6ad8b92c84
* Move generators and assertions to helper library. * Add example usage to bezier curve tests. * Add FsCheck to OpenTK.Tests.Math via paket. * Tweak fsharp msbuild settings for OpenTK.Tests.Generators.
924 lines
No EOL
34 KiB
Forth
924 lines
No EOL
34 KiB
Forth
namespace OpenTK.Tests
|
|
|
|
open Xunit
|
|
open FsCheck
|
|
open FsCheck.Xunit
|
|
open System
|
|
open System.Runtime.InteropServices
|
|
open OpenTK
|
|
open OpenTK.Tests.Generators
|
|
|
|
module Vector4 =
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Constructors =
|
|
//
|
|
[<Property>]
|
|
let ``Triple value constructor sets all components to the correct values`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
Assert.Equal(x, v.X)
|
|
Assert.Equal(y, v.Y)
|
|
Assert.Equal(z, v.Z)
|
|
Assert.Equal(w, v.W)
|
|
|
|
[<Property>]
|
|
let ``Single value constructor sets all components to the correct values`` (a : float32) =
|
|
let v = Vector4(a)
|
|
|
|
Assert.Equal(a, v.X)
|
|
Assert.Equal(a, v.Y)
|
|
Assert.Equal(a, v.Z)
|
|
Assert.Equal(a, v.W)
|
|
|
|
[<Property>]
|
|
let ``Vector2 value constructor sets all components to the correct values`` (x, y) =
|
|
let v1 = Vector2(x, y)
|
|
let v2 = Vector4(v1)
|
|
|
|
Assert.Equal(v1.X, v2.X)
|
|
Assert.Equal(v1.Y, v2.Y)
|
|
|
|
Assert.Equal(x, v2.X)
|
|
Assert.Equal(y, v2.Y)
|
|
Assert.Equal(0.0f, v2.Z)
|
|
Assert.Equal(0.0f, v2.W)
|
|
|
|
[<Property>]
|
|
let ``Vector3 value constructor sets all components to the correct values`` (x, y, z) =
|
|
let v1 = Vector3(x, y, z)
|
|
let v2 = Vector4(v1)
|
|
|
|
Assert.Equal(v1.X, v2.X)
|
|
Assert.Equal(v1.Y, v2.Y)
|
|
Assert.Equal(v1.Z, v2.Z)
|
|
|
|
Assert.Equal(x, v2.X)
|
|
Assert.Equal(y, v2.Y)
|
|
Assert.Equal(z, v2.Z)
|
|
Assert.Equal(0.0f, v2.W)
|
|
|
|
[<Property>]
|
|
let ``Vector3 value and scalar constructor sets all components to the correct values`` (x, y, z, w) =
|
|
let v1 = Vector3(x, y, z)
|
|
let v2 = Vector4(v1, w)
|
|
|
|
Assert.Equal(v1.X, v2.X)
|
|
Assert.Equal(v1.Y, v2.Y)
|
|
Assert.Equal(v1.Z, v2.Z)
|
|
|
|
Assert.Equal(x, v2.X)
|
|
Assert.Equal(y, v2.Y)
|
|
Assert.Equal(z, v2.Z)
|
|
Assert.Equal(w, v2.W)
|
|
|
|
[<Property>]
|
|
let ``Vector4 value constructor sets all components to the correct values`` (x, y, z, w) =
|
|
let v1 = Vector4(x, y, z, w)
|
|
let v2 = Vector4(v1)
|
|
|
|
Assert.Equal(v1.X, v2.X)
|
|
Assert.Equal(v1.Y, v2.Y)
|
|
Assert.Equal(v1.Z, v2.Z)
|
|
Assert.Equal(v1.W, v2.W)
|
|
|
|
Assert.Equal(x, v2.X)
|
|
Assert.Equal(y, v2.Y)
|
|
Assert.Equal(z, v2.Z)
|
|
Assert.Equal(w, v2.W)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Indexing =
|
|
//
|
|
[<Property>]
|
|
let ``Index operator accesses the correct components`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
Assert.Equal(x, v.[0])
|
|
Assert.Equal(y, v.[1])
|
|
Assert.Equal(z, v.[2])
|
|
Assert.Equal(w, v.[3])
|
|
|
|
[<Property>]
|
|
let ``Indexed set operator throws exception for negative indices`` (x, y, z, w) =
|
|
let mutable v = Vector4(x, y, z, w)
|
|
|
|
(fun() -> v.[-1] <- x) |> Assert.ThrowsIndexExn
|
|
|
|
[<Property>]
|
|
let ``Indexed get operator throws exception for negative indices`` (x, y, z, w) =
|
|
let mutable v = Vector4(x, y, z, w)
|
|
|
|
(fun() -> v.[-1] |> ignore) |> Assert.ThrowsIndexExn
|
|
|
|
[<Property>]
|
|
let ``Indexed set operator throws exception for large indices`` (x, y, z, w) =
|
|
let mutable v = Vector4(x, y, z, w)
|
|
|
|
(fun() -> v.[4] <- x) |> Assert.ThrowsIndexExn
|
|
|
|
[<Property>]
|
|
let ``Indexed get operator throws exception for large indices`` (x, y, z, w) =
|
|
let mutable v = Vector4(x, y, z, w)
|
|
|
|
(fun() -> v.[4] |> ignore) |> Assert.ThrowsIndexExn
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Length =
|
|
//
|
|
[<Property>]
|
|
let ``Length method follows the pythagorean theorem`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let l = System.Math.Sqrt((float)(x * x + y * y + z * z + w * w))
|
|
|
|
Assert.Equal((float32)l, v.Length)
|
|
|
|
