Merge pull request #2 from Nihlus/fscheck-testing-rebased
Unit coverage, test porting and more tests
This commit is contained in:
commit
cbfbbf4126
11 changed files with 2634 additions and 164 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -174,6 +174,8 @@ temp/
|
|||
|
||||
# Test results produced by build
|
||||
TestResults.xml
|
||||
output.mlpd
|
||||
coverage.xml
|
||||
|
||||
# Nuget outputs
|
||||
nuget/*.nupkg
|
||||
|
|
|
@ -7,3 +7,8 @@ before_install:
|
|||
|
||||
script:
|
||||
- ./build.sh NuGet
|
||||
|
||||
after_script:
|
||||
- mono --debug --profile=log:coverage,covfilter=+OpenTK,covfilter=-OpenTK.Tests,covfilter=-FSharp.Core,covfilter=-FsCheck,covfilter=-xunit.assert "packages/xunit.runner.console/tools/xunit.console.exe" "tests/OpenTK.Tests/bin/Release/OpenTK.Tests.dll" -parallel none
|
||||
- mprof-report --reports=coverage --coverage-out=coverage.xml output.mlpd
|
||||
- bash <(curl -s https://codecov.io/bash)
|
||||
|
|
|
@ -7,25 +7,25 @@ open System
|
|||
open OpenTK
|
||||
|
||||
[<AutoOpen>]
|
||||
module private AssertHelpers =
|
||||
module private AssertHelpers =
|
||||
[<Literal>]
|
||||
let private BitAccuracy = 5
|
||||
|
||||
let private BitAccuracy = 9
|
||||
|
||||
let approxEq a b = MathHelper.ApproximatelyEqual(a,b,BitAccuracy)
|
||||
|
||||
/// We use a full type here instead of a module, as the overloading semantics are more suitable for our desired goal.
|
||||
[<Sealed>]
|
||||
type internal Assert =
|
||||
|
||||
static member ApproximatelyEqual(a : Vector2,b : Vector2) =
|
||||
type internal Assert =
|
||||
|
||||
static member ApproximatelyEqual(a : Vector2,b : Vector2) =
|
||||
if not <| approxEq a.X b.X && approxEq a.Y b.Y then raise <| new Xunit.Sdk.EqualException(a,b)
|
||||
|
||||
static member ApproximatelyEqual(a : Vector3,b : Vector3) =
|
||||
|
||||
static member ApproximatelyEqual(a : Vector3,b : Vector3) =
|
||||
if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z then raise <| new Xunit.Sdk.EqualException(a,b)
|
||||
|
||||
static member ApproximatelyEqual(a : Vector4,b : Vector4) =
|
||||
if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z && approxEq a.W b.W then
|
||||
|
||||
static member ApproximatelyEqual(a : Vector4,b : Vector4) =
|
||||
if not <| approxEq a.X b.X && approxEq a.Y b.Y && approxEq a.Z b.Z && approxEq a.W b.W then
|
||||
raise <| new Xunit.Sdk.EqualException(a,b)
|
||||
|
||||
static member ApproximatelyEqual(a : float32,b : float32) =
|
||||
|
||||
static member ApproximatelyEqual(a : float32,b : float32) =
|
||||
if not <| approxEq a b then raise <| new Xunit.Sdk.EqualException(a,b)
|
||||
|
|
|
@ -7,62 +7,63 @@ open System
|
|||
open OpenTK
|
||||
|
||||
[<AutoOpen>]
|
||||
module private Generators =
|
||||
module private Generators =
|
||||
let private isValidFloat f = not (Single.IsNaN f || Single.IsInfinity f || Single.IsInfinity (f * f) || f = Single.MinValue || f = Single.MaxValue )
|
||||
let private isValidDouble d = not (Double.IsNaN d || Double.IsInfinity d || Double.IsInfinity (d * d)|| d = Double.MinValue || d = Double.MaxValue)
|
||||
let singleArb = Arb.Default.Float32() |> Arb.toGen |> Gen.filter isValidFloat
|
||||
let single = singleArb |> Arb.fromGen
|
||||
|
||||
let double =
|
||||
|
||||
let double =
|
||||
Arb.Default.Float() |> Arb.toGen
|
||||
|> Gen.filter isValidDouble
|
||||
|> Arb.fromGen
|
||||
|
||||
let vec2 =
|
||||
|
||||
let vec2 =
|
||||
singleArb
|
||||
|> Gen.two
|
||||
|> Gen.map Vector2
|
||||
|> Arb.fromGen
|
||||
|
||||
let vec3 =
|
||||
|
||||
let vec3 =
|
||||
singleArb
|
||||
|> Gen.three
|
||||
|> Gen.map Vector3
|
||||
|> Arb.fromGen
|
||||
|
||||
let vec4 =
|
||||
|
||||
let vec4 =
|
||||
singleArb
|
||||
|> Gen.four
|
||||
|> Gen.map Vector4
|
||||
|> Arb.fromGen
|
||||
|
||||
let quat =
|
||||
|
||||
let quat =
|
||||
singleArb
|
||||
|> Gen.four
|
||||
|> Gen.map Quaternion
|
||||
|> Gen.three
|
||||
|> Gen.map (fun (x,y,z) -> Quaternion(x,y,z,0.0f) |> Quaternion.Normalize)
|
||||
|> Gen.filter (fun q -> not <| (Single.IsNaN q.Length || Single.IsInfinity q.Length ))
|
||||
|> Arb.fromGen
|
||||
|
||||
let mat2 =
|
||||
|
||||
let mat2 =
|
||||
singleArb
|
||||
|> Gen.four
|
||||
|> Gen.map Matrix2
|
||||
|> Arb.fromGen
|
||||
|
||||
let mat3 =
|
||||
|
||||
let mat3 =
|
||||
vec3
|
||||
|> Arb.toGen
|
||||
|> Gen.three
|
||||
|> Gen.map Matrix3
|
||||
|> Arb.fromGen
|
||||
|
||||
let mat4 =
|
||||
|
||||
let mat4 =
|
||||
vec4
|
||||
|> Arb.toGen
|
||||
|> Gen.four
|
||||
|> Gen.map Matrix4
|
||||
|> Arb.fromGen
|
||||
|
||||
type OpenTKGen =
|
||||
type OpenTKGen =
|
||||
static member Single() = single
|
||||
static member float32() = single
|
||||
static member Double() = double
|
||||
|
|
|
@ -7,48 +7,48 @@ open System
|
|||
open OpenTK
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module MathHelper =
|
||||
module MathHelper =
|
||||
/// This test ensures that approximately equal can never get it 'wrong' about the values.
