a, ref Vector3d b, out Vector3d result)
|
||
{
|
||
result.X = a.X > b.X ? a.X : b.X;
|
||
result.Y = a.Y > b.Y ? a.Y : b.Y;
|
||
result.Z = a.Z > b.Z ? a.Z : b.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Min
|
||
|
||
/// <summary>
|
||
/// Returns the Vector3d with the minimum magnitude
|
||
/// </summary>
|
||
/// <param name="left">Left operand</param>
|
||
/// <param name="right">Right operand</param>
|
||
/// <returns>The minimum Vector3</returns>
|
||
public static Vector3d Min(Vector3d left, Vector3d right)
|
||
{
|
||
return left.LengthSquared < right.LengthSquared ? left : right;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Max
|
||
|
||
/// <summary>
|
||
/// Returns the Vector3d with the minimum magnitude
|
||
/// </summary>
|
||
/// <param name="left">Left operand</param>
|
||
/// <param name="right">Right operand</param>
|
||
/// <returns>The minimum Vector3</returns>
|
||
public static Vector3d Max(Vector3d left, Vector3d right)
|
||
{
|
||
return left.LengthSquared >= right.LengthSquared ? left : right;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Clamp
|
||
|
||
/// <summary>
|
||
/// Clamp a vector to the given minimum and maximum vectors
|
||
/// </summary>
|
||
/// <param name="vec">Input vector</param>
|
||
/// <param name="min">Minimum vector</param>
|
||
/// <param name="max">Maximum vector</param>
|
||
/// <returns>The clamped vector</returns>
|
||
public static Vector3d Clamp(Vector3d vec, Vector3d min, Vector3d max)
|
||
{
|
||
vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
|
||
vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
|
||
vec.Z = vec.Z < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
|
||
return vec;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Clamp a vector to the given minimum and maximum vectors
|
||
/// </summary>
|
||
/// <param name="vec">Input vector</param>
|
||
/// <param name="min">Minimum vector</param>
|
||
/// <param name="max">Maximum vector</param>
|
||
/// <param name="result">The clamped vector</param>
|
||
public static void Clamp(ref Vector3d vec, ref Vector3d min, ref Vector3d max, out Vector3d result)
|
||
{
|
||
result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
|
||
result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
|
||
result.Z = vec.Z < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Normalize
|
||
|
||
/// <summary>
|
||
/// Scale a vector to unit length
|
||
/// </summary>
|
||
/// <param name="vec">The input vector</param>
|
||
/// <returns>The normalized vector</returns>
|
||
public static Vector3d Normalize(Vector3d vec)
|
||
{
|
||
double scale = 1.0f / vec.Length;
|
||
vec.X *= scale;
|
||
vec.Y *= scale;
|
||
vec.Z *= scale;
|
||
return vec;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Scale a vector to unit length
|
||
/// </summary>
|
||
/// <param name="vec">The input vector</param>
|
||
/// <param name="result">The normalized vector</param>
|
||
public static void Normalize(ref Vector3d vec, out Vector3d result)
|
||
{
|
||
double scale = 1.0f / vec.Length;
|
||
result.X = vec.X * scale;
|
||
result.Y = vec.Y * scale;
|
||
result.Z = vec.Z * scale;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region NormalizeFast
|
||
|
||
/// <summary>
|
||
/// Scale a vector to approximately unit length
|
||
/// </summary>
|
||
/// <param name="vec">The input vector</param>
|
||
/// <returns>The normalized vector</returns>
|
||
public static Vector3d NormalizeFast(Vector3d vec)
|
||
{
|
||
double scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z);
|
||
vec.X *= scale;
|
||
vec.Y *= scale;
|
||
vec.Z *= scale;
|
||