[<Property>]
|
|
let ``Fast length method is the same as one divided by the fast inverse square`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let l = 1.0f / MathHelper.InverseSqrtFast(x * x + y * y + z * z + w * w)
|
|
|
|
Assert.Equal(l, v.LengthFast)
|
|
|
|
[<Property>]
|
|
let ``Length squared method returns each component squared and summed`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let lsq = x * x + y * y + z * z + w * w
|
|
|
|
Assert.Equal(lsq, v.LengthSquared)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Normalization =
|
|
//
|
|
[<Property>]
|
|
let ``Normalization creates a new unit length vector with the correct components`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let l = v.Length
|
|
|
|
// Zero-length vectors can't be normalized
|
|
if not (approxEq l 0.0f) then
|
|
let norm = v.Normalized()
|
|
|
|
Assert.ApproximatelyEquivalent(v.X / l, norm.X)
|
|
Assert.ApproximatelyEquivalent(v.Y / l, norm.Y)
|
|
Assert.ApproximatelyEquivalent(v.Z / l, norm.Z)
|
|
Assert.ApproximatelyEquivalent(v.W / l, norm.W)
|
|
|
|
[<Property>]
|
|
let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let l = v.Length
|
|
|
|
// Zero-length vectors can't be normalized
|
|
if not (approxEq l 0.0f) then
|
|
let norm = Vector4(x, y, z, w)
|
|
norm.Normalize()
|
|
|
|
Assert.ApproximatelyEquivalent(v.X / l, norm.X)
|
|
Assert.ApproximatelyEquivalent(v.Y / l, norm.Y)
|
|
Assert.ApproximatelyEquivalent(v.Z / l, norm.Z)
|
|
Assert.ApproximatelyEquivalent(v.W / l, norm.W)
|
|
|
|
[<Property>]
|
|
let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let norm = Vector4(x, y, z, w)
|
|
norm.NormalizeFast()
|
|
|
|
let scale = MathHelper.InverseSqrtFast(x * x + y * y + z * z + w * w)
|
|
|
|
Assert.ApproximatelyEquivalent(v.X * scale, norm.X)
|
|
Assert.ApproximatelyEquivalent(v.Y * scale, norm.Y)
|
|
Assert.ApproximatelyEquivalent(v.Z * scale, norm.Z)
|
|
Assert.ApproximatelyEquivalent(v.W * scale, norm.W)
|
|
|
|
[<Property>]
|
|
let ``Normalization by reference is the same as division by magnitude`` (a : Vector4) =
|
|
// Zero-length vectors can't be normalized
|
|
if not (approxEq a.Length 0.0f) then
|
|
let norm = a / a.Length
|
|
let vRes = Vector4.Normalize(ref a)
|
|
|
|
Assert.ApproximatelyEquivalent(norm, vRes)
|
|
|
|
[<Property>]
|
|
let ``Normalization is the same as division by magnitude`` (a : Vector4) =
|
|
// Zero-length vectors can't be normalized
|
|
if not (approxEq a.Length 0.0f) then
|
|
let norm = a / a.Length
|
|
|
|
Assert.ApproximatelyEquivalent(norm, Vector4.Normalize(a));
|
|
|
|
[<Property>]
|
|
let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector4) =
|
|
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W)
|
|
|
|
let norm = a * scale
|
|
let vRes = Vector4.NormalizeFast(ref a)
|
|
|
|
Assert.ApproximatelyEquivalent(norm, vRes)
|
|
|
|
[<Property>]
|
|
let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector4) =
|
|
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W)
|
|
let norm = a * scale
|
|
|
|
Assert.ApproximatelyEquivalent(norm, Vector4.NormalizeFast(a));
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Addition =
|
|
//
|
|
[<Property>]
|
|
let ``Vector4 addition is the same as component addition`` (a : Vector4, b : Vector4) =
|
|
let c = a + b
|
|
|
|
Assert.ApproximatelyEquivalent(a.X + b.X,c.X)
|
|
Assert.ApproximatelyEquivalent(a.Y + b.Y,c.Y)
|
|
Assert.ApproximatelyEquivalent(a.Z + b.Z,c.Z)
|
|
Assert.ApproximatelyEquivalent(a.W + b.W,c.W)
|
|
|
|
[<Property>]
|
|
let ``Vector4 addition is commutative`` (a : Vector4, b : Vector4) =
|
|
let c = a + b
|
|
let c2 = b + a
|
|
|
|
Assert.ApproximatelyEquivalent(c, c2)
|
|
|
|
[<Property>]
|
|
let ``Vector4 addition is associative`` (a : Vector4, b : Vector4, c : Vector4) =
|
|
let r1 = (a + b) + c
|
|
let r2 = a + (b + c)
|
|
|
|
Assert.ApproximatelyEquivalent(r1, r2)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 addition method is the same as component addition`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W)