|
||||
[<Property>]
|
||||
let ``ApproximatelyEqual is never incorrect`` (a : float32,b : float32,bits : int32) =
|
||||
let ``ApproximatelyEqual is never incorrect`` (a : float32,b : float32,bits : int32) =
|
||||
let clamped = max 0 (min bits 24)
|
||||
let areApproxEqual = MathHelper.ApproximatelyEqual(a,b,clamped)
|
||||
let areExactlyEqual = a = b
|
||||
let isWrong = areExactlyEqual && not areApproxEqual
|
||||
Assert.False(isWrong)
|
||||
|
||||
|
||||
[<Property>]
|
||||
let ``ApproximatelyEqual can return true if some values are not exactly equal`` (a : float32,b : float32,bits : int32) =
|
||||
let ``ApproximatelyEqual can return true if some values are not exactly equal`` (a : float32,b : float32,bits : int32) =
|
||||
let clamped = max 0 (min bits 24)
|
||||
let areApproxEqual = MathHelper.ApproximatelyEqual(a,b,clamped)
|
||||
let areExactlyEqual = a = b
|
||||
let isWrong = areExactlyEqual && not areApproxEqual
|
||||
let p = new PropertyAttribute()
|
||||
Assert.False(isWrong)
|
||||
|
||||
|
||||
[<Fact>]
|
||||
let ``ApproximatelyEqual correctly approximates equality``() =
|
||||
let ``ApproximatelyEqual correctly approximates equality``() =
|
||||
let a = 0.000000001f
|
||||
let b = 0.0000000010000001f
|
||||
Assert.NotEqual(a,b)
|
||||
[ 1..24 ] |> List.iter (fun i -> Assert.True(MathHelper.ApproximatelyEqual(a,b,i)))
|
||||
|
||||
|
||||
[<Fact>]
|
||||
let ``ApproximatelyEqual reports very different values as non-equal even with high bit count``() =
|
||||
let ``ApproximatelyEqual reports very different values as non-equal even with high bit count``() =
|
||||
let a = 2.0f
|
||||
let b = 1.0f
|
||||
Assert.NotEqual(a,b)
|
||||
Assert.False(MathHelper.ApproximatelyEqual(a,b,10))
|
||||
|
||||
|
||||
[<Fact>]
|
||||
let ``ApproximatelyEqual works with single zero value``() =
|
||||
let ``ApproximatelyEqual works with single zero value``() =
|
||||
let a = 1.0f
|
||||
let b = 0.0f
|
||||
Assert.NotEqual(a,b)
|
||||
Assert.False(MathHelper.ApproximatelyEqual(a,b,0))
|
||||
|
||||
|
||||
[<Fact>]
|
||||
let ``ApproximatelyEqual works with both zero values``() =
|
||||
let ``ApproximatelyEqual works with both zero values``() =
|
||||
let a = 0.0f
|
||||
let b = 0.0f
|
||||
Assert.Equal(a,b)
|
392
tests/OpenTK.Tests/Matrix4Tests.fs
Normal file
392
tests/OpenTK.Tests/Matrix4Tests.fs
Normal file
|
@ -0,0 +1,392 @@
|
|||
namespace OpenTK.Tests
|
||||
|
||||
open Xunit
|
||||
open FsCheck
|
||||
open FsCheck.Xunit
|
||||
open System
|
||||
open OpenTK
|
||||
|
||||
module Matrix4 =
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Constructors =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Sixteen value constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
Assert.Equal(a, A.M11)
|
||||
Assert.Equal(b, A.M12)
|
||||
Assert.Equal(c, A.M13)
|
||||
Assert.Equal(d, A.M14)
|
||||
|
||||
Assert.Equal(e, A.M21)
|
||||
Assert.Equal(f, A.M22)
|
||||
Assert.Equal(g, A.M23)
|
||||
Assert.Equal(h, A.M24)
|
||||
|
||||
Assert.Equal(i, A.M31)
|
||||
Assert.Equal(j, A.M32)
|
||||
Assert.Equal(k, A.M33)
|
||||
Assert.Equal(l, A.M34)
|
||||
|
||||
Assert.Equal(m, A.M41)
|
||||
Assert.Equal(n, A.M42)
|
||||
Assert.Equal(o, A.M43)
|
||||
Assert.Equal(p, A.M44)
|
||||
|
||||
[<Property>]
|
||||
let ``Matrix3 partial constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i) =
|
||||
let B = Matrix3(a, b, c, d, e, f, g, h, i)
|
||||
let A = Matrix4(B)
|
||||
|
||||
Assert.Equal(a, A.M11)
|
||||
Assert.Equal(b, A.M12)
|
||||
Assert.Equal(c, A.M13)
|
||||
Assert.Equal(0.0f, A.M14)
|
||||
|
||||
Assert.Equal(d, A.M21)
|
||||
Assert.Equal(e, A.M22)
|
||||
Assert.Equal(f, A.M23)
|
||||
Assert.Equal(0.0f, A.M24)
|
||||
|
||||
Assert.Equal(g, A.M31)
|
||||
Assert.Equal(h, A.M32)
|
||||
Assert.Equal(i, A.M33)
|
||||
Assert.Equal(0.0f, A.M34)
|
||||
|
||||
Assert.Equal(0.0f, A.M41)
|
||||
Assert.Equal(0.0f, A.M42)
|
||||
Assert.Equal(0.0f, A.M43)
|
||||
Assert.Equal(1.0f, A.M44)
|
||||
|
||||
[<Property>]
|
||||
let ``Four-vector4 constructor sets all components to the correct values`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let v1 = Vector4(a, b, c, d)
|
||||
let v2 = Vector4(e, f, g, h)
|
||||
let v3 = Vector4(i, j, k, l)
|
||||
let v4 = Vector4(m, n, o, p)
|
||||
|
||||
let A = Matrix4(v1, v2, v3, v4)
|
||||
|
||||
Assert.Equal(a, A.M11)
|
||||
Assert.Equal(b, A.M12)
|
||||
Assert.Equal(c, A.M13)
|
||||
Assert.Equal(d, A.M14)
|
||||
|
||||
Assert.Equal(e, A.M21)
|
||||
Assert.Equal(f, A.M22)
|
||||
Assert.Equal(g, A.M23)
|
||||
Assert.Equal(h, A.M24)
|
||||
|
||||
Assert.Equal(i, A.M31)
|
||||
Assert.Equal(j, A.M32)
|
||||
Assert.Equal(k, A.M33)
|
||||
Assert.Equal(l, A.M34)
|
||||
|
||||
Assert.Equal(m, A.M41)
|
||||
Assert.Equal(n, A.M42)
|
||||
Assert.Equal(o, A.M43)
|
||||
Assert.Equal(p, A.M44)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Equality =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Two matrices with identical values are equal`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
let equality = A = B
|
||||
|
||||
Assert.True(equality)
|
||||
|
||||
[<Property>]
|
||||
let ``A matrix is not equal to an object which is not a matrix`` (a : Matrix4, b : Vector3) =
|
||||
Assert.False(a.Equals(b))
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Multiplication =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Matrix multiplication is done by row/column multiplication and summation`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let R11 = a*a + b*e + c*i + d*m
|
||||
let R12 = a*b + b*f + c*j + d*n
|
||||
let R13 = a*c + b*g + c*k + d*o
|
||||
let R14 = a*d + b*h + c*l + d*p
|
||||
|
||||
let R21 = e*a + f*e + g*i + h*m
|
||||
let R22 = e*b + f*f + g*j + h*n
|
||||
let R23 = e*c + f*g + g*k + h*o
|
||||
let R24 = e*d + f*h + g*l + h*p
|
||||
|
||||
let R31 = i*a + j*e + k*i + l*m
|
||||
let R32 = i*b + j*f + k*j + l*n
|
||||
let R33 = i*c + j*g + k*k + l*o
|
||||
let R34 = i*d + j*h + k*l + l*p
|
||||
|
||||
let R41 = m*a + n*e + o*i + p*m
|
||||
let R42 = m*b + n*f + o*j + p*n
|
||||
let R43 = m*c + n*g + o*k + p*o
|
||||
let R44 = m*d + n*h + o*l + p*p
|
||||
|
||||
let AB = A*B
|
||||
|
||||
Assert.Equal(R11, AB.M11)
|
||||
Assert.Equal(R12, AB.M12)
|
||||
Assert.Equal(R13, AB.M13)
|
||||
Assert.Equal(R14, AB.M14)
|
||||
|
||||
Assert.Equal(R21, AB.M21)
|
||||
Assert.Equal(R22, AB.M22)
|
||||
Assert.Equal(R23, AB.M23)
|
||||
Assert.Equal(R24, AB.M24)
|
||||
|
||||
Assert.Equal(R31, AB.M31)
|
||||
Assert.Equal(R32, AB.M32)
|
||||
Assert.Equal(R33, AB.M33)
|
||||
Assert.Equal(R34, AB.M34)
|
||||
|
||||
Assert.Equal(R41, AB.M41)
|
||||
Assert.Equal(R42, AB.M42)
|
||||
Assert.Equal(R43, AB.M43)
|
||||
Assert.Equal(R44, AB.M44)
|
||||
|
||||
[<Property>]
|
||||
let ``Matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let R1 = Vector4(a, b, c, d) * scalar
|
||||
let R2 = Vector4(e, f, g, h) * scalar
|
||||
let R3 = Vector4(i, j, k, l) * scalar
|
||||
let R4 = Vector4(m, n, o, p) * scalar
|
||||
|
||||
let AScaled = A * scalar
|
||||
|
||||
Assert.Equal(R1, AScaled.Row0)
|
||||
Assert.Equal(R2, AScaled.Row1)
|
||||
Assert.Equal(R3, AScaled.Row2)
|
||||
Assert.Equal(R4, AScaled.Row3)
|
||||
|
||||
[<Property>]
|
||||
let ``Static method matrix multiplication by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let R1 = Vector4(a, b, c, d) * scalar
|
||||
let R2 = Vector4(e, f, g, h) * scalar
|
||||
let R3 = Vector4(i, j, k, l) * scalar
|
||||
let R4 = Vector4(m, n, o, p) * scalar
|
||||
|
||||
let AScaled = Matrix4.Mult(A, scalar)
|
||||
|
||||
Assert.Equal(R1, AScaled.Row0)
|
||||
Assert.Equal(R2, AScaled.Row1)
|
||||
Assert.Equal(R3, AScaled.Row2)
|
||||
Assert.Equal(R4, AScaled.Row3)
|
||||
|
||||
[<Property>]
|
||||
let ``Static method matrix multiplication by reference by scalar is the same as row multiplication by scalar`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, scalar : float32) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let R1 = Vector4(a, b, c, d) * scalar
|
||||
let R2 = Vector4(e, f, g, h) * scalar
|
||||
let R3 = Vector4(i, j, k, l) * scalar
|
||||
let R4 = Vector4(m, n, o, p) * scalar
|
||||
|
||||
let AScaled = Matrix4.Mult(ref A, scalar)
|
||||
|
||||
Assert.Equal(R1, AScaled.Row0)
|
||||
Assert.Equal(R2, AScaled.Row1)
|
||||
Assert.Equal(R3, AScaled.Row2)
|
||||
Assert.Equal(R4, AScaled.Row3)
|
||||
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Addition =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Matrix addition adds corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let sum = A + B
|
||||
|
||||
Assert.Equal(a + a, sum.M11)
|
||||
Assert.Equal(b + b, sum.M12)
|
||||
Assert.Equal(c + c, sum.M13)
|
||||
Assert.Equal(d + d, sum.M14)
|
||||
|
||||
Assert.Equal(e + e, sum.M21)
|
||||
Assert.Equal(f + f, sum.M22)
|
||||
Assert.Equal(g + g, sum.M23)
|
||||
Assert.Equal(h + h, sum.M24)
|
||||
|
||||
Assert.Equal(i + i, sum.M31)
|
||||
Assert.Equal(j + j, sum.M32)
|
||||
Assert.Equal(k + k, sum.M33)
|
||||
Assert.Equal(l + l, sum.M34)
|
||||
|
||||
Assert.Equal(m + m, sum.M41)
|
||||
Assert.Equal(n + n, sum.M42)
|
||||
Assert.Equal(o + o, sum.M43)
|
||||
Assert.Equal(p + p, sum.M44)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Subtraction =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Matrix subtraction subtracts corresponding components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
let B = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let sub = A - B
|
||||
|
||||
Assert.Equal(a - a, sub.M11)
|
||||
Assert.Equal(b - b, sub.M12)
|
||||
Assert.Equal(c - c, sub.M13)
|
||||
Assert.Equal(d - d, sub.M14)
|
||||
|
||||
Assert.Equal(e - e, sub.M21)
|
||||
Assert.Equal(f - f, sub.M22)
|
||||
Assert.Equal(g - g, sub.M23)
|
||||
Assert.Equal(h - h, sub.M24)
|
||||
|
||||
Assert.Equal(i - i, sub.M31)
|
||||
Assert.Equal(j - j, sub.M32)
|
||||
Assert.Equal(k - k, sub.M33)
|
||||
Assert.Equal(l - l, sub.M34)
|
||||
|
||||
Assert.Equal(m - m, sub.M41)
|
||||
Assert.Equal(n - n, sub.M42)
|
||||
Assert.Equal(o - o, sub.M43)
|
||||
Assert.Equal(p - p, sub.M44)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Indexing =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Matrix set indexing sets correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let mutable A = Matrix4()
|
||||
|
||||
A.[0, 0] <- a
|
||||
A.[0, 1] <- b
