#region --- License ---
/*
Copyright (c) 2006 - 2008 The Open Toolkit library.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion
using System;
using System.Runtime.InteropServices;
namespace OpenTK.Math
{
/// Represents a 3D vector using three single-precision floating-point numbers.
///
/// The Vector3 structure is suitable for interoperation with unmanaged code requiring three consecutive floats.
///
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Vector3 : IEquatable
{
#region Fields
///
/// The X component of the Vector3.
///
public float X;
///
/// The Y component of the Vector3.
///
public float Y;
///
/// The Z component of the Vector3.
///
public float Z;
#endregion
#region Constructors
///
/// Constructs a new Vector3.
///
/// The x component of the Vector3.
/// The y component of the Vector3.
/// The z component of the Vector3.
public Vector3(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
}
///
/// Constructs a new Vector3 from the given Vector2.
///
/// The Vector2 to copy components from.
public Vector3(Vector2 v)
{
X = v.X;
Y = v.Y;
Z = 0.0f;
}
///
/// Constructs a new Vector3 from the given Vector3.
///
/// The Vector3 to copy components from.
public Vector3(Vector3 v)
{
X = v.X;
Y = v.Y;
Z = v.Z;
}
///
/// Constructs a new Vector3 from the given Vector4.
///
/// The Vector4 to copy components from.
public Vector3(Vector4 v)
{
X = v.X;
Y = v.Y;
Z = v.Z;
}
#endregion
#region Public Members
#region Instance
#region public float Length
///
/// Gets the length (magnitude) of the vector.
///
///
///
public float Length
{
get
{
return (float)System.Math.Sqrt(X * X + Y * Y + Z * Z);
}
}
#endregion
#region public float LengthFast
///
/// Gets an approximation of the vector length (magnitude).
///
///
/// This property uses an approximation of the square root function to calculate vector magnitude, with
/// an upper error bound of 0.001.
///
///
///
///
public float LengthFast
{
get
{
return 1.0f / OpenTK.Math.Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
}
}
#endregion
#region public float LengthSquared
///
/// Gets the square of the vector length (magnitude).
///
///
/// This property avoids the costly square root operation required by the Length property. This makes it more suitable
/// for comparisons.
///
///
///
public float LengthSquared
{
get
{
return X * X + Y * Y + Z * Z;
}
}
#endregion
#region public void Normalize()
///
/// Scales the Vector3 to unit length.
///
public void Normalize()
{
float scale = 1.0f / this.Length;
X *= scale;
Y *= scale;
Z *= scale;
}
#endregion
#region public void NormalizeFast()
///
/// Scales the Vector3 to approximately unit length.
///
public void NormalizeFast()
{
float scale = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
X *= scale;
Y *= scale;
Z *= scale;
}
#endregion
#region public void Scale(float sx, float sy, float sz)
///
/// Scales the current Vector3 by the given amounts.
///
/// The scale of the X component.
/// The scale of the Y component.
/// The scale of the Z component.
public void Scale(float sx, float sy, float sz)
{
this.X = X * sx;
this.Y = Y * sy;
this.Z = Z * sz;
}
#endregion
#endregion
#region Static
#region Fields
///
/// Defines a unit-length Vector3 that points towards the X-axis.
///
public static readonly Vector3 UnitX = new Vector3(1, 0, 0);
///
/// Defines a unit-length Vector3 that points towards the Y-axis.
///
public static readonly Vector3 UnitY = new Vector3(0, 1, 0);
///
/// /// Defines a unit-length Vector3 that points towards the Z-axis.
///
public static readonly Vector3 UnitZ = new Vector3(0, 0, 1);
///
/// Defines a zero-length Vector3.
///
public static readonly Vector3 Zero = new Vector3(0, 0, 0);
///
/// Defines the size of the Vector3 struct in bytes.