return vec;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Scale a vector to approximately unit length
|
||
/// </summary>
|
||
/// <param name="vec">The input vector</param>
|
||
/// <param name="result">The normalized vector</param>
|
||
public static void NormalizeFast(ref Vector3d vec, out Vector3d result)
|
||
{
|
||
double scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z);
|
||
result.X = vec.X * scale;
|
||
result.Y = vec.Y * scale;
|
||
result.Z = vec.Z * scale;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Dot
|
||
|
||
/// <summary>
|
||
/// Caclulate the dot (scalar) product of two vectors
|
||
/// </summary>
|
||
/// <param name="left">First operand</param>
|
||
/// <param name="right">Second operand</param>
|
||
/// <returns>The dot product of the two inputs</returns>
|
||
public static double Dot(Vector3d left, Vector3d right)
|
||
{
|
||
return left.X * right.X + left.Y * right.Y + left.Z * right.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Cross
|
||
|
||
/// <summary>
|
||
/// Caclulate the cross (vector) product of two vectors
|
||
/// </summary>
|
||
/// <param name="left">First operand</param>
|
||
/// <param name="right">Second operand</param>
|
||
/// <returns>The cross product of the two inputs</returns>
|
||
public static Vector3d Cross(Vector3d left, Vector3d right)
|
||
{
|
||
double
|
||
x = left.Y * right.Z - left.Z * right.Y,
|
||
y = left.Z * right.X - left.X * right.Z,
|
||
z = left.X * right.Y - left.Y * right.X;
|
||
left.X = x;
|
||
left.Y = y;
|
||
left.Z = z;
|
||
return left;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Caclulate the cross (vector) product of two vectors
|
||
/// </summary>
|
||
/// <param name="left">First operand</param>
|
||
/// <param name="right">Second operand</param>
|
||
/// <returns>The cross product of the two inputs</returns>
|
||
/// <param name="result">The cross product of the two inputs</param>
|
||
public static void Cross(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.Y * right.Z - left.Z * right.Y;
|
||
result.Y = left.Z * right.X - left.X * right.Z;
|
||
result.Z = left.X * right.Y - left.Y * right.X;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Lerp
|
||
|
||
/// <summary>
|
||
/// Returns a new Vector that is the linear blend of the 2 given Vectors
|
||
/// </summary>
|
||
/// <param name="a">First input vector</param>
|
||
/// <param name="b">Second input vector</param>
|
||
/// <param name="blend">The blend factor</param>
|
||
/// <returns>a when blend=0, b when blend=1, and a linear combination otherwise</returns>
|
||
public static Vector3d Lerp(Vector3d a, Vector3d b, double blend)
|
||
{
|
||
a.X = blend * (b.X - a.X) + a.X;
|
||
a.Y = blend * (b.Y - a.Y) + a.Y;
|
||
a.Z = blend * (b.Z - a.Z) + a.Z;
|
||
return a;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Barycentric
|
||
|
||
/// <summary>
|
||
/// Interpolate 3 Vectors using Barycentric coordinates
|
||
/// </summary>
|
||
/// <param name="a">First input Vector</param>
|
||
/// <param name="b">Second input Vector</param>
|
||
/// <param name="c">Third input Vector</param>
|
||
/// <param name="u">First Barycentric Coordinate</param>
|
||
/// <param name="v">Second Barycentric Coordinate</param>
|
||
/// <returns>a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise</returns>
|
||
public static Vector3d BaryCentric(Vector3d a, Vector3d b, Vector3d c, double u, double v)
|
||
{
|
||
return a + u * (b - a) + v * (c - a);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Transform
|
||
|
||
/// <summary>
|
||
/// Transform a direction vector by the given Matrix
|
||
/// Assumes the matrix has a bottom row of (0,0,0,1), that is the translation part is ignored.