|
||||
A.[0, 2] <- c
|
||||
A.[0, 3] <- d
|
||||
|
||||
A.[1, 0] <- e
|
||||
A.[1, 1] <- f
|
||||
A.[1, 2] <- g
|
||||
A.[1, 3] <- h
|
||||
|
||||
A.[2, 0] <- i
|
||||
A.[2, 1] <- j
|
||||
A.[2, 2] <- k
|
||||
A.[2, 3] <- l
|
||||
|
||||
A.[3, 0] <- m
|
||||
A.[3, 1] <- n
|
||||
A.[3, 2] <- o
|
||||
A.[3, 3] <- p
|
||||
|
||||
Assert.Equal(a, A.M11)
|
||||
Assert.Equal(b, A.M12)
|
||||
Assert.Equal(c, A.M13)
|
||||
Assert.Equal(d, A.M14)
|
||||
|
||||
Assert.Equal(e, A.M21)
|
||||
Assert.Equal(f, A.M22)
|
||||
Assert.Equal(g, A.M23)
|
||||
Assert.Equal(h, A.M24)
|
||||
|
||||
Assert.Equal(i, A.M31)
|
||||
Assert.Equal(j, A.M32)
|
||||
Assert.Equal(k, A.M33)
|
||||
Assert.Equal(l, A.M34)
|
||||
|
||||
Assert.Equal(m, A.M41)
|
||||
Assert.Equal(n, A.M42)
|
||||
Assert.Equal(o, A.M43)
|
||||
Assert.Equal(p, A.M44)
|
||||
|
||||
[<Property>]
|
||||
let ``Matrix get indexing accesses the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
Assert.Equal(a, A.[0, 0])
|
||||
Assert.Equal(b, A.[0, 1])
|
||||
Assert.Equal(c, A.[0, 2])
|
||||
Assert.Equal(d, A.[0, 3])
|
||||
|
||||
Assert.Equal(e, A.[1, 0])
|
||||
Assert.Equal(f, A.[1, 1])
|
||||
Assert.Equal(g, A.[1, 2])
|
||||
Assert.Equal(h, A.[1, 3])
|
||||
|
||||
Assert.Equal(i, A.[2, 0])
|
||||
Assert.Equal(j, A.[2, 1])
|
||||
Assert.Equal(k, A.[2, 2])
|
||||
Assert.Equal(l, A.[2, 3])
|
||||
|
||||
Assert.Equal(m, A.[3, 0])
|
||||
Assert.Equal(n, A.[3, 1])
|
||||
Assert.Equal(o, A.[3, 2])
|
||||
Assert.Equal(p, A.[3, 3])
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for negative indices`` (b : Matrix4, x : float32) =
|
||||
let mutable a = b
|
||||
(fun() -> a.[-1, 2] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[1, -2] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[-1, -2] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for negative indices`` (a : Matrix4) =
|
||||
(fun() -> a.[-1, 2] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[1, -2] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[-1, -2] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for large indices`` (a : Matrix4, x : float32) =
|
||||
let mutable b = a
|
||||
(fun() -> b.[5, 2] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> b.[1, 6] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> b.[7, 12] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for large indices`` (a : Matrix4) =
|
||||
(fun() -> a.[5, 2] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[1, 6] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
(fun() -> a.[7, 12] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Row and column properties`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Matrix row properties return the correct components`` (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
|
||||
let A = Matrix4(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
|
||||
|
||||
let R0 = A.Row0
|
||||
let R1 = A.Row1
|
||||
let R2 = A.Row2
|
||||
let R3 = A.Row3
|
||||
|
||||
Assert.Equal(a, R0.X)
|
||||
Assert.Equal(b, R0.Y)
|
||||
Assert.Equal(c, R0.Z)
|
||||
Assert.Equal(d, R0.W)
|
||||
|
||||
Assert.Equal(e, R1.X)
|
||||
Assert.Equal(f, R1.Y)
|
||||
Assert.Equal(g, R1.Z)
|
||||
Assert.Equal(h, R1.W)
|
||||
|
||||
Assert.Equal(i, R2.X)
|
||||
Assert.Equal(j, R2.Y)
|
||||
Assert.Equal(k, R2.Z)
|
||||
Assert.Equal(l, R2.W)
|
||||
|
||||
Assert.Equal(m, R3.X)
|
||||
Assert.Equal(n, R3.Y)
|
||||
Assert.Equal(o, R3.Z)
|
||||
Assert.Equal(p, R3.W)
|
|
@ -58,12 +58,15 @@
|
|||
-->
|
||||
<ItemGroup>
|
||||
<Compile Include="AssemblyInfo.fs" />
|
||||
<None Include="paket.references" />
|
||||
<Compile Include="Assertions.fs" />
|
||||
<Compile Include="Generators.fs" />
|
||||
<Compile Include="MathHelper.fs" />
|
||||
<Compile Include="Vectors.fs" />
|
||||
<Compile Include="MathHelperTests.fs" />
|
||||
<Compile Include="Matrix4Tests.fs" />
|
||||
<Compile Include="Vector2Tests.fs" />
|
||||
<Compile Include="Vector3Tests.fs" />
|
||||
<Compile Include="Vector4Tests.fs" />
|
||||
<Content Include="App.config" />
|
||||
<None Include="paket.references" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Reference Include="mscorlib" />
|
||||
|
|
596
tests/OpenTK.Tests/Vector2Tests.fs
Normal file
596
tests/OpenTK.Tests/Vector2Tests.fs
Normal file
|
@ -0,0 +1,596 @@
|
|||
namespace OpenTK.Tests
|
||||
|
||||
open Xunit
|
||||
open FsCheck
|
||||
open FsCheck.Xunit
|
||||
open System
|
||||
open System.Runtime.InteropServices
|
||||
open OpenTK
|
||||
|
||||
module Vector2 =
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Constructors =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Single value constructor sets all components to the same value`` (f : float32) =
|
||||
let v = Vector2(f)
|
||||
Assert.Equal(f,v.X)
|
||||
Assert.Equal(f,v.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Two value constructor sets all components correctly`` (x,y) =
|
||||
let v = Vector2(x,y)
|
||||
Assert.Equal(x,v.X)
|
||||
Assert.Equal(y,v.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Clamping =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector2, b : Vector2, w : Vector2) =
|
||||
let res = Vector2.Clamp(w, a, b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors by reference clamps all components`` (a : Vector2, b : Vector2, w : Vector2) =
|
||||
let res = Vector2.Clamp(ref w, ref a, ref b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Length =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Length is always >= 0`` (a : Vector2) =
|
||||
//
|
||||
Assert.True(a.Length >= 0.0f)
|
||||
|
||||
[<Property>]
|
||||
let ``Length follows the pythagorean theorem`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let l = System.Math.Sqrt((float)(a * a + b * b))
|
||||
|
||||
Assert.Equal((float32)l, v.Length)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast length method works`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b)
|
||||
|
||||
Assert.Equal(l, v.LengthFast)
|
||||
|
||||
[<Property>]
|
||||
let ``Length squared method works`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let lsq = a * a + b * b
|
||||
|
||||
Assert.Equal(lsq, v.LengthSquared)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Unit vectors and perpendicularity`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Perpendicular vector to the right is correct`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let perp = Vector2(b, -a)
|
||||
|
||||
Assert.Equal(perp, v.PerpendicularRight)
|
||||
|
||||
[<Property>]
|
||||
let ``Perpendicular vector to the left is correct`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let perp = Vector2(-b, a)
|
||||
|
||||
Assert.Equal(perp, v.PerpendicularLeft)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Indexing =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Index operator accesses the correct components`` (x, y) =
|
||||
let v = Vector2(x, y)
|
||||
|
||||
Assert.Equal(x, v.[0])
|
||||
Assert.Equal(y, v.[1])
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for negative indices`` (x, y) =
|
||||
let mutable v = Vector2(x, y)
|
||||
|
||||
(fun() -> v.[-1] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for negative indices`` (x, y) =
|
||||
let mutable v = Vector2(x, y)
|
||||
|
||||
(fun() -> v.[-1] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for large indices`` (x, y) =
|
||||
let mutable v = Vector2(x, y)
|
||||
|
||||
(fun() -> v.[2] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for large indices`` (x, y) =
|
||||
let mutable v = Vector2(x, y)
|
||||
|
||||
(fun() -> v.[2] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Simple Properties`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector equality is by component`` (a : Vector2,b : Vector2) =
|
||||
//
|
||||
Assert.Equal((a.X = b.X && a.Y = b.Y),(a = b))
|
||||
|
||||
[<Property>]
|
||||
let ``Vector length is always >= 0`` (a : Vector2) =
|
||||
//
|
||||
Assert.True(a.Length >= 0.0f)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Addition =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) =
|
||||
let c = a + b
|
||||
Assert.ApproximatelyEqual(a.X + b.X,c.X)
|
||||
Assert.ApproximatelyEqual(a.Y + b.Y,c.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector addition is commutative`` (a : Vector2,b : Vector2) =
|
||||
let c = a + b
|
||||
let c2 = b + a
|
||||
Assert.ApproximatelyEqual(c,c2)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) =
|
||||
let r1 = (a + b) + c
|
||||
let r2 = a + (b + c)
|
||||
Assert.ApproximatelyEqual(r1,r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 addition method is the same as component addition`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X + b.X, a.Y + b.Y)
|
||||
let sum = Vector2.Add(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 addition method by reference is the same as component addition`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X + b.X, a.Y + b.Y)
|
||||
let sum = Vector2.Add(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Multiplication =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector2 multiplication is the same as component multiplication`` (a : Vector2, b : Vector2) =
|
||||
let c = a * b
|
||||
Assert.Equal(a.X * b.X,c.X)
|
||||
Assert.Equal(a.Y * b.Y,c.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector2 multiplication is commutative`` (a : Vector2, b : Vector2) =
|
||||
let r1 = a * b
|
||||
let r2 = b * a
|
||||
Assert.Equal(r1,r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Left-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
|
||||
let r = a * f
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Right-handed Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
|
||||
let r = f * a
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 multiplication method is the same as component multiplication`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X * b.X, a.Y * b.Y)
|
||||
let sum = Vector2.Multiply(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 multiplication method by reference is the same as component multiplication`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X * b.X, a.Y * b.Y)
|
||||
let sum = Vector2.Multiply(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static method Vector2-scalar multiplication is the same as component-scalar multiplication`` (a : Vector2, f : float32) =
|
||||