///
public static readonly int SizeInBytes = Marshal.SizeOf(new Vector3());
#endregion
#region Add
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static Vector3 Add(Vector3 a, Vector3 b)
{
a.X += b.X;
a.Y += b.Y;
a.Z += b.Z;
return a;
}
///
/// Add two Vectors
///
/// First operand
/// Second operand
/// Result of addition
public static void Add(ref Vector3 a, ref Vector3 b, out Vector3 result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
result.Z = a.Z + b.Z;
}
#endregion
#region Sub
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static Vector3 Sub(Vector3 a, Vector3 b)
{
a.X -= b.X;
a.Y -= b.Y;
a.Z -= b.Z;
return a;
}
///
/// Subtract one Vector from another
///
/// First operand
/// Second operand
/// Result of subtraction
public static void Sub(ref Vector3 a, ref Vector3 b, out Vector3 result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
result.Z = a.Z - b.Z;
}
#endregion
#region Mult
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static Vector3 Mult(Vector3 a, float f)
{
a.X *= f;
a.Y *= f;
a.Z *= f;
return a;
}
///
/// Multiply a vector and a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the multiplication
public static void Mult(ref Vector3 a, float f, out Vector3 result)
{
result.X = a.X * f;
result.Y = a.Y * f;
result.Z = a.Z * f;
}
#endregion
#region Div
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static Vector3 Div(Vector3 a, float f)
{
float mult = 1.0f / f;
a.X *= mult;
a.Y *= mult;
a.Z *= mult;
return a;
}
///
/// Divide a vector by a scalar
///
/// Vector operand
/// Scalar operand
/// Result of the division
public static void Div(ref Vector3 a, float f, out Vector3 result)
{
float mult = 1.0f / f;
result.X = a.X * mult;
result.Y = a.Y * mult;
result.Z = a.Z * mult;
}
#endregion
#region ComponentMin
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static Vector3 ComponentMin(Vector3 a, Vector3 b)
{
a.X = a.X < b.X ? a.X : b.X;
a.Y = a.Y < b.Y ? a.Y : b.Y;
a.Z = a.Z < b.Z ? a.Z : b.Z;
return a;
}
///
/// Calculate the component-wise minimum of two vectors
///
/// First operand
/// Second operand
/// The component-wise minimum
public static void ComponentMin(ref Vector3 a, ref Vector3 b, out Vector3 result)
{
result.X = a.X < b.X ? a.X : b.X;
result.Y = a.Y < b.Y ? a.Y : b.Y;
result.Z = a.Z < b.Z ? a.Z : b.Z;
}
#endregion
#region ComponentMax
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static Vector3 ComponentMax(Vector3 a, Vector3 b)
{
a.X = a.X > b.X ? a.X : b.X;
a.Y = a.Y > b.Y ? a.Y : b.Y;
a.Z = a.Z > b.Z ? a.Z : b.Z;
return a;
}
///
/// Calculate the component-wise maximum of two vectors
///
/// First operand
/// Second operand
/// The component-wise maximum
public static void ComponentMax(ref Vector3 a, ref Vector3 b, out Vector3 result)
{
result.X = a.X > b.X ? a.X : b.X;
result.Y = a.Y > b.Y ? a.Y : b.Y;
result.Z = a.Z > b.Z ? a.Z : b.Z;
}
#endregion
#region Min
///
/// Returns the Vector3 with the minimum magnitude
///
/// Left operand
/// Right operand
/// The minimum Vector3
public static Vector3 Min(Vector3 left, Vector3 right)
{
return left.LengthSquared < right.LengthSquared ? left : right;
}
#endregion
#region Max
///
/// Returns the Vector3 with the minimum magnitude
///
/// Left operand
/// Right operand
/// The minimum Vector3
public static Vector3 Max(Vector3 left, Vector3 right)
{
return left.LengthSquared >= right.LengthSquared ? left : right;
}
#endregion
#region Clamp
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static Vector3 Clamp(Vector3 vec, Vector3 min, Vector3 max)
{
vec.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
vec.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
vec.Z = vec.Z < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
return vec;
}
///
/// Clamp a vector to the given minimum and maximum vectors
///
/// Input vector
/// Minimum vector
/// Maximum vector
/// The clamped vector
public static void Clamp(ref Vector3 vec, ref Vector3 min, ref Vector3 max, out Vector3 result)
{
result.X = vec.X < min.X ? min.X : vec.X > max.X ? max.X : vec.X;
result.Y = vec.Y < min.Y ? min.Y : vec.Y > max.Y ? max.Y : vec.Y;
result.Z = vec.Z < min.Z ? min.Z : vec.Z > max.Z ? max.Z : vec.Z;
}
#endregion
#region Normalize
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static Vector3 Normalize(Vector3 vec)
{
float scale = 1.0f / vec.Length;
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
return vec;
}
///
/// Scale a vector to unit length
///
/// The input vector
/// The normalized vector