|
|
let sum = Vector4.Add(a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 addition method by reference is the same as component addition`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W)
|
|
let sum = Vector4.Add(ref a, ref b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Subtraction =
|
|
//
|
|
[<Property>]
|
|
let ``Vector4 subtraction is the same as component subtraction`` (a : Vector4, b : Vector4) =
|
|
let c = a - b
|
|
|
|
Assert.Equal(a.X - b.X,c.X)
|
|
Assert.Equal(a.Y - b.Y,c.Y)
|
|
Assert.Equal(a.Z - b.Z,c.Z)
|
|
Assert.Equal(a.W - b.W,c.W)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 subtraction method is the same as component addition`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W)
|
|
let sum = Vector4.Subtract(a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 subtraction method by reference is the same as component addition`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W)
|
|
let sum = Vector4.Subtract(ref a, ref b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Multiplication =
|
|
//
|
|
[<Property>]
|
|
let ``Vector4 multiplication is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
|
let c = a * b
|
|
|
|
Assert.Equal(a.X * b.X,c.X)
|
|
Assert.Equal(a.Y * b.Y,c.Y)
|
|
Assert.Equal(a.Z * b.Z,c.Z)
|
|
Assert.Equal(a.W * b.W,c.W)
|
|
|
|
|
|
[<Property>]
|
|
let ``Vector4 multiplication is commutative`` (a : Vector4, b : Vector4) =
|
|
let r1 = a * b
|
|
let r2 = b * a
|
|
|
|
Assert.Equal(r1, r2)
|
|
|
|
[<Property>]
|
|
let ``Left-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
|
let r = a * f
|
|
|
|
Assert.Equal(a.X * f,r.X)
|
|
Assert.Equal(a.Y * f,r.Y)
|
|
Assert.Equal(a.Z * f,r.Z)
|
|
Assert.Equal(a.W * f,r.W)
|
|
|
|
[<Property>]
|
|
let ``Right-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
|
let r = f * a
|
|
Assert.Equal(a.X * f,r.X)
|
|
Assert.Equal(a.Y * f,r.Y)
|
|
Assert.Equal(a.Z * f,r.Z)
|
|
Assert.Equal(a.W * f,r.W)
|
|
|
|
[<Property>]
|
|
let ``Static method Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
|
let r = Vector4.Multiply(a, f)
|
|
|
|
Assert.Equal(a.X * f,r.X)
|
|
Assert.Equal(a.Y * f,r.Y)
|
|
Assert.Equal(a.Z * f,r.Z)
|
|
Assert.Equal(a.W * f,r.W)
|
|
|
|
[<Property>]
|
|
let ``Vector4-Matrix4 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix4, b : Vector4) =
|
|
let res = a*b
|
|
|
|
let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13 + b.W * a.M14
|
|
let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23 + b.W * a.M24
|
|
let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33 + b.W * a.M34
|
|
let c4 = b.X * a.M41 + b.Y * a.M42 + b.Z * a.M43 + b.W * a.M44
|
|
|
|
let exp = Vector4(c1, c2, c3, c4)
|
|
|
|
Assert.Equal(exp, res)
|
|
|
|
[<Property>]
|
|
let ``Vector4-Matrix4 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix4, b : Vector4) =
|
|
let res = b*a
|
|
|
|
let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31 + b.W * a.M41
|
|
let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32 + b.W * a.M42
|
|
let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33 + b.W * a.M43
|
|
let c4 = b.X * a.M14 + b.Y * a.M24 + b.Z * a.M34 + b.W * a.M44
|
|
|
|
let exp = Vector4(c1, c2, c3, c4)
|
|
|
|
Assert.Equal(exp, res)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 multiplication method is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W)
|
|
let sum = Vector4.Multiply(a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4 multiplication method by reference is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
|
|
|
let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W)
|
|
let sum = Vector4.Multiply(ref a, ref b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Division =
|
|
//
|
|
[<Property>]
|
|
let ``Vector4-float division is the same as component-float division`` (a : Vector4, f : float32) =
|
|
if not (approxEq f 0.0f) then // we don't support diving by zero.