let r = Vector2.Multiply(a, f)
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Subtraction =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector2 subtraction is the same as component subtraction`` (a : Vector2, b : Vector2) =
|
||||
let c = a - b
|
||||
Assert.Equal(a.X - b.X,c.X)
|
||||
Assert.Equal(a.Y - b.Y,c.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 subtraction method is the same as component addition`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X - b.X, a.Y - b.Y)
|
||||
let sum = Vector2.Subtract(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2 subtraction method by reference is the same as component addition`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X - b.X, a.Y - b.Y)
|
||||
let sum = Vector2.Subtract(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Division =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector2-float division is the same as component-float division`` (a : Vector2, f : float32) =
|
||||
let r = a / f
|
||||
|
||||
Assert.ApproximatelyEqual(a.X / f,r.X)
|
||||
Assert.ApproximatelyEqual(a.Y / f,r.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2-Vector2 division method is the same as component division`` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X / b.X, a.Y / b.Y)
|
||||
let sum = Vector2.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2-Vector2 divison method by reference `` (a : Vector2, b : Vector2) =
|
||||
|
||||
let v1 = Vector2(a.X / b.X, a.Y / b.Y)
|
||||
let sum = Vector2.Divide(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2-scalar division method is the same as component division`` (a : Vector2, b : float32) =
|
||||
|
||||
let v1 = Vector2(a.X / b, a.Y / b)
|
||||
let sum = Vector2.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector2-scalar divison method by reference is the same as component division`` (a : Vector2, b : float32) =
|
||||
|
||||
let v1 = Vector2(a.X / b, a.Y / b)
|
||||
let sum = Vector2.Divide(ref a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Negation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector negation operator negates all components`` (x, y) =
|
||||
let v = Vector2(x, y)
|
||||
let vNeg = -v
|
||||
Assert.Equal(-x, vNeg.X)
|
||||
Assert.Equal(-y, vNeg.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Equality =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector equality operator is by component`` (x, y) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(x, y)
|
||||
let equality = v1 = v2
|
||||
|
||||
Assert.True(equality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector inequality operator is by component`` (x, y) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(x + 1.0f , y + 1.0f)
|
||||
let inequality = v1 <> v2
|
||||
|
||||
Assert.True(inequality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector equality method is by component`` (x, y) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(x, y)
|
||||
let notVector = Matrix2()
|
||||
|
||||
let equality = v1.Equals(v2)
|
||||
let inequalityByOtherType = v1.Equals(notVector)
|
||||
|
||||
Assert.True(equality)
|
||||
Assert.False(inequalityByOtherType)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Swizzling =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composites`` (x, y) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(y, x)
|
||||
|
||||
let v1yx = v1.Yx;
|
||||
Assert.Equal(v2, v1yx);
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Interpolation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Linear interpolation is by component`` (a : Vector2, b : Vector2, q) =
|
||||
|
||||
let blend = q
|
||||
|
||||
let rX = blend * (b.X - a.X) + a.X
|
||||
let rY = blend * (b.Y - a.Y) + a.Y
|
||||
let vExp = Vector2(rX, rY)
|
||||
|
||||
Assert.Equal(vExp, Vector2.Lerp(a, b, q))
|
||||
|
||||
let vRes = Vector2.Lerp(ref a, ref b, q)
|
||||
Assert.Equal(vExp, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Barycentric interpolation follows the barycentric formula`` (a : Vector2, b : Vector2, c : Vector2, u, v) =
|
||||
|
||||
let r = a + u * (b - a) + v * (c - a)
|
||||
|
||||
Assert.Equal(r, Vector2.BaryCentric(a, b, c, u, v))
|
||||
|
||||
let vRes = Vector2.BaryCentric(ref a, ref b, ref c, u, v)
|
||||
Assert.Equal(r, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Vector products`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Dot product follows the dot product formula`` (a : Vector2, b : Vector2) =
|
||||
let dot = a.X * b.X + a.Y * b.Y
|
||||
|
||||
Assert.Equal(dot, Vector2.Dot(a, b));
|
||||
|
||||
let vRes = Vector2.Dot(ref a, ref b)
|
||||
Assert.Equal(dot, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Perpendicular dot product follows the perpendicular dot product formula`` (a : Vector2, b : Vector2) =
|
||||
let perpDot = a.X * b.Y - a.Y * b.X
|
||||
|
||||
Assert.Equal(perpDot, Vector2.PerpDot(a, b));
|
||||
|
||||
let vRes = Vector2.PerpDot(ref a, ref b)
|
||||
Assert.Equal(perpDot, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Normalization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Normalization creates a new unit length vector with the correct components`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let l = v.Length
|
||||
|
||||
// Dividing by zero is not supported
|
||||
if not (approxEq l 0.0f) then
|
||||
let norm = v.Normalized()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let l = v.Length
|
||||
|
||||
if not (approxEq l 0.0f) then
|
||||
let norm = Vector2(a, b)
|
||||
norm.Normalize()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b) =
|
||||
let v = Vector2(a, b)
|
||||
let norm = Vector2(a, b)
|
||||
norm.NormalizeFast()
|
||||
|
||||
let scale = MathHelper.InverseSqrtFast(a * a + b * b)
|
||||
|
||||
Assert.ApproximatelyEqual(v.X * scale, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y * scale, norm.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization by reference is the same as division by magnitude`` (a : Vector2) =
|
||||
let norm = a / a.Length
|
||||
let vRes = Vector2.Normalize(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization is the same as division by magnitude`` (a : Vector2) =
|
||||
let norm = a / a.Length
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector2.Normalize(a));
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector2) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y)
|
||||
|
||||
let norm = a * scale
|
||||
let vRes = Vector2.NormalizeFast(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector2) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y)
|
||||
|
||||
let norm = a * scale
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector2.NormalizeFast(a));
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Component min and max`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``ComponentMin produces a new vector from the smallest components of the given vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let vMin = Vector2.ComponentMin(v1, v2)
|
||||
|
||||
Assert.True(vMin.X <= v1.X)
|
||||
Assert.True(vMin.X <= v2.X)
|
||||
|
||||
Assert.True(vMin.Y <= v1.Y)
|
||||
Assert.True(vMin.Y <= v2.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMax produces a new vector from the largest components of the given vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let vMax = Vector2.ComponentMax(v1, v2)
|
||||
|
||||
Assert.True(vMax.X >= v1.X)
|
||||
Assert.True(vMax.X >= v2.X)
|
||||
|
||||
Assert.True(vMax.Y >= v1.Y)
|
||||
Assert.True(vMax.Y >= v2.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMin by reference produces a new vector from the smallest components of the given vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let vMin = Vector2.ComponentMin(ref v1, ref v2)
|
||||
|
||||
Assert.True(vMin.X <= v1.X)
|
||||
Assert.True(vMin.X <= v2.X)
|
||||
|
||||
Assert.True(vMin.Y <= v1.Y)
|
||||
Assert.True(vMin.Y <= v2.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMax by reference produces a new vector from the largest components of the given vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let vMax = Vector2.ComponentMax(ref v1, ref v2)
|
||||
|
||||
Assert.True(vMax.X >= v1.X)
|
||||
Assert.True(vMax.X >= v2.X)
|
||||
|
||||
Assert.True(vMax.Y >= v1.Y)
|
||||
Assert.True(vMax.Y >= v2.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector2.Min(v1, v2)
|
||||
|
||||
if l1 < l2 then
|
||||
let equalsFirst = vMin = v1
|
||||
Assert.True(equalsFirst)
|
||||
else
|
||||
let equalsLast = vMin = v2
|
||||
Assert.True(equalsLast)
|
||||
|
||||
[<Property>]
|
||||
let ``Max selects the vector with greater magnitude given two vectors`` (x, y, u, w) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector2(u, w)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector2.Max(v1, v2)
|
||||
|
||||
if l1 >= l2 then
|
||||
let equalsFirst = vMin = v1
|
||||
Assert.True(equalsFirst)
|
||||
else
|
||||
let equalsLast = vMin = v2
|
||||
Assert.True(equalsLast)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Transformation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, 0.0f, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y)
|
||||
|
||||
Assert.Equal(transformedVector, Vector2.Transform(v, q))
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, 0.0f, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y)
|
||||
|
||||
Assert.Equal(transformedVector, Vector2.Transform(ref v, ref q))
|
||||
|
||||
// TODO: Implement multiplication operator for Vector2 and Quaternion
|
||||
// [<Property>]
|
||||
// let ``Transformation by quaternion by multiplication using right-handed notation is the same as multiplication by quaternion and its conjugate`` (v : Vector2, q : Quaternion) =
|
||||
// let vectorQuat = Quaternion(v.X, v.Y, 0.0f, 0.0f)
|
||||
// let inverse = Quaternion.Invert(q)
|
||||
//
|
||||
// let transformedQuat = q * vectorQuat * inverse
|
||||
// let transformedVector = Vector2(transformedQuat.X, transformedQuat.Y)
|
||||
//
|
||||
// Assert.Equal(transformedVector, q * v)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Serialization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``The absolute size of a Vector2 is always the size of its components`` (v : Vector2) =
|
||||
let expectedSize = sizeof<float32> * 2
|
||||
|
||||
Assert.Equal(expectedSize, Vector2.SizeInBytes)
|