public static void Normalize(ref Vector3 vec, out Vector3 result)
{
float scale = 1.0f / vec.Length;
result.X = vec.X * scale;
result.Y = vec.Y * scale;
result.Z = vec.Z * scale;
}
#endregion
#region NormalizeFast
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static Vector3 NormalizeFast(Vector3 vec)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z);
vec.X *= scale;
vec.Y *= scale;
vec.Z *= scale;
return vec;
}
///
/// Scale a vector to approximately unit length
///
/// The input vector
/// The normalized vector
public static void NormalizeFast(ref Vector3 vec, out Vector3 result)
{
float scale = Functions.InverseSqrtFast(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z);
result.X = vec.X * scale;
result.Y = vec.Y * scale;
result.Z = vec.Z * scale;
}
#endregion
#region Dot
///
/// Calculate the dot (scalar) product of two vectors
///
/// First operand
/// Second operand
/// The dot product of the two inputs
public static float Dot(Vector3 left, Vector3 right)
{
return left.X * right.X + left.Y * right.Y + left.Z * right.Z;
}
///
/// Calculate the dot (scalar) product of two vectors
///
/// First operand
/// Second operand
/// The dot product of the two inputs
public static void Dot( ref Vector3 left, ref Vector3 right, out float result )
{
result = left.X * right.X + left.Y * right.Y + left.Z * right.Z;
}
#endregion
#region Cross
///
/// Caclulate the cross (vector) product of two vectors
///
/// First operand
/// Second operand
/// The cross product of the two inputs
public static Vector3 Cross(Vector3 left, Vector3 right)
{
return new Vector3(left.Y * right.Z - left.Z * right.Y,
left.Z * right.X - left.X * right.Z,
left.X * right.Y - left.Y * right.X);
}
///
/// Caclulate the cross (vector) product of two vectors
///
/// First operand
/// Second operand
/// The cross product of the two inputs
/// The cross product of the two inputs
public static void Cross(ref Vector3 left, ref Vector3 right, out Vector3 result)
{
result.X = left.Y * right.Z - left.Z * right.Y;
result.Y = left.Z * right.X - left.X * right.Z;
result.Z = left.X * right.Y - left.Y * right.X;
}
#endregion
#region Lerp
///
/// Returns a new Vector that is the linear blend of the 2 given Vectors
///
/// First input vector
/// Second input vector
/// The blend factor. a when blend=0, b when blend=1.
/// a when blend=0, b when blend=1, and a linear combination otherwise
public static Vector3 Lerp(Vector3 a, Vector3 b, float blend)
{
a.X = blend * (b.X - a.X) + a.X;
a.Y = blend * (b.Y - a.Y) + a.Y;
a.Z = blend * (b.Z - a.Z) + a.Z;
return a;
}
///
/// Returns a new Vector that is the linear blend of the 2 given Vectors
///
/// First input vector
/// Second input vector
/// The blend factor. a when blend=0, b when blend=1.
/// a when blend=0, b when blend=1, and a linear combination otherwise
public static void Lerp( ref Vector3 a, ref Vector3 b, float blend, out Vector3 result )
{
result.X = blend * ( b.X - a.X ) + a.X;
result.Y = blend * ( b.Y - a.Y ) + a.Y;
result.Z = blend * ( b.Z - a.Z ) + a.Z;
}
#endregion
#region Barycentric
///
/// Interpolate 3 Vectors using Barycentric coordinates
///
/// First input Vector
/// Second input Vector
/// Third input Vector
/// First Barycentric Coordinate
/// Second Barycentric Coordinate
/// a when u=v=0, b when u=1,v=0, c when u=0,v=1, and a linear combination of a,b,c otherwise
public static Vector3 BaryCentric(Vector3 a, Vector3 b, Vector3 c, float u, float v)
{
return a + u * (b - a) + v * (c - a);
}
#endregion
#region Transform
///
/// Transform a direction vector by the given Matrix
/// Assumes the matrix has a bottom row of (0,0,0,1), that is the translation part is ignored.
///
/// The vector to transform
/// The desired transformation
/// The transformed vector
public static Vector3 TransformVector(Vector3 vec, Matrix4 mat)
{
Vector3 v;
v.X = Vector3.Dot(vec, new Vector3(mat.Column0));
v.Y = Vector3.Dot(vec, new Vector3(mat.Column1));
v.Z = Vector3.Dot(vec, new Vector3(mat.Column2));
return v;
}
///
/// Transform a Normal by the given Matrix
///
///
/// This calculates the inverse of the given matrix, use TransformNormalInverse if you
/// already have the inverse to avoid this extra calculation
///
/// The normal to transform
/// The desired transformation
/// The transformed normal
public static Vector3 TransformNormal(Vector3 norm, Matrix4 mat)
{
mat.Invert();
return TransformNormalInverse(norm, mat);
}
///
/// Transform a Normal by the (transpose of the) given Matrix
///
///
/// This version doesn't calculate the inverse matrix.
