#region --- License --- /* Copyright (c) 2006, 2007 Stefanos Apostolopoulos * See license.txt for license info * * Contributions by Andy Gill. */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServices; namespace OpenTK.Math { /// /// Represents a four-dimensional vector. /// [StructLayout(LayoutKind.Sequential)] public struct Vector4 { #region Fields /// /// The X component of the Vector4. /// public float X; /// /// The Y component of the Vector4. /// public float Y; /// /// The Z component of the Vector4. /// public float Z; /// /// The Z component of the Vector4. /// public float W; public static Vector4 UnitX = new Vector4(1, 0, 0, 0); public static Vector4 UnitY = new Vector4(0, 1, 0, 0); public static Vector4 UnitZ = new Vector4(0, 0, 1, 0); public static Vector4 UnitW = new Vector4(0, 0, 0, 1); public static Vector4 Zero = new Vector4(0, 0, 0, 0); #endregion #region Constructors /// /// Constructs a new Vector4. /// /// The x component of the Vector4. /// The y component of the Vector4. /// The z component of the Vector4. /// The z component of the Vector4. public Vector4(float x, float y, float z, float w) { X = x; Y = y; Z = z; W = w; } /// /// Constructs a new Vector4 from the given Vector2. /// /// The Vector2 to copy components from. public Vector4(Vector2 v) { X = v.X; Y = v.Y; Z = 0.0f; W = 0.0f; } /// /// Constructs a new Vector4 from the given Vector3. /// /// The Vector3 to copy components from. public Vector4(Vector3 v) { X = v.X; Y = v.Y; Z = v.Z; W = 0.0f; } /// /// Constructs a new Vector4 from the given Vector4. /// /// The Vector4 to copy components from. public Vector4(Vector4 v) { X = v.X; Y = v.Y; Z = v.Z; W = v.W; } #endregion #region Functions #region public float Length /// /// Gets the length (magnitude) of the vector. /// /// /// public float Length { get { return (float)System.Math.Sqrt(X * X + Y * Y + Z * Z + W * W); } } #endregion #region public float LengthFast /// /// Gets an approximation of the vector length (magnitude). /// /// /// This property uses an approximation of the square root function to calculate vector magnitude, with /// an upper error bound of 0.001. /// /// /// /// public float LengthFast { get { return 1.0f / OpenTK.Math.Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W); } } #endregion #region public float LengthSquared /// /// Gets the square of the vector length (magnitude). /// /// /// This property avoids the costly square root operation required by the Length property. This makes it more suitable /// for comparisons. /// /// /// public float LengthSquared { get { return X * X + Y * Y + Z * Z + W * W; } } #endregion #region public void Normalize() /// /// Scales the Vector4 to unit length. /// public void Normalize() { float scale = 1.0f / this.Length; X *= scale; Y *= scale; Z *= scale; W *= scale; } #endregion #region public void NormalizeFast() /// /// Scales the Vector4 to approximately unit length. /// public void NormalizeFast() { float scale = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W); X *= scale; Y *= scale; Z *= scale; W *= scale; } #endregion #region public void Scale(float sx, float sy, float sz, float sw) /// /// Scales the current Vector4 by the given amounts. /// /// The scale of the X component. /// The scale of the Y component. /// The scale of the Z component. /// The scale of the Z component. public void Scale(float sx, float sy, float sz, float sw) { this.X = X * sx; this.Y = Y * sy; this.Z = Z * sz; this.W = W * sw; } #endregion #endregion #region Operator overloads public static Vector4 operator +(Vector4 left, Vector4 right) { left.X += right.X; left.Y += right.Y; left.Z += right.Z; left.W += right.W; return left; } public static Vector4 operator -(Vector4 left, Vector4 right) { left.X -= right.X; left.Y -= right.Y; left.Z -= right.Z; left.W -= right.W; return left; } public static Vector4 operator -(Vector4 vec) { vec.X = -vec.X; vec.Y = -vec.Y; vec.Z = -vec.Z; vec.W = -vec.W; return vec; } public static Vector4 operator *(Vector4 vec, float f) { vec.X *= f; vec.Y *= f; vec.Z *= f; vec.W *= f; return vec; } public static Vector4 operator *(float f, Vector4 vec) { vec.X *= f; vec.Y *= f; vec.Z *= f; vec.W *= f; return vec; } public static Vector4 operator /(Vector4 vec, float f) { float mult = 1.0f / f; vec.X *= mult; vec.Y *= mult; vec.Z *= mult; vec.W *= mult; return vec; } [CLSCompliant(false)] unsafe public static explicit operator float*(Vector4 v) { return &v.X; } public static explicit operator IntPtr(Vector4 v) { unsafe { return (IntPtr)(&v.X); } } #endregion #region Static functions #region Add /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static Vector4 Add(Vector4 a, Vector4 b) { a.X += b.X; a.Y += b.Y; a.Z += b.Z; a.W += b.W; return a; } /// /// Add two Vectors /// /// First operand /// Second operand /// Result of addition public static void Add(ref Vector4 a, ref Vector4 b, out Vector4 result) { result.X = a.X + b.X; result.Y = a.Y + b.Y; result.Z = a.Z + b.Z; result.W = a.W + b.W; } #endregion #region Sub /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static Vector4 Sub(Vector4 a, Vector4 b) { a.X -= b.X; a.Y -= b.Y; a.Z -= b.Z; a.W -= b.W; return a; } /// /// Subtract one Vector from another /// /// First operand /// Second operand /// Result of subtraction public static void Sub(ref Vector4 a, ref Vector4 b, out Vector4 result) { result.X = a.X - b.X; result.Y = a.Y - b.Y; result.Z = a.Z - b.Z; result.W = a.W - b.W; } #endregion #region Mult /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static Vector4 Mult(Vector4 a, float f) { a.X *= f; a.Y *= f; a.Z *= f; a.W *= f; return a; } /// /// Multiply a vector and a scalar /// /// Vector operand /// Scalar operand /// Result of the multiplication public static void Mult(ref Vector4 a, float f, out Vector4 result) { result.X = a.X * f; result.Y = a.Y * f; result.Z = a.Z * f; result.W = a.W * f; } #endregion #region Div /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static Vector4 Div(Vector4 a, float f) { float mult = 1.0f / f; a.X *= mult; a.Y *= mult; a.Z *= mult; a.W *= mult; return a; } /// /// Divide a vector by a scalar /// /// Vector operand /// Scalar operand /// Result of the division public static void Div(ref Vector4 a, float f, out Vector4 result) { float mult = 1.0f / f; result.X = a.X * mult; result.Y = a.Y * mult; result.Z = a.Z * mult; result.W = a.W * mult; } #endregion #region Min /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static Vector4 Min(Vector4 a, Vector4 b) { a.X = a.X < b.X ? a.X : b.X; a.Y = a.Y < b.Y ? a.Y : b.Y; a.Z = a.Z < b.Z ? a.Z : b.Z; a.W = a.W < b.W ? a.W : b.W; return a; } /// /// Calculate the component-wise minimum of two vectors /// /// First operand /// Second operand /// The component-wise minimum public static void Min(ref Vector4 a, ref Vector4 b, out Vector4 result) { result.X = a.X < b.X ? a.X : b.X; result.Y = a.Y < b.Y ? a.Y : b.Y; result.Z = a.Z < b.Z ? a.Z : b.Z; result.W = a.W < b.W ? a.W : b.W; } #endregion #region Max /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static Vector4 Max(Vector4 a, Vector4 b) { a.X = a.X > b.X ? a.X : b.X; a.Y = a.Y > b.Y ? a.Y : b.Y; a.Z = a.Z > b.Z ? a.Z : b.Z; a.W = a.W > b.W ? a.W : b.W; return a; } /// /// Calculate the component-wise maximum of two vectors /// /// First operand /// Second operand /// The component-wise maximum public static void Max(ref Vector4 a, ref Vector4 b, out Vector4 result) { result.X = a.X > b.X ? a.X : b.X; result.Y = a.Y > b.Y ? a.Y : b.Y; result.Z = a.Z > b.Z ? a.Z : b.Z; result.W = a.W > b.W ? a.W : b.W; } #endregion #region Clamp /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static Vector4 Clamp(Vector4 vec, Vector4 min, Vector4 max) { vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; vec.Z = vec.X < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z; vec.W = vec.Y < min.W ? min.W : vec.W > max.W ? max.W : vec.W; return vec; } /// /// Clamp a vector to the given minimum and maximum vectors /// /// Input vector /// Minimum vector /// Maximum vector /// The clamped vector public static void Clamp(ref Vector4 vec, ref Vector4 min, ref Vector4 max, out Vector4 result) { result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X; result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y; result.Z = vec.X < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z; result.W = vec.Y < min.W ? min.W : vec.W > max.W ? max.W : vec.W; } #endregion #region Normalize /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static Vector4 Normalize(Vector4 vec) { float scale = 1.0f / vec.Length; vec.X *= scale; vec.Y *= scale; vec.Z *= scale; vec.W *= scale; return vec; } /// /// Scale a vector to unit length /// /// The input vector /// The normalized vector public static void Normalize(ref Vector4 vec, out Vector4 result) { float scale = 1.0f / vec.Length; result.X = vec.X * scale; result.Y = vec.Y * scale; result.Z = vec.Z * scale; result.W = vec.W * scale; } #endregion #region NormalizeFast /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static Vector4 NormalizeFast(Vector4 vec) { float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z + vec.W * vec.W); vec.X *= scale; vec.Y *= scale; vec.Z *= scale; vec.W *= scale; return vec; } /// /// Scale a vector to approximately unit length /// /// The input vector /// The normalized vector public static void NormalizeFast(ref Vector4 vec, out Vector4 result) { float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z + vec.W * vec.W); result.X = vec.X * scale; result.Y = vec.Y * scale; result.Z = vec.Z * scale; result.W = vec.W * scale; } #endregion #region Dot /// /// Caclulate the dot product of two vectors /// /// First operand /// Second operand /// The dot product of the two inputs public static float Dot(Vector4 left, Vector4 right) { return left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W; } #endregion #region Lerp /// /// Returns a new Vector that is the linear blend of the 2 given Vectors /// /// First input vector /// Second input vector /// The blend factor /// a when blend=0, b when blend=1, and a linear combination otherwise public static Vector4 Lerp(Vector4 a, Vector4 b, float blend) { a.X = blend * (b.X - a.X) + a.X; a.Y = blend * (b.Y - a.Y) + a.Y; a.Z = blend * (b.Z - a.Z) + a.Z; a.W = blend * (b.W - a.W) + a.W; return a; } #endregion #region Barycentric /// /// Interpolate 3 Vectors using Barycentric coordinates /// /// First input Vector /// Second input Vector /// Third input Vector /// First Barycentric Coordinate /// Second Barycentric Coordinate /// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise public static Vector4 BaryCentric(Vector4 a, Vector4 b, Vector4 c, float u, float v) { return a + u * (b - a) + v * (c - a); } #endregion #region Transform /// /// Transform a Vector by the given Matrix /// /// The vector to transform /// The desired transformation /// The transformed vector public static Vector4 Transform(Vector4 vec, Matrix4 mat) { Vector4 result; result.X = Vector4.Dot(vec, mat.Column0); result.Y = Vector4.Dot(vec, mat.Column1); result.Z = Vector4.Dot(vec, mat.Column2); result.W = Vector4.Dot(vec, mat.Column3); return result; } #endregion #endregion #region public override string ToString() /// /// Returns a System.String that represents the current Vector4. /// /// public override string ToString() { return String.Format("({0}, {1}, {2}, {3})", X, Y, Z, W); } #endregion } }