||||
Assert.Equal(expectedSize, Marshal.SizeOf(Vector2()))
|
745
tests/OpenTK.Tests/Vector3Tests.fs
Normal file
745
tests/OpenTK.Tests/Vector3Tests.fs
Normal file
|
@ -0,0 +1,745 @@
|
|||
namespace OpenTK.Tests
|
||||
|
||||
open Xunit
|
||||
open FsCheck
|
||||
open FsCheck.Xunit
|
||||
open System
|
||||
open System.Runtime.InteropServices
|
||||
open OpenTK
|
||||
|
||||
module Vector3 =
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Constructors =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Triple value constructor sets all components to the correct values`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
|
||||
Assert.Equal(a, v.X)
|
||||
Assert.Equal(b, v.Y)
|
||||
Assert.Equal(c, v.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Single value constructor sets all components to the correct values`` (a : float32) =
|
||||
let v = Vector3(a)
|
||||
|
||||
Assert.Equal(a, v.X)
|
||||
Assert.Equal(a, v.Y)
|
||||
Assert.Equal(a, v.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector2 value constructor sets all components to the correct values`` (a, b) =
|
||||
let v1 = Vector2(a, b)
|
||||
let v2 = Vector3(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
|
||||
Assert.Equal(a, v2.X)
|
||||
Assert.Equal(b, v2.Y)
|
||||
Assert.Equal(0.0f, v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 value constructor sets all components to the correct values`` (a, b, c) =
|
||||
let v1 = Vector3(a, b, c)
|
||||
let v2 = Vector3(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
Assert.Equal(v1.Z, v2.Z)
|
||||
|
||||
Assert.Equal(a, v2.X)
|
||||
Assert.Equal(b, v2.Y)
|
||||
Assert.Equal(c, v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4 value constructor sets all components to the correct values`` (a, b, c, d) =
|
||||
let v1 = Vector4(a, b, c, d)
|
||||
let v2 = Vector3(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
Assert.Equal(v1.Z, v2.Z)
|
||||
|
||||
Assert.Equal(a, v2.X)
|
||||
Assert.Equal(b, v2.Y)
|
||||
Assert.Equal(c, v2.Z)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Indexing =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Index operator accesses the correct components`` (x, y, z) =
|
||||
let v = Vector3(x, y, z)
|
||||
|
||||
Assert.Equal(x, v.[0])
|
||||
Assert.Equal(y, v.[1])
|
||||
Assert.Equal(z, v.[2])
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for negative indices`` (x, y, z) =
|
||||
let mutable v = Vector3(x, y, z)
|
||||
|
||||
(fun() -> v.[-1] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for negative indices`` (x, y, z) =
|
||||
let mutable v = Vector3(x, y, z)
|
||||
|
||||
(fun() -> v.[-1] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for large indices`` (x, y, z) =
|
||||
let mutable v = Vector3(x, y, z)
|
||||
|
||||
(fun() -> v.[4] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for large indices`` (x, y, z) =
|
||||
let mutable v = Vector3(x, y, z)
|
||||
|
||||
(fun() -> v.[4] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Length =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Length method follows the pythagorean theorem`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let l = System.Math.Sqrt((float)(a * a + b * b + c * c))
|
||||
|
||||
Assert.Equal((float32)l, v.Length)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast length method is the same as one divided by the fast inverse square`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let l = 1.0f / MathHelper.InverseSqrtFast(a * a + b * b + c * c)
|
||||
|
||||
Assert.Equal(l, v.LengthFast)
|
||||
|
||||
[<Property>]
|
||||
let ``Length squared method returns each component squared and summed`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let lsq = a * a + b * b + c * c
|
||||
|
||||
Assert.Equal(lsq, v.LengthSquared)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Normalization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Normalization creates a new unit length vector with the correct components`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let l = v.Length
|
||||
|
||||
// Dividing by zero is not supported
|
||||
if not (approxEq l 0.0f) then
|
||||
let norm = v.Normalized()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z / l, norm.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let l = v.Length
|
||||
|
||||
if not (approxEq l 0.0f) then
|
||||
let norm = Vector3(a, b, c)
|
||||
norm.Normalize()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z / l, norm.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (a, b, c) =
|
||||
let v = Vector3(a, b, c)
|
||||
let norm = Vector3(a, b, c)
|
||||
norm.NormalizeFast()
|
||||
|
||||
let scale = MathHelper.InverseSqrtFast(a * a + b * b + c * c)
|
||||
|
||||
Assert.ApproximatelyEqual(v.X * scale, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y * scale, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z * scale, norm.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization by reference is the same as division by magnitude`` (a : Vector3) =
|
||||
let norm = a / a.Length
|
||||
let vRes = Vector3.Normalize(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization is the same as division by magnitude`` (a : Vector3) =
|
||||
let norm = a / a.Length
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector3.Normalize(a));
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector3) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z)
|
||||
|
||||
let norm = a * scale
|
||||
let vRes = Vector3.NormalizeFast(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization is the same as multiplication by fast inverse square`` (a : Vector3) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z)
|
||||
|
||||
let norm = a * scale
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector3.NormalizeFast(a));
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Addition =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector3 addition is the same as component addition`` (a : Vector3, b : Vector3) =
|
||||
let c = a + b
|
||||
|
||||
Assert.ApproximatelyEqual(a.X + b.X,c.X)
|
||||
Assert.ApproximatelyEqual(a.Y + b.Y,c.Y)
|
||||
Assert.ApproximatelyEqual(a.Z + b.Z,c.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 addition is commutative`` (a : Vector3, b : Vector3) =
|
||||
let c = a + b
|
||||
let c2 = b + a
|
||||
|
||||
Assert.ApproximatelyEqual(c, c2)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 addition is associative`` (a : Vector3, b : Vector3, c : Vector3) =
|
||||
let r1 = (a + b) + c
|
||||
let r2 = a + (b + c)
|
||||
|
||||
Assert.ApproximatelyEqual(r1, r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 addition method is the same as component addition`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z)
|
||||
let sum = Vector3.Add(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 addition method by reference is the same as component addition`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z)
|
||||
let sum = Vector3.Add(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Subtraction =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector3 subtraction is the same as component subtraction`` (a : Vector3, b : Vector3) =
|
||||
let c = a - b
|
||||
|
||||
Assert.Equal(a.X - b.X,c.X)
|
||||
Assert.Equal(a.Y - b.Y,c.Y)
|
||||
Assert.Equal(a.Z - b.Z,c.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 subtraction method is the same as component addition`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z)
|
||||
let sum = Vector3.Subtract(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 subtraction method by reference is the same as component addition`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z)
|
||||
let sum = Vector3.Subtract(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Multiplication =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector3 multiplication is the same as component multiplication`` (a : Vector3, b : Vector3) =
|
||||
let c = a * b
|
||||
|
||||
Assert.Equal(a.X * b.X,c.X)
|
||||
Assert.Equal(a.Y * b.Y,c.Y)
|
||||
Assert.Equal(a.Z * b.Z,c.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 multiplication is commutative`` (a : Vector3, b : Vector3) =
|
||||
let r1 = a * b
|
||||
let r2 = b * a
|
||||
|
||||
Assert.Equal(r1, r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Left-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) =
|
||||
let r = a * f
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Right-handed Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) =
|
||||
let r = f * a
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Static method Vector3-scalar multiplication is the same as component-scalar multiplication`` (a : Vector3, f : float32) =
|
||||
let r = Vector3.Multiply(a, f)
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3-Matrix3 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix3, b : Vector3) =
|
||||
let res = a*b
|
||||
|
||||
let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13
|
||||
let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23
|
||||
let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33
|
||||
|
||||
let exp = Vector3(c1, c2, c3)
|
||||
|
||||
Assert.Equal(exp, res)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3-Matrix3 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix3, b : Vector3) =
|
||||
let res = b*a
|
||||
|
||||
let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31
|
||||
let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32
|
||||
let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33
|
||||
|
||||
let exp = Vector3(c1, c2, c3)
|
||||
|
||||
Assert.Equal(exp, res)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 multiplication method is the same as component multiplication`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z)
|
||||
let sum = Vector3.Multiply(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3 multiplication method by reference is the same as component multiplication`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z)
|
||||
let sum = Vector3.Multiply(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Division =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector3-float division is the same as component-float division`` (a : Vector3, f : float32) =
|
||||
if not (approxEq f 0.0f) then // we don't support diving by zero.