|
|
let r = a / f
|
|
|
|
Assert.ApproximatelyEquivalent(a.X / f, r.X)
|
|
Assert.ApproximatelyEquivalent(a.Y / f, r.Y)
|
|
Assert.ApproximatelyEquivalent(a.Z / f, r.Z)
|
|
Assert.ApproximatelyEquivalent(a.W / f, r.W)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4-Vector4 division method is the same as component division`` (a : Vector4, b : Vector4) =
|
|
if not (anyZero4 a || anyZero4 b) then
|
|
let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W)
|
|
let sum = Vector4.Divide(a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4-Vector4 divison method by reference is the same as component division`` (a : Vector4, b : Vector4) =
|
|
if not (anyZero4 a || anyZero4 b) then
|
|
let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W)
|
|
let sum = Vector4.Divide(ref a, ref b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4-scalar division method is the same as component division`` (a : Vector4, b : float32) =
|
|
if not (approxEq b 0.0f) then // we don't support diving by zero.
|
|
let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b)
|
|
let sum = Vector4.Divide(a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Property>]
|
|
let ``Static Vector4-scalar divison method by reference is the same as component division`` (a : Vector4, b : float32) =
|
|
if not (approxEq b 0.0f) then // we don't support diving by zero.
|
|
let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b)
|
|
let sum = Vector4.Divide(ref a, b)
|
|
|
|
Assert.ApproximatelyEquivalent(v1, sum)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Negation =
|
|
//
|
|
[<Property>]
|
|
let ``Vector negation operator negates all components`` (x, y, z, w) =
|
|
let v = Vector4(x, y, z, w)
|
|
let vNeg = -v
|
|
Assert.Equal(-x, vNeg.X)
|
|
Assert.Equal(-y, vNeg.Y)
|
|
Assert.Equal(-z, vNeg.Z)
|
|
Assert.Equal(-w, vNeg.W)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Equality =
|
|
//
|
|
[<Property>]
|
|
let ``Vector equality operator is by component`` (x, y, z, w) =
|
|
let v1 = Vector4(x, y, z, w)
|
|
let v2 = Vector4(x, y, z, w)
|
|
let equality = v1 = v2
|
|
|
|
Assert.True(equality)
|
|
|
|
[<Property>]
|
|
let ``Vector inequality operator is by component`` (x, y, z, w) =
|
|
let v1 = Vector4(x, y, z, w)
|
|
let v2 = Vector4(x + 1.0f , y + 1.0f, z + 1.0f, w + 1.0f)
|
|
let inequality = v1 <> v2
|
|
|
|
Assert.True(inequality)
|
|
|
|
[<Property>]
|
|
let ``Vector equality method is by component`` (x, y, z, w) =
|
|
let v1 = Vector4(x, y, z, w)
|
|
let v2 = Vector4(x, y, z, w)
|
|
let notVector = Matrix2()
|
|
|
|
let equality = v1.Equals(v2)
|
|
let inequalityByOtherType = v1.Equals(notVector)
|
|
|
|
Assert.True(equality)
|
|
Assert.False(inequalityByOtherType)
|
|
|
|
[<Property>]
|
|
let ``Vector equality method returns false for other classes`` (x, y, z, w) =
|
|
let v1 = Vector4(x, y, z, w)
|
|
let notVector = Matrix2()
|
|
|
|
let inequalityByOtherType = v1.Equals(notVector)
|
|
|
|
Assert.False(inequalityByOtherType)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Swizzling =
|
|
//
|
|
[<Property>]
|
|
let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z, w) =
|
|
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
let xyzw = v
|
|
let xywz = Vector4(x, y, w, z)
|
|
let xzyw = Vector4(x, z, y, w)
|
|
let xzwy = Vector4(x, z, w, y)
|
|
let xwyz = Vector4(x, w, y, z)
|
|
let xwzy = Vector4(x, w, z, y)
|
|
|
|
let xyz = Vector3(x, y, z)
|
|