|
||
/// </summary>
|
||
/// <param name="vec">The vector to transform</param>
|
||
/// <param name="mat">The desired transformation</param>
|
||
/// <returns>The transformed vector</returns>
|
||
public static Vector3d TransformVector(Vector3d vec, Matrix4d mat)
|
||
{
|
||
return new Vector3d(
|
||
Vector3d.Dot(vec, new Vector3d(mat.Column0)),
|
||
Vector3d.Dot(vec, new Vector3d(mat.Column1)),
|
||
Vector3d.Dot(vec, new Vector3d(mat.Column2)));
|
||
}
|
||
|
||
/// <summary>
|
||
/// Transform a Normal by the given Matrix
|
||
/// </summary>
|
||
/// <remarks>
|
||
/// This calculates the inverse of the given matrix, use TransformNormalInverse if you
|
||
/// already have the inverse to avoid this extra calculation
|
||
/// </remarks>
|
||
/// <param name="norm">The normal to transform</param>
|
||
/// <param name="mat">The desired transformation</param>
|
||
/// <returns>The transformed normal</returns>
|
||
public static Vector3d TransformNormal(Vector3d norm, Matrix4d mat)
|
||
{
|
||
mat.Invert();
|
||
return TransformNormalInverse(norm, mat);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Transform a Normal by the (transpose of the) given Matrix
|
||
/// </summary>
|
||
/// <remarks>
|
||
/// This version doesn't calculate the inverse matrix.
|
||
/// Use this version if you already have the inverse of the desired transform to hand
|
||
/// </remarks>
|
||
/// <param name="norm">The normal to transform</param>
|
||
/// <param name="mat">The inverse of the desired transformation</param>
|
||
/// <returns>The transformed normal</returns>
|
||
public static Vector3d TransformNormalInverse(Vector3d norm, Matrix4d invMat)
|
||
{
|
||
return new Vector3d(
|
||
Vector3d.Dot(norm, new Vector3d(invMat.Row0)),
|
||
Vector3d.Dot(norm, new Vector3d(invMat.Row1)),
|
||
Vector3d.Dot(norm, new Vector3d(invMat.Row2)));
|
||
}
|
||
|
||
/// <summary>
|
||
/// Transform a Position by the given Matrix
|
||
/// </summary>
|
||
/// <param name="pos">The position to transform</param>
|
||
/// <param name="mat">The desired transformation</param>
|
||
/// <returns>The transformed position</returns>
|
||
public static Vector3d TransformPosition(Vector3d pos, Matrix4d mat)
|
||
{
|
||
return new Vector3d(
|
||
Vector3d.Dot(pos, new Vector3d(mat.Column0)) + mat.Row3.X,
|
||
Vector3d.Dot(pos, new Vector3d(mat.Column1)) + mat.Row3.Y,
|
||
Vector3d.Dot(pos, new Vector3d(mat.Column2)) + mat.Row3.Z);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Transform a Vector by the given Matrix
|
||
/// </summary>
|
||
/// <param name="pos">The vector to transform</param>
|
||
/// <param name="mat">The desired transformation</param>
|
||
/// <returns>The transformed vector</returns>
|
||
public static Vector4d Transform(Vector3d vec, Matrix4d mat)
|
||
{
|
||
Vector4d v4 = new Vector4d(vec.X, vec.Y, vec.Z, 1.0f);
|
||
return new Vector4d(
|
||
Vector4d.Dot(v4, mat.Column0),
|
||
Vector4d.Dot(v4, mat.Column1),
|
||
Vector4d.Dot(v4, mat.Column2),
|
||
Vector4d.Dot(v4, mat.Column3));
|
||
}
|
||
|
||
/// <summary>
|
||
/// Transform a Vector3d by the given Matrix, and project the resulting Vector4 back to a Vector3
|
||
/// </summary>
|
||
/// <param name="pos">The vector to transform</param>
|
||
/// <param name="mat">The desired transformation</param>
|
||
/// <returns>The transformed vector</returns>
|
||
public static Vector3d TransformPerspective(Vector3d vec, Matrix4d mat)
|
||
{
|
||
Vector4d h = Transform(vec, mat);
|
||
return new Vector3d(h.X / h.W, h.Y / h.W, h.Z / h.W);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region CalculateAngle
|
||
|
||
/// <summary>
|
||
/// Calculates the angle (in radians) between two vectors.