|
||||
let r = a / f
|
||||
|
||||
Assert.ApproximatelyEqual(a.X / f,r.X)
|
||||
Assert.ApproximatelyEqual(a.Y / f,r.Y)
|
||||
Assert.ApproximatelyEqual(a.Z / f,r.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3-Vector3 division method is the same as component division`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z)
|
||||
let sum = Vector3.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3-Vector3 divison method by reference is the same as component division`` (a : Vector3, b : Vector3) =
|
||||
|
||||
let v1 = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z)
|
||||
let sum = Vector3.Divide(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3-scalar division method is the same as component division`` (a : Vector3, b : float32) =
|
||||
|
||||
let v1 = Vector3(a.X / b, a.Y / b, a.Z / b)
|
||||
let sum = Vector3.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector3-scalar divison method by reference is the same as component division`` (a : Vector3, b : float32) =
|
||||
|
||||
let v1 = Vector3(a.X / b, a.Y / b, a.Z / b)
|
||||
let sum = Vector3.Divide(ref a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Negation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector negation operator negates all components`` (x, y, z) =
|
||||
let v = Vector3(x, y, z)
|
||||
let vNeg = -v
|
||||
Assert.Equal(-x, vNeg.X)
|
||||
Assert.Equal(-y, vNeg.Y)
|
||||
Assert.Equal(-z, vNeg.Z)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Equality =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector equality operator is by component`` (x, y, z) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(x, y, z)
|
||||
let equality = v1 = v2
|
||||
|
||||
Assert.True(equality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector inequality operator is by component`` (x, y, z) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(x + 1.0f , y + 1.0f, z + 1.0f)
|
||||
let inequality = v1 <> v2
|
||||
|
||||
Assert.True(inequality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector equality method is by component`` (x, y, z) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(x, y, z)
|
||||
let notVector = Matrix2()
|
||||
|
||||
let equality = v1.Equals(v2)
|
||||
let inequalityByOtherType = v1.Equals(notVector)
|
||||
|
||||
Assert.True(equality)
|
||||
Assert.False(inequalityByOtherType)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Swizzling =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z) =
|
||||
let v = Vector3(x, y, z)
|
||||
|
||||
let xyz = Vector3(x, y, z)
|
||||
let xzy = Vector3(x, z, y)
|
||||
let xy = Vector2(x, y)
|
||||
let xz = Vector2(x, z)
|
||||
|
||||
Assert.Equal(xyz, v);
|
||||
Assert.Equal(xzy, v.Xzy);
|
||||
Assert.Equal(xy, v.Xy);
|
||||
Assert.Equal(xz, v.Xz);
|
||||
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z) =
|
||||
let v = Vector3(x, y, z)
|
||||
|
||||
let yxz = Vector3(y, x, z)
|
||||
let yzx = Vector3(y, z, x)
|
||||
let yx = Vector2(y, x)
|
||||
let yz = Vector2(y, z)
|
||||
|
||||
Assert.Equal(yxz, v.Yxz);
|
||||
Assert.Equal(yzx, v.Yzx);
|
||||
Assert.Equal(yx, v.Yx);
|
||||
Assert.Equal(yz, v.Yz);
|
||||
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z) =
|
||||
let v = Vector3(x, y, z)
|
||||
|
||||
let zxy = Vector3(z, x, y)
|
||||
let zyx = Vector3(z, y, x)
|
||||
let zx = Vector2(z, x)
|
||||
let zy = Vector2(z, y);
|
||||
|
||||
Assert.Equal(zxy, v.Zxy);
|
||||
Assert.Equal(zyx, v.Zyx);
|
||||
Assert.Equal(zx, v.Zx);
|
||||
Assert.Equal(zy, v.Zy);
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Interpolation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Linear interpolation is by component`` (a : Vector3, b : Vector3, q) =
|
||||
|
||||
let blend = q
|
||||
|
||||
let rX = blend * (b.X - a.X) + a.X
|
||||
let rY = blend * (b.Y - a.Y) + a.Y
|
||||
let rZ = blend * (b.Z - a.Z) + a.Z
|
||||
let vExp = Vector3(rX, rY, rZ)
|
||||
|
||||
Assert.Equal(vExp, Vector3.Lerp(a, b, q))
|
||||
|
||||
let vRes = Vector3.Lerp(ref a, ref b, q)
|
||||
Assert.Equal(vExp, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Barycentric interpolation follows the barycentric formula`` (a : Vector3, b : Vector3, c : Vector3, u, v) =
|
||||
|
||||
let r = a + u * (b - a) + v * (c - a)
|
||||
|
||||
Assert.Equal(r, Vector3.BaryCentric(a, b, c, u, v))
|
||||
|
||||
let vRes = Vector3.BaryCentric(ref a, ref b, ref c, u, v)
|
||||
Assert.Equal(r, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Vector products`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Dot product follows the dot product formula`` (a : Vector3, b : Vector3) =
|
||||
let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z
|
||||
|
||||
Assert.Equal(dot, Vector3.Dot(a, b));
|
||||
|
||||
let vRes = Vector3.Dot(ref a, ref b)
|
||||
Assert.Equal(dot, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Cross product follows the cross product formula`` (a : Vector3, b : Vector3) =
|
||||
let crossX = a.Y * b.Z - a.Z * b.Y
|
||||
let crossY = a.Z * b.X - a.X * b.Z
|
||||
let crossZ = a.X * b.Y - a.Y * b.X
|
||||
let cross = Vector3(crossX, crossY, crossZ)
|
||||
|
||||
Assert.Equal(cross, Vector3.Cross(a, b));
|
||||
|
||||
let vRes = Vector3.Cross(ref a, ref b)
|
||||
Assert.Equal(cross, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Component min and max`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``ComponentMin produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let vMin = Vector3.ComponentMin(v1, v2)
|
||||
|
||||
Assert.True(vMin.X <= v1.X)
|
||||
Assert.True(vMin.X <= v2.X)
|
||||
|
||||
Assert.True(vMin.Y <= v1.Y)
|
||||
Assert.True(vMin.Y <= v2.Y)
|
||||
|
||||
Assert.True(vMin.Z <= v1.Z)
|
||||
Assert.True(vMin.Z <= v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMax producing a new vector from the largest components of the given vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let vMax = Vector3.ComponentMax(v1, v2)
|
||||
|
||||
Assert.True(vMax.X >= v1.X)
|
||||
Assert.True(vMax.X >= v2.X)
|
||||
|
||||
Assert.True(vMax.Y >= v1.Y)
|
||||
Assert.True(vMax.Y >= v2.Y)
|
||||
|
||||
Assert.True(vMax.Z >= v1.Z)
|
||||
Assert.True(vMax.Z >= v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMin by reference produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let vMin = Vector3.ComponentMin(ref v1, ref v2)
|
||||
|
||||
Assert.True(vMin.X <= v1.X)
|
||||
Assert.True(vMin.X <= v2.X)
|
||||
|
||||
Assert.True(vMin.Y <= v1.Y)
|
||||
Assert.True(vMin.Y <= v2.Y)
|
||||
|
||||
Assert.True(vMin.Z <= v1.Z)
|
||||
Assert.True(vMin.Z <= v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``ComponentMax produces a new vector from the smallest components of the given vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let vMax = Vector3.ComponentMax(ref v1, ref v2)
|
||||
|
||||
Assert.True(vMax.X >= v1.X)
|
||||
Assert.True(vMax.X >= v2.X)
|
||||
|
||||
Assert.True(vMax.Y >= v1.Y)
|
||||
Assert.True(vMax.Y >= v2.Y)
|
||||
|
||||
Assert.True(vMax.Z >= v1.Z)
|
||||
Assert.True(vMax.Z >= v2.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector3.Min(v1, v2)
|
||||
|
||||
if l1 < l2 then
|
||||
let equalsFirst = vMin = v1
|
||||
Assert.True(equalsFirst)
|
||||
else
|
||||
let equalsLast = vMin = v2
|
||||
Assert.True(equalsLast)
|
||||
|
||||
[<Property>]
|
||||
let ``Max selects the vector with greater magnitude given two vectors`` (x, y, z, u, w, q) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector3(u, w, q)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector3.Max(v1, v2)
|
||||
|
||||
if l1 >= l2 then
|
||||
let equalsFirst = vMin = v1
|
||||
Assert.True(equalsFirst)
|
||||
else
|
||||
let equalsLast = vMin = v2
|
||||
Assert.True(equalsLast)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Clamping =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) =
|
||||
let res = Vector3.Clamp(w, a, b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
Assert.Equal(expZ, res.Z)
|
||||
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors by reference clamps all components between corresponding components`` (a : Vector3, b : Vector3, w : Vector3) =
|
||||
let res = Vector3.Clamp(ref w, ref a, ref b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
Assert.Equal(expZ, res.Z)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Unit vectors``=
|
||||
//
|
||||
[<Property>]
|
||||
let ``Unit X is correct`` =
|
||||
let unitX = Vector3(1.0f, 0.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector3.UnitX, unitX)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit Y is correct`` =
|
||||
let unitY = Vector3(0.0f, 1.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector3.UnitY, unitY)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit Z is correct`` =
|
||||
let unitZ = Vector3(0.0f, 0.0f, 1.0f)
|
||||
|
||||
Assert.Equal(Vector3.UnitZ, unitZ)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit zero is correct`` =
|
||||