let xyw = Vector3(x, y, w)
|
|
let xzy = Vector3(x, z, y)
|
|
let xzw = Vector3(x, z, w)
|
|
let xwy = Vector3(x, w, y)
|
|
let xwz = Vector3(x, w, z)
|
|
|
|
let xy = Vector2(x, y)
|
|
let xz = Vector2(x, z)
|
|
let xw = Vector2(x, w)
|
|
|
|
// X primary
|
|
Assert.Equal(xyzw, v)
|
|
Assert.Equal(xywz, v.Xywz)
|
|
Assert.Equal(xzyw, v.Xzyw)
|
|
Assert.Equal(xzwy, v.Xzwy)
|
|
Assert.Equal(xwyz, v.Xwyz)
|
|
Assert.Equal(xwzy, v.Xwzy)
|
|
|
|
Assert.Equal(xyz, v.Xyz)
|
|
Assert.Equal(xyw, v.Xyw)
|
|
Assert.Equal(xzy, v.Xzy)
|
|
Assert.Equal(xzw, v.Xzw)
|
|
Assert.Equal(xwy, v.Xwy)
|
|
Assert.Equal(xwz, v.Xwz)
|
|
|
|
Assert.Equal(xy, v.Xy)
|
|
Assert.Equal(xz, v.Xz)
|
|
Assert.Equal(xw, v.Xw)
|
|
|
|
[<Property>]
|
|
let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z, w) =
|
|
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
let yxzw = Vector4(y, x, z, w)
|
|
let yxwz = Vector4(y, x, w, z)
|
|
let yyzw = Vector4(y, y, z, w)
|
|
let yywz = Vector4(y, y, w, z)
|
|
let yzxw = Vector4(y, z, x, w)
|
|
let yzwx = Vector4(y, z, w, x)
|
|
let ywxz = Vector4(y, w, x, z)
|
|
let ywzx = Vector4(y, w, z, x)
|
|
|
|
let yxz = Vector3(y, x, z)
|
|
let yxw = Vector3(y, x, w)
|
|
let yzx = Vector3(y, z, x)
|
|
let yzw = Vector3(y, z, w)
|
|
let ywx = Vector3(y, w, x)
|
|
let ywz = Vector3(y, w, z)
|
|
|
|
let yx = Vector2(y, x)
|
|
let yz = Vector2(y, z)
|
|
let yw = Vector2(y, w)
|
|
|
|
// Y primary
|
|
Assert.Equal(yxzw, v.Yxzw)
|
|
Assert.Equal(yxwz, v.Yxwz)
|
|
Assert.Equal(yyzw, v.Yyzw)
|
|
Assert.Equal(yywz, v.Yywz)
|
|
Assert.Equal(yzxw, v.Yzxw)
|
|
Assert.Equal(yzwx, v.Yzwx)
|
|
Assert.Equal(ywxz, v.Ywxz)
|
|
Assert.Equal(ywzx, v.Ywzx)
|
|
|
|
Assert.Equal(yxz, v.Yxz)
|
|
Assert.Equal(yxw, v.Yxw)
|
|
Assert.Equal(yzx, v.Yzx)
|
|
Assert.Equal(yzw, v.Yzw)
|
|
Assert.Equal(ywx, v.Ywx)
|
|
Assert.Equal(ywz, v.Ywz)
|
|
|
|
Assert.Equal(yx, v.Yx)
|
|
Assert.Equal(yz, v.Yz)
|
|
Assert.Equal(yw, v.Yw)
|
|
|
|
[<Property>]
|
|
let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z, w) =
|
|
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
let zxyw = Vector4(z, x, y, w)
|
|
let zxwy = Vector4(z, x, w, y)
|
|
let zyxw = Vector4(z, y, x, w)
|
|
let zywx = Vector4(z, y, w, x)
|
|
let zwxy = Vector4(z, w, x, y)
|
|
let zwyx = Vector4(z, w, y, x)
|
|
let zwzy = Vector4(z, w, z, y)
|
|
|
|
let zxy = Vector3(z, x, y)
|
|
let zxw = Vector3(z, x, w)
|
|
let zyx = Vector3(z, y, x)
|
|
let zyw = Vector3(z, y, w)
|
|
let zwx = Vector3(z, w, x)
|
|
let zwy = Vector3(z, w, y)
|
|
|
|
let zx = Vector2(z, x)
|
|
let zy = Vector2(z, y)
|
|
let zw = Vector2(z, w)
|
|
|
|
// Z primary
|
|
Assert.Equal(zxyw, v.Zxyw)
|
|
Assert.Equal(zxwy, v.Zxwy)
|
|
Assert.Equal(zyxw, v.Zyxw)
|
|
Assert.Equal(zywx, v.Zywx)
|
|
Assert.Equal(zwxy, v.Zwxy)
|
|
Assert.Equal(zwyx, v.Zwyx)
|
|
Assert.Equal(zwzy, v.Zwzy)
|
|
|
|
Assert.Equal(zxy, v.Zxy)
|
|
Assert.Equal(zxw, v.Zxw)
|
|
Assert.Equal(zyx, v.Zyx)
|
|
Assert.Equal(zyw, v.Zyw)
|
|
Assert.Equal(zwx, v.Zwx)
|
|
Assert.Equal(zwy, v.Zwy)
|
|
|
|
Assert.Equal(zx, v.Zx)
|
|
Assert.Equal(zy, v.Zy)
|
|
Assert.Equal(zw, v.Zw)
|
|
|
|
[<Property>]
|
|
let ``Vector swizzling returns the correct composite for W-primary components`` (x, y, z, w) =
|
|
|
|
let v = Vector4(x, y, z, w)
|
|
|
|
let wxyz = Vector4(w, x, y, z)
|
|
let wxzy = Vector4(w, x, z, y)
|
|
let wyxz = Vector4(w, y, x, z)
|
|
let wyzx = Vector4(w, y, z, x)
|
|
let wzxy = Vector4(w, z, x, y)
|
|