/// Use this version if you already have the inverse of the desired transform to hand
///
/// The normal to transform
/// The inverse of the desired transformation
/// The transformed normal
public static Vector3 TransformNormalInverse(Vector3 norm, Matrix4 invMat)
{
Vector3 n;
n.X = Vector3.Dot(norm, new Vector3(invMat.Row0));
n.Y = Vector3.Dot(norm, new Vector3(invMat.Row1));
n.Z = Vector3.Dot(norm, new Vector3(invMat.Row2));
return n;
}
///
/// Transform a Position by the given Matrix
///
/// The position to transform
/// The desired transformation
/// The transformed position
public static Vector3 TransformPosition(Vector3 pos, Matrix4 mat)
{
Vector3 p;
p.X = Vector3.Dot(pos, new Vector3(mat.Column0)) + mat.Row3.X;
p.Y = Vector3.Dot(pos, new Vector3(mat.Column1)) + mat.Row3.Y;
p.Z = Vector3.Dot(pos, new Vector3(mat.Column2)) + mat.Row3.Z;
return p;
}
///
/// Transform a Vector by the given Matrix
///
/// The vector to transform
/// The desired transformation
/// The transformed vector
public static Vector4 Transform(Vector3 vec, Matrix4 mat)
{
Vector4 v4 = new Vector4(vec.X, vec.Y, vec.Z, 1.0f);
Vector4 result;
result.X = Vector4.Dot(v4, mat.Column0);
result.Y = Vector4.Dot(v4, mat.Column1);
result.Z = Vector4.Dot(v4, mat.Column2);
result.W = Vector4.Dot(v4, mat.Column3);
return result;
}
///
/// Transform a Vector3 by the given Matrix, and project the resulting Vector4 back to a Vector3
///
/// The vector to transform
/// The desired transformation
/// The transformed vector
public static Vector3 TransformPerspective(Vector3 vec, Matrix4 mat)
{
Vector4 h = Transform(vec, mat);
return new Vector3(h.X / h.W, h.Y / h.W, h.Z / h.W);
}
#endregion
#region CalculateAngle
///
/// Calculates the angle (in radians) between two vectors.
///
/// The first vector.
/// The second vector.
/// Angle (in radians) between the vectors.
/// Note that the returned angle is never bigger than the constant Pi.
public static float CalculateAngle(Vector3 first, Vector3 second)
{
return (float)System.Math.Acos((Vector3.Dot(first, second)) / (first.Length * second.Length));
}
#endregion
#endregion
#region Operators
public static Vector3 operator +(Vector3 left, Vector3 right)
{
left.X += right.X;
left.Y += right.Y;
left.Z += right.Z;
return left;
}
public static Vector3 operator -(Vector3 left, Vector3 right)
{
left.X -= right.X;
left.Y -= right.Y;
left.Z -= right.Z;
return left;
}
public static Vector3 operator -(Vector3 vec)
{
vec.X = -vec.X;
vec.Y = -vec.Y;
vec.Z = -vec.Z;
return vec;
}
public static Vector3 operator *(Vector3 vec, float f)
{
vec.X *= f;
vec.Y *= f;
vec.Z *= f;
return vec;
}
public static Vector3 operator *(float f, Vector3 vec)
{
vec.X *= f;
vec.Y *= f;
vec.Z *= f;
return vec;
}
public static Vector3 operator /(Vector3 vec, float f)
{
float mult = 1.0f / f;
vec.X *= mult;
vec.Y *= mult;
vec.Z *= mult;
return vec;
}
public static bool operator ==(Vector3 left, Vector3 right)
{
return left.Equals(right);
}
public static bool operator !=(Vector3 left, Vector3 right)
{
return !left.Equals(right);
}
#endregion
#region Overrides
#region public override string ToString()
///
/// Returns a System.String that represents the current Vector3.
///
///
public override string ToString()
{
return String.Format("({0}, {1}, {2})", X, Y, Z);
}
#endregion
#region public override int GetHashCode()
///
/// Returns the hashcode for this instance.
///
/// A System.Int32 containing the unique hashcode for this instance.
public override int GetHashCode()
{
return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode();
}
#endregion
#region public override bool Equals(object obj)
///
/// Indicates whether this instance and a specified object are equal.
///
/// The object to compare to.
/// True if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
if (!(obj is Vector3))
return false;
return this.Equals((Vector3)obj);
}
#endregion
#endregion
#endregion
#region IEquatable Members
/// Indicates whether the current vector is equal to another vector.
/// A vector to compare with this vector.
/// true if the current vector is equal to the vector parameter; otherwise, false.
public bool Equals(Vector3 other)
{
return
X == other.X &&
Y == other.Y &&
Z == other.Z;
}
#endregion
}
}