let unitZero = Vector3(0.0f, 0.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector3.Zero, unitZero)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit one is correct`` =
|
||||
let unitOne = Vector3(1.0f, 1.0f, 1.0f)
|
||||
|
||||
Assert.Equal(Vector3.One, unitOne)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Serialization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``The absolute size of a Vector3 is always the size of its components`` (v : Vector3) =
|
||||
let expectedSize = sizeof<float32> * 3
|
||||
|
||||
Assert.Equal(expectedSize, Vector3.SizeInBytes)
|
||||
Assert.Equal(expectedSize, Marshal.SizeOf(Vector3()))
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Transformation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = transformedQuat.Xyz
|
||||
|
||||
Assert.ApproximatelyEqual(transformedVector, Vector3.Transform(v, q))
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = transformedQuat.Xyz
|
||||
|
||||
Assert.ApproximatelyEqual(transformedVector, Vector3.Transform(ref v, ref q))
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion by multiplication using right-handed notation is the same as multiplication by quaternion and its conjugate`` (v : Vector3, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = transformedQuat.Xyz
|
||||
|
||||
Assert.ApproximatelyEqual(transformedVector, q * v)
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by identity quaternion does not alter vector`` (v : Vector3) =
|
||||
let q = Quaternion.Identity
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, 0.0f)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = transformedQuat.Xyz
|
||||
|
||||
Assert.ApproximatelyEqual(v, transformedVector)
|
||||
Assert.ApproximatelyEqual(v, Vector3.Transform(v, q))
|
||||
Assert.ApproximatelyEqual(transformedVector, Vector3.Transform(v, q))
|
842
tests/OpenTK.Tests/Vector4Tests.fs
Normal file
842
tests/OpenTK.Tests/Vector4Tests.fs
Normal file
|
@ -0,0 +1,842 @@
|
|||
namespace OpenTK.Tests
|
||||
|
||||
open Xunit
|
||||
open FsCheck
|
||||
open FsCheck.Xunit
|
||||
open System
|
||||
open System.Runtime.InteropServices
|
||||
open OpenTK
|
||||
|
||||
module Vector4 =
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Constructors =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Triple value constructor sets all components to the correct values`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
Assert.Equal(x, v.X)
|
||||
Assert.Equal(y, v.Y)
|
||||
Assert.Equal(z, v.Z)
|
||||
Assert.Equal(w, v.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Single value constructor sets all components to the correct values`` (a : float32) =
|
||||
let v = Vector4(a)
|
||||
|
||||
Assert.Equal(a, v.X)
|
||||
Assert.Equal(a, v.Y)
|
||||
Assert.Equal(a, v.Z)
|
||||
Assert.Equal(a, v.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector2 value constructor sets all components to the correct values`` (x, y) =
|
||||
let v1 = Vector2(x, y)
|
||||
let v2 = Vector4(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
|
||||
Assert.Equal(x, v2.X)
|
||||
Assert.Equal(y, v2.Y)
|
||||
Assert.Equal(0.0f, v2.Z)
|
||||
Assert.Equal(0.0f, v2.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 value constructor sets all components to the correct values`` (x, y, z) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector4(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
Assert.Equal(v1.Z, v2.Z)
|
||||
|
||||
Assert.Equal(x, v2.X)
|
||||
Assert.Equal(y, v2.Y)
|
||||
Assert.Equal(z, v2.Z)
|
||||
Assert.Equal(0.0f, v2.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector3 value and scalar constructor sets all components to the correct values`` (x, y, z, w) =
|
||||
let v1 = Vector3(x, y, z)
|
||||
let v2 = Vector4(v1, w)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
Assert.Equal(v1.Z, v2.Z)
|
||||
|
||||
Assert.Equal(x, v2.X)
|
||||
Assert.Equal(y, v2.Y)
|
||||
Assert.Equal(z, v2.Z)
|
||||
Assert.Equal(w, v2.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4 value constructor sets all components to the correct values`` (x, y, z, w) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(v1)
|
||||
|
||||
Assert.Equal(v1.X, v2.X)
|
||||
Assert.Equal(v1.Y, v2.Y)
|
||||
Assert.Equal(v1.Z, v2.Z)
|
||||
Assert.Equal(v1.W, v2.W)
|
||||
|
||||
Assert.Equal(x, v2.X)
|
||||
Assert.Equal(y, v2.Y)
|
||||
Assert.Equal(z, v2.Z)
|
||||
Assert.Equal(w, v2.W)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Indexing =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Index operator accesses the correct components`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
Assert.Equal(x, v.[0])
|
||||
Assert.Equal(y, v.[1])
|
||||
Assert.Equal(z, v.[2])
|
||||
Assert.Equal(w, v.[3])
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for negative indices`` (x, y, z, w) =
|
||||
let mutable v = Vector4(x, y, z, w)
|
||||
|
||||
(fun() -> v.[-1] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for negative indices`` (x, y, z, w) =
|
||||
let mutable v = Vector4(x, y, z, w)
|
||||
|
||||
(fun() -> v.[-1] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed set operator throws exception for large indices`` (x, y, z, w) =
|
||||
let mutable v = Vector4(x, y, z, w)
|
||||
|
||||
(fun() -> v.[4] <- x) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Property>]
|
||||
let ``Indexed get operator throws exception for large indices`` (x, y, z, w) =
|
||||
let mutable v = Vector4(x, y, z, w)
|
||||
|
||||
(fun() -> v.[4] |> ignore) |> Assert.Throws<IndexOutOfRangeException> |> ignore
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Length =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Length method follows the pythagorean theorem`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let l = System.Math.Sqrt((float)(x * x + y * y + z * z + w * w))
|
||||
|
||||
Assert.Equal((float32)l, v.Length)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast length method is the same as one divided by the fast inverse square`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let l = 1.0f / MathHelper.InverseSqrtFast(x * x + y * y + z * z + w * w)
|
||||
|
||||
Assert.Equal(l, v.LengthFast)
|
||||
|
||||
[<Property>]
|
||||
let ``Length squared method returns each component squared and summed`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let lsq = x * x + y * y + z * z + w * w
|
||||
|
||||
Assert.Equal(lsq, v.LengthSquared)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Normalization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Normalization creates a new unit length vector with the correct components`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let l = v.Length
|
||||
|
||||
let norm = v.Normalized()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z / l, norm.Z)
|
||||
Assert.ApproximatelyEqual(v.W / l, norm.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let l = v.Length
|
||||
|
||||
let norm = Vector4(x, y, z, w)
|
||||
norm.Normalize()
|
||||
|
||||
Assert.ApproximatelyEqual(v.X / l, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y / l, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z / l, norm.Z)
|
||||
Assert.ApproximatelyEqual(v.W / l, norm.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization of instance transforms the instance into a unit length vector with the correct components`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let norm = Vector4(x, y, z, w)
|
||||
norm.NormalizeFast()
|
||||
|
||||
let scale = MathHelper.InverseSqrtFast(x * x + y * y + z * z + w * w)
|
||||
|
||||
Assert.ApproximatelyEqual(v.X * scale, norm.X)
|
||||
Assert.ApproximatelyEqual(v.Y * scale, norm.Y)
|
||||
Assert.ApproximatelyEqual(v.Z * scale, norm.Z)
|
||||
Assert.ApproximatelyEqual(v.W * scale, norm.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization by reference is the same as division by magnitude`` (a : Vector4) =
|
||||
let norm = a / a.Length
|
||||
let vRes = Vector4.Normalize(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Normalization is the same as division by magnitude`` (a : Vector4) =
|
||||
let norm = a / a.Length
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector4.Normalize(a));
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization by reference is the same as multiplication by the fast inverse square`` (a : Vector4) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W)
|
||||
|
||||
let norm = a * scale
|
||||
let vRes = Vector4.NormalizeFast(ref a)
|
||||
|
||||
Assert.ApproximatelyEqual(norm, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Fast approximate normalization is the same as multiplication by the fast inverse square`` (a : Vector4) =
|
||||
let scale = MathHelper.InverseSqrtFast(a.X * a.X + a.Y * a.Y + a.Z * a.Z + a.W * a.W)
|
||||
|
||||
let norm = a * scale
|
||||
|
||||
Assert.ApproximatelyEqual(norm, Vector4.NormalizeFast(a));
