#region --- License --- /* Licensed under the MIT/X11 license. * Copyright (c) 2006-2008 the OpenTK Team. * This notice may not be removed from any source distribution. * See license.txt for licensing detailed licensing details. * * Contributions by Georg W�chter. */ #endregion using System; using System.Collections.Generic; using System.Text; namespace OpenTK.Math { /// /// Represents a bezier curve with as many points as you want. /// [Obsolete("OpenTK.Math functions have been moved to the root OpenTK namespace (reason: XNA compatibility")] [Serializable] public struct BezierCurve { #region Fields private List points; /// /// The parallel value. /// /// This value defines whether the curve should be calculated as a /// parallel curve to the original bezier curve. A value of 0.0f represents /// the original curve, 5.0f i.e. stands for a curve that has always a distance /// of 5.0f to the orignal curve at any point. public float Parallel; #endregion #region Properties /// /// Gets the points of this curve. /// /// The first point and the last points represent the anchor points. public IList Points { get { return points; } } #endregion #region Constructors /// /// Constructs a new . /// /// The points. public BezierCurve(IEnumerable points) { if (points == null) throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures."); this.points = new List(points); this.Parallel = 0.0f; } /// /// Constructs a new . /// /// The points. public BezierCurve(params Vector2[] points) { if (points == null) throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures."); this.points = new List(points); this.Parallel = 0.0f; } /// /// Constructs a new . /// /// The parallel value. /// The points. public BezierCurve(float parallel, params Vector2[] points) { if (points == null) throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures."); this.Parallel = parallel; this.points = new List(points); } /// /// Constructs a new . /// /// The parallel value. /// The points. public BezierCurve(float parallel, IEnumerable points) { if (points == null) throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures."); this.Parallel = parallel; this.points = new List(points); } #endregion #region Functions /// /// Calculates the point with the specified t. /// /// The t value, between 0.0f and 1.0f. /// Resulting point. public Vector2 CalculatePoint(float t) { return BezierCurve.CalculatePoint(points, t, Parallel); } /// /// Calculates the length of this bezier curve. /// /// The precision. /// Length of curve. /// The precision gets better as the /// value gets smaller. public float CalculateLength(float precision) { return BezierCurve.CalculateLength(points, precision, Parallel); } #region Static methods /// /// Calculates the length of the specified bezier curve. /// /// The points. /// The precision value. /// The precision gets better as the /// value gets smaller. public static float CalculateLength(IList points, float precision) { return BezierCurve.CalculateLength(points, precision, 0.0f); } /// /// Calculates the length of the specified bezier curve. /// /// The points. /// The precision value. /// The parallel value. /// Length of curve. /// The precision gets better as the /// value gets smaller. /// The parameter defines whether the curve should be calculated as a /// parallel curve to the original bezier curve. A value of 0.0f represents /// the original curve, 5.0f represents a curve that has always a distance /// of 5.0f to the orignal curve. public static float CalculateLength(IList points, float precision, float parallel) { float length = 0.0f; Vector2 old = BezierCurve.CalculatePoint(points, 0.0f, parallel); for (float i = precision; i < (1.0f + precision); i += precision) { Vector2 n = CalculatePoint(points, i, parallel); length += (n - old).Length; old = n; } return length; } /// /// Calculates the point on the given bezier curve with the specified t parameter. /// /// The points. /// The t parameter, a value between 0.0f and 1.0f. /// Resulting point. public static Vector2 CalculatePoint(IList points, float t) { return BezierCurve.CalculatePoint(points, t, 0.0f); } /// /// Calculates the point on the given bezier curve with the specified t parameter. /// /// The points. /// The t parameter, a value between 0.0f and 1.0f. /// The parallel value. /// Resulting point. /// The parameter defines whether the curve should be calculated as a /// parallel curve to the original bezier curve. A value of 0.0f represents /// the original curve, 5.0f represents a curve that has always a distance /// of 5.0f to the orignal curve. public static Vector2 CalculatePoint(IList points, float t, float parallel) { Vector2 r = new Vector2(); double c = 1.0d - (double)t; float temp; int i = 0; foreach (Vector2 pt in points) { temp = (float)Functions.BinomialCoefficient(points.Count - 1, i) * (float)(System.Math.Pow(t, i) * System.Math.Pow(c, (points.Count - 1) - i)); r.X += temp * pt.X; r.Y += temp * pt.Y; i++; } if (parallel == 0.0f) return r; Vector2 perpendicular = new Vector2(); if (t != 0.0f) perpendicular = r - BezierCurve.CalculatePointOfDerivative(points, t); else perpendicular = points[1] - points[0]; return r + Vector2.Normalize(perpendicular).PerpendicularRight * parallel; } /// /// Calculates the point with the specified t of the derivative of the given bezier function. /// /// The points. /// The t parameter, value between 0.0f and 1.0f. /// Resulting point. private static Vector2 CalculatePointOfDerivative(IList points, float t) { Vector2 r = new Vector2(); double c = 1.0d - (double)t; float temp; int i = 0; foreach (Vector2 pt in points) { temp = (float)Functions.BinomialCoefficient(points.Count - 2, i) * (float)(System.Math.Pow(t, i) * System.Math.Pow(c, (points.Count - 2) - i)); r.X += temp * pt.X; r.Y += temp * pt.Y; i++; } return r; } #endregion #endregion } }