let wzyx = Vector4(w, z, y, x)
|
|
let wzyw = Vector4(w, z, y, w)
|
|
|
|
let wxy = Vector3(w, x, y)
|
|
let wxz = Vector3(w, x, z)
|
|
let wyx = Vector3(w, y, x)
|
|
let wyz = Vector3(w, y, z)
|
|
let wzx = Vector3(w, z, x)
|
|
let wzy = Vector3(w, z, y)
|
|
|
|
let wx = Vector2(w, x)
|
|
let wy = Vector2(w, y)
|
|
let wz = Vector2(w, z)
|
|
|
|
// W primary
|
|
Assert.Equal(wxyz, v.Wxyz)
|
|
Assert.Equal(wxzy, v.Wxzy)
|
|
Assert.Equal(wyxz, v.Wyxz)
|
|
Assert.Equal(wyzx, v.Wyzx)
|
|
Assert.Equal(wzxy, v.Wzxy)
|
|
Assert.Equal(wzyx, v.Wzyx)
|
|
Assert.Equal(wzyw, v.Wzyw)
|
|
|
|
Assert.Equal(wxy, v.Wxy)
|
|
Assert.Equal(wxz, v.Wxz)
|
|
Assert.Equal(wyx, v.Wyx)
|
|
Assert.Equal(wyz, v.Wyz)
|
|
Assert.Equal(wzx, v.Wzx)
|
|
Assert.Equal(wzy, v.Wzy)
|
|
|
|
Assert.Equal(wx, v.Wx)
|
|
Assert.Equal(wy, v.Wy)
|
|
Assert.Equal(wz, v.Wz)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Interpolation =
|
|
//
|
|
[<Property>]
|
|
let ``Linear interpolation is by component`` (a : Vector4, b : Vector4, q) =
|
|
|
|
let blend = q
|
|
|
|
let rX = blend * (b.X - a.X) + a.X
|
|
let rY = blend * (b.Y - a.Y) + a.Y
|
|
let rZ = blend * (b.Z - a.Z) + a.Z
|
|
let rW = blend * (b.W - a.W) + a.W
|
|
let vExp = Vector4(rX, rY, rZ, rW)
|
|
|
|
Assert.Equal(vExp, Vector4.Lerp(a, b, q))
|
|
|
|
let vRes = Vector4.Lerp(ref a, ref b, q)
|
|
Assert.Equal(vExp, vRes)
|
|
|
|
[<Property>]
|
|
let ``Barycentric interpolation follows the barycentric formula`` (a : Vector4, b : Vector4, c : Vector4, u, v) =
|
|
|
|
let r = a + u * (b - a) + v * (c - a)
|
|
|
|
Assert.Equal(r, Vector4.BaryCentric(a, b, c, u, v))
|
|
|
|
let vRes = Vector4.BaryCentric(ref a, ref b, ref c, u, v)
|
|
Assert.Equal(r, vRes)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module ``Vector products`` =
|
|
//
|
|
[<Property>]
|
|
let ``Dot product method follows the dot product formula`` (a : Vector4, b : Vector4) =
|
|
let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z + a.W * b.W
|
|
|
|
Assert.Equal(dot, Vector4.Dot(a, b));
|
|
|
|
let vRes = Vector4.Dot(ref a, ref b)
|
|
Assert.Equal(dot, vRes)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module ``Magnitude min and max`` =
|
|
//
|
|
[<Property>]
|
|
let ``MagnitudeMin selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector4, v2: Vector4) =
|
|
// Results do not matter for equal vectors
|
|
if not (v1 = v2) then
|
|
let l1 = v1.LengthSquared
|
|
let l2 = v2.LengthSquared
|
|
|
|
let vMin = Vector4.MagnitudeMin(v1, v2)
|
|
|
|
if vMin = v1 then
|
|
let v1ShorterThanv2 = l1 < l2
|
|
Assert.True(v1ShorterThanv2)
|
|
else
|
|
let v2ShorterThanOrEqualTov1 = l2 <= l1
|
|
Assert.True(v2ShorterThanOrEqualTov1)
|
|
|
|
[<Property>]
|
|
let ``MagnitudeMax selects the vector with equal or greater magnitude given two vectors`` (v1 : Vector4, v2: Vector4) =
|
|
// Results do not matter for equal vectors
|
|
if not (v1 = v2) then
|
|
let l1 = v1.LengthSquared
|
|
let l2 = v2.LengthSquared
|
|
|
|
let vMin = Vector4.MagnitudeMax(v1, v2)
|
|
|
|
if vMin = v1 then
|
|
let v1LongerThanOrEqualTov2 = l1 >= l2
|
|
Assert.True(v1LongerThanOrEqualTov2)
|
|
else
|
|
let v2LongerThanv1 = l2 > l1
|
|
Assert.True(v2LongerThanv1)
|
|
|
|
[<Property>]
|
|
let ``MagnitudeMin by reference selects the vector with equal or lesser magnitude given two vectors`` (v1 : Vector4, v2: Vector4) =
|
|
// Results do not matter for equal vectors
|
|
if not (v1 = v2) then
|
|
let l1 = v1.LengthSquared