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Addition =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector4 addition is the same as component addition`` (a : Vector4, b : Vector4) =
|
||||
let c = a + b
|
||||
|
||||
Assert.ApproximatelyEqual(a.X + b.X,c.X)
|
||||
Assert.ApproximatelyEqual(a.Y + b.Y,c.Y)
|
||||
Assert.ApproximatelyEqual(a.Z + b.Z,c.Z)
|
||||
Assert.ApproximatelyEqual(a.W + b.W,c.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4 addition is commutative`` (a : Vector4, b : Vector4) =
|
||||
let c = a + b
|
||||
let c2 = b + a
|
||||
|
||||
Assert.ApproximatelyEqual(c, c2)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4 addition is associative`` (a : Vector4, b : Vector4, c : Vector4) =
|
||||
let r1 = (a + b) + c
|
||||
let r2 = a + (b + c)
|
||||
|
||||
Assert.ApproximatelyEqual(r1, r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 addition method is the same as component addition`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W)
|
||||
let sum = Vector4.Add(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 addition method by reference is the same as component addition`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W)
|
||||
let sum = Vector4.Add(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Subtraction =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector4 subtraction is the same as component subtraction`` (a : Vector4, b : Vector4) =
|
||||
let c = a - b
|
||||
|
||||
Assert.Equal(a.X - b.X,c.X)
|
||||
Assert.Equal(a.Y - b.Y,c.Y)
|
||||
Assert.Equal(a.Z - b.Z,c.Z)
|
||||
Assert.Equal(a.W - b.W,c.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 subtraction method is the same as component addition`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W)
|
||||
let sum = Vector4.Subtract(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 subtraction method by reference is the same as component addition`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W)
|
||||
let sum = Vector4.Subtract(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Multiplication =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector4 multiplication is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
||||
let c = a * b
|
||||
|
||||
Assert.Equal(a.X * b.X,c.X)
|
||||
Assert.Equal(a.Y * b.Y,c.Y)
|
||||
Assert.Equal(a.Z * b.Z,c.Z)
|
||||
Assert.Equal(a.W * b.W,c.W)
|
||||
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4 multiplication is commutative`` (a : Vector4, b : Vector4) =
|
||||
let r1 = a * b
|
||||
let r2 = b * a
|
||||
|
||||
Assert.Equal(r1, r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Left-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
||||
let r = a * f
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
Assert.Equal(a.W * f,r.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Right-handed Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
||||
let r = f * a
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
Assert.Equal(a.W * f,r.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Static method Vector4-scalar multiplication is the same as component-scalar multiplication`` (a : Vector4, f : float32) =
|
||||
let r = Vector4.Multiply(a, f)
|
||||
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
Assert.Equal(a.Z * f,r.Z)
|
||||
Assert.Equal(a.W * f,r.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4-Matrix4 multiplication using right-handed notation is the same as vector/row multiplication and summation`` (a : Matrix4, b : Vector4) =
|
||||
let res = a*b
|
||||
|
||||
let c1 = b.X * a.M11 + b.Y * a.M12 + b.Z * a.M13 + b.W * a.M14
|
||||
let c2 = b.X * a.M21 + b.Y * a.M22 + b.Z * a.M23 + b.W * a.M24
|
||||
let c3 = b.X * a.M31 + b.Y * a.M32 + b.Z * a.M33 + b.W * a.M34
|
||||
let c4 = b.X * a.M41 + b.Y * a.M42 + b.Z * a.M43 + b.W * a.M44
|
||||
|
||||
let exp = Vector4(c1, c2, c3, c4)
|
||||
|
||||
Assert.Equal(exp, res)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector4-Matrix4 multiplication using left-handed notation is the same as vector/column multiplication and summation`` (a : Matrix4, b : Vector4) =
|
||||
let res = b*a
|
||||
|
||||
let c1 = b.X * a.M11 + b.Y * a.M21 + b.Z * a.M31 + b.W * a.M41
|
||||
let c2 = b.X * a.M12 + b.Y * a.M22 + b.Z * a.M32 + b.W * a.M42
|
||||
let c3 = b.X * a.M13 + b.Y * a.M23 + b.Z * a.M33 + b.W * a.M43
|
||||
let c4 = b.X * a.M14 + b.Y * a.M24 + b.Z * a.M34 + b.W * a.M44
|
||||
|
||||
let exp = Vector4(c1, c2, c3, c4)
|
||||
|
||||
Assert.Equal(exp, res)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 multiplication method is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W)
|
||||
let sum = Vector4.Multiply(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4 multiplication method by reference is the same as component multiplication`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W)
|
||||
let sum = Vector4.Multiply(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Division =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector4-float division is the same as component-float division`` (a : Vector4, f : float32) =
|
||||
if not (approxEq f 0.0f) then // we don't support diving by zero.
|
||||
let r = a / f
|
||||
|
||||
Assert.ApproximatelyEqual(a.X / f, r.X)
|
||||
Assert.ApproximatelyEqual(a.Y / f, r.Y)
|
||||
Assert.ApproximatelyEqual(a.Z / f, r.Z)
|
||||
Assert.ApproximatelyEqual(a.W / f, r.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4-Vector4 division method is the same as component division`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W)
|
||||
let sum = Vector4.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4-Vector4 divison method by reference is the same as component division`` (a : Vector4, b : Vector4) =
|
||||
|
||||
let v1 = Vector4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W)
|
||||
let sum = Vector4.Divide(ref a, ref b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4-scalar division method is the same as component division`` (a : Vector4, b : float32) =
|
||||
|
||||
let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b)
|
||||
let sum = Vector4.Divide(a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Property>]
|
||||
let ``Static Vector4-scalar divison method by reference is the same as component division`` (a : Vector4, b : float32) =
|
||||
|
||||
let v1 = Vector4(a.X / b, a.Y / b, a.Z / b, a.W / b)
|
||||
let sum = Vector4.Divide(ref a, b)
|
||||
|
||||
Assert.ApproximatelyEqual(v1, sum)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Negation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector negation operator negates all components`` (x, y, z, w) =
|
||||
let v = Vector4(x, y, z, w)
|
||||
let vNeg = -v
|
||||
Assert.Equal(-x, vNeg.X)
|
||||
Assert.Equal(-y, vNeg.Y)
|
||||
Assert.Equal(-z, vNeg.Z)
|
||||
Assert.Equal(-w, vNeg.W)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Equality =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector equality operator is by component`` (x, y, z, w) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(x, y, z, w)
|
||||
let equality = v1 = v2
|
||||
|
||||
Assert.True(equality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector inequality operator is by component`` (x, y, z, w) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(x + 1.0f , y + 1.0f, z + 1.0f, w + 1.0f)
|
||||
let inequality = v1 <> v2
|
||||
|
||||
Assert.True(inequality)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector equality method is by component`` (x, y, z, w) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(x, y, z, w)
|
||||
let notVector = Matrix2()
|
||||
|
||||
let equality = v1.Equals(v2)
|
||||
let inequalityByOtherType = v1.Equals(notVector)
|
||||
|
||||
Assert.True(equality)
|
||||
Assert.False(inequalityByOtherType)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector equality method returns false for other classes`` (x, y, z, w) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let notVector = Matrix2()
|
||||
|
||||
let inequalityByOtherType = v1.Equals(notVector)
|
||||
|
||||
Assert.False(inequalityByOtherType)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Swizzling =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for X-primary components`` (x, y, z, w) =
|
||||
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
let xyzw = v
|
||||
let xywz = Vector4(x, y, w, z)
|
||||
let xzyw = Vector4(x, z, y, w)
|
||||
let xzwy = Vector4(x, z, w, y)
|
||||
let xwyz = Vector4(x, w, y, z)
|
||||
let xwzy = Vector4(x, w, z, y)
|
||||
|
||||
let xyz = Vector3(x, y, z)
|
||||
let xyw = Vector3(x, y, w)
|
||||
let xzy = Vector3(x, z, y)
|
||||
let xzw = Vector3(x, z, w)
|
||||
let xwy = Vector3(x, w, y)
|
||||
let xwz = Vector3(x, w, z)
|
||||
|
||||
let xy = Vector2(x, y)
|
||||
let xz = Vector2(x, z)
|
||||
let xw = Vector2(x, w)
|
||||
|
||||
// X primary
|
||||
Assert.Equal(xyzw, v)
|
||||
Assert.Equal(xywz, v.Xywz)
|
||||
Assert.Equal(xzyw, v.Xzyw)
|
||||
Assert.Equal(xzwy, v.Xzwy)
|