|
||
/// </summary>
|
||
/// <param name="first">The first vector.</param>
|
||
/// <param name="second">The second vector.</param>
|
||
/// <returns>Angle (in radians) between the vectors.</returns>
|
||
/// <remarks>Note that the returned angle is never bigger than the constant Pi.</remarks>
|
||
public static double CalculateAngle(Vector3d first, Vector3d second)
|
||
{
|
||
return (float)System.Math.Acos((Vector3d.Dot(first, second)) / (first.Length * second.Length));
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#region Operators
|
||
|
||
public static Vector3d operator +(Vector3d left, Vector3d right)
|
||
{
|
||
left.X += right.X;
|
||
left.Y += right.Y;
|
||
left.Z += right.Z;
|
||
return left;
|
||
}
|
||
|
||
public static Vector3d operator -(Vector3d left, Vector3d right)
|
||
{
|
||
left.X -= right.X;
|
||
left.Y -= right.Y;
|
||
left.Z -= right.Z;
|
||
return left;
|
||
}
|
||
|
||
public static Vector3d operator -(Vector3d vec)
|
||
{
|
||
vec.X = -vec.X;
|
||
vec.Y = -vec.Y;
|
||
vec.Z = -vec.Z;
|
||
return vec;
|
||
}
|
||
|
||
public static Vector3d operator *(Vector3d vec, double f)
|
||
{
|
||
vec.X *= f;
|
||
vec.Y *= f;
|
||
vec.Z *= f;
|
||
return vec;
|
||
}
|
||
|
||
public static Vector3d operator *(double f, Vector3d vec)
|
||
{
|
||
vec.X *= f;
|
||
vec.Y *= f;
|
||
vec.Z *= f;
|
||
return vec;
|
||
}
|
||
|
||
public static Vector3d operator /(Vector3d vec, double f)
|
||
{
|
||
double mult = 1.0f / f;
|
||
vec.X *= mult;
|
||
vec.Y *= mult;
|
||
vec.Z *= mult;
|
||
return vec;
|
||
}
|
||
|
||
public static bool operator ==(Vector3d left, Vector3d right)
|
||
{
|
||
return left.Equals(right);
|
||
}
|
||
|
||
public static bool operator !=(Vector3d left, Vector3d right)
|
||
{
|
||
return !left.Equals(right);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Overrides
|
||
|
||
#region public override string ToString()
|
||
|
||
/// <summary>
|
||
/// Returns a System.String that represents the current Vector3.
|
||
/// </summary>
|
||
/// <returns></returns>
|
||
public override string ToString()
|
||
{
|
||
return String.Format("({0}, {1}, {2})", X, Y, Z);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public override int GetHashCode()
|
||
|
||
/// <summary>
|
||
/// Returns the hashcode for this instance.
|
||
/// </summary>
|
||
/// <returns>A System.Int32 containing the unique hashcode for this instance.</returns>
|
||
public override int GetHashCode()
|
||
{
|
||
return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode();
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public override bool Equals(object obj)
|
||
|
||
/// <summary>
|
||
/// Indicates whether this instance and a specified object are equal.
|
||
/// </summary>
|
||
/// <param name="obj">The object to compare to.</param>
|
||
/// <returns>True if the instances are equal; false otherwise.</returns>
|
||
public override bool Equals(object obj)
|
||
{
|
||
if (!(obj is Vector3))
|
||
return false;
|
||
|
||
return this.Equals((Vector3)obj);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#region IEquatable<Vector3> Members
|
||
|
||
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
|
||
/// <param name="vector">A vector to compare with this vector.</param>
|
||
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
|
||
public bool Equals(Vector3d other)
|
||
{
|
||
return
|
||
X == other.X &&
|
||
Y == other.Y &&
|
||
Z == other.Z;
|
||
}
|
||
|
||
#endregion
|
||
}
|
||
}
|