|
|
let l2 = v2.LengthSquared
|
|
|
|
let vMin = Vector4.MagnitudeMin(ref v1, ref v2)
|
|
|
|
if vMin = v1 then
|
|
let v1ShorterThanv2 = l1 < l2
|
|
Assert.True(v1ShorterThanv2)
|
|
else
|
|
let v2ShorterThanOrEqualTov1 = l2 <= l1
|
|
Assert.True(v2ShorterThanOrEqualTov1)
|
|
|
|
[<Property>]
|
|
let ``MagnitudeMax by reference selects the vector with equal or greater magnitude given two vectors`` (v1 : Vector4, v2: Vector4) =
|
|
// Results do not matter for equal vectors
|
|
if not (v1 = v2) then
|
|
let l1 = v1.LengthSquared
|
|
let l2 = v2.LengthSquared
|
|
|
|
let vMin = Vector4.MagnitudeMax(ref v1, ref v2)
|
|
|
|
if vMin = v1 then
|
|
let v1LongerThanOrEqualTov2 = l1 >= l2
|
|
Assert.True(v1LongerThanOrEqualTov2)
|
|
else
|
|
let v2LongerThanv1 = l2 > l1
|
|
Assert.True(v2LongerThanv1)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module ``Component min and max`` =
|
|
//
|
|
[<Property>]
|
|
let ``ComponentMin creates a new vector from the smallest components of given vectors`` (v1 : Vector4, v2: Vector4) =
|
|
let vMin = Vector4.ComponentMin(v1, v2)
|
|
let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2
|
|
|
|
Assert.True(isComponentSmallest vMin.X v1.X v2.X)
|
|
Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y)
|
|
Assert.True(isComponentSmallest vMin.Z v1.Z v2.Z)
|
|
Assert.True(isComponentSmallest vMin.W v1.W v2.W)
|
|
|
|
[<Property>]
|
|
let ``ComponentMax creates a new vector from the greatest components of given vectors`` (v1 : Vector4, v2: Vector4) =
|
|
let vMax = Vector4.ComponentMax(v1, v2)
|
|
let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2
|
|
|
|
Assert.True(isComponentLargest vMax.X v1.X v2.X)
|
|
Assert.True(isComponentLargest vMax.Y v1.Y v2.Y)
|
|
Assert.True(isComponentLargest vMax.Z v1.Z v2.Z)
|
|
Assert.True(isComponentLargest vMax.W v1.W v2.W)
|
|
|
|
[<Property>]
|
|
let ``ComponentMin by reference creates a new vector from the smallest components of given vectors`` (v1 : Vector4, v2: Vector4) =
|
|
let vMin = Vector4.ComponentMin(ref v1, ref v2)
|
|
let isComponentSmallest smallComp comp1 comp2 = smallComp <= comp1 && smallComp <= comp2
|
|
|
|
Assert.True(isComponentSmallest vMin.X v1.X v2.X)
|
|
Assert.True(isComponentSmallest vMin.Y v1.Y v2.Y)
|
|
Assert.True(isComponentSmallest vMin.Z v1.Z v2.Z)
|
|
Assert.True(isComponentSmallest vMin.W v1.W v2.W)
|
|
|
|
[<Property>]
|
|
let ``ComponentMax by reference creates a new vector from the greatest components of given vectors`` (v1 : Vector4, v2: Vector4) =
|
|
let vMax = Vector4.ComponentMax(ref v1, ref v2)
|
|
let isComponentLargest largeComp comp1 comp2 = largeComp >= comp1 && largeComp >= comp2
|
|
|
|
Assert.True(isComponentLargest vMax.X v1.X v2.X)
|
|
Assert.True(isComponentLargest vMax.Y v1.Y v2.Y)
|
|
Assert.True(isComponentLargest vMax.Z v1.Z v2.Z)
|
|
Assert.True(isComponentLargest vMax.W v1.W v2.W)
|
|
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Clamping =
|
|
//
|
|
[<Property>]
|
|
let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector4, b : Vector4, w : Vector4) =
|
|
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
|
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
|
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
|
let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W
|
|
|
|
let res = Vector4.Clamp(w, a, b)
|
|
|
|
Assert.Equal(expX, res.X)
|
|
Assert.Equal(expY, res.Y)
|
|
Assert.Equal(expZ, res.Z)
|
|
Assert.Equal(expW, res.W)
|
|
|
|
[<Property>]
|
|
let ``Clamping one vector between two other vectors by reference clamps all components between corresponding components`` (a : Vector4, b : Vector4, w : Vector4) =
|
|
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
|
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
|
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
|
let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W
|
|
|
|
let res = Vector4.Clamp(ref w, ref a, ref b)
|
|
|
|
Assert.Equal(expX, res.X)
|
|
Assert.Equal(expY, res.Y)
|
|
Assert.Equal(expZ, res.Z)
|
|
Assert.Equal(expW, res.W)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module ``Unit vectors``=
|
|
//
|
|
[<Property>]
|
|
let ``Unit X is correct`` =
|
|
let unitX = Vector4(1.0f, 0.0f, 0.0f, 0.0f)
|
|
|
|
Assert.Equal(Vector4.UnitX, unitX)
|
|
|
|
[<Property>]
|
|
let ``Unit Y is correct`` =
|
|
let unitY = Vector4(0.0f, 1.0f, 0.0f, 0.0f)
|
|
|
|
Assert.Equal(Vector4.UnitY, unitY)
|
|
|
|
[<Property>]
|
|
let ``Unit Z is correct`` =
|
|
let unitZ = Vector4(0.0f, 0.0f, 1.0f, 0.0f)
|
|
|
|
Assert.Equal(Vector4.UnitZ, unitZ)
|
|
|
|
[<Property>]
|
|
let ``Unit W is correct`` =
|
|
let unitW = Vector4(0.0f, 0.0f, 0.0f, 1.0f)
|
|
|
|
Assert.Equal(Vector4.UnitW, unitW)
|
|
|
|
[<Property>]
|
|
let ``Unit zero is correct`` =
|
|
let unitZero = Vector4(0.0f, 0.0f, 0.0f, 0.0f)
|
|
|
|
Assert.Equal(Vector4.Zero, unitZero)
|
|
|
|
[<Property>]
|
|
let ``Unit one is correct`` =
|
|
let unitOne = Vector4(1.0f, 1.0f, 1.0f, 1.0f)
|
|
|
|
Assert.Equal(Vector4.One, unitOne)
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Serialization =
|
|
//
|
|
[<Property>]
|
|
let ``The absolute size of a Vector4 is always the size of its components`` (v : Vector4) =
|
|
let expectedSize = sizeof<float32> * 4
|
|
|
|
Assert.Equal(expectedSize, Vector4.SizeInBytes)
|
|
Assert.Equal(expectedSize, Marshal.SizeOf(Vector4()))
|
|
|
|
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
|
module Transformation =
|
|
//
|
|
[<Property>]
|
|
let ``Transformation by quaternion with static method is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
|
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
|
let inverse = Quaternion.Invert(q)
|
|
|
|
let transformedQuat = q * vectorQuat * inverse
|
|
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y, transformedQuat.Z, transformedQuat.W)
|
|
|
|
Assert.ApproximatelyEquivalent(transformedVector, Vector4.Transform(v, q))
|
|
|
|
[<Property>]
|
|
let ``Transformation by quaternion with static method by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
|
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
|
let inverse = Quaternion.Invert(q)
|
|
|
|
let transformedQuat = q * vectorQuat * inverse
|
|
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y,transformedQuat.Z, transformedQuat.W)
|
|
|
|
Assert.ApproximatelyEquivalent(transformedVector, Vector4.Transform(ref v, ref q))
|
|
|
|
[<Property>]
|
|
let ``Transformation by quaternion by multiplication using right-handed notation is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
|
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
|
let inverse = Quaternion.Invert(q)
|
|
|
|
let transformedQuat = q * vectorQuat * inverse
|
|
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y, transformedQuat.Z, transformedQuat.W)
|
|
|
|
Assert.ApproximatelyEquivalent(transformedVector, q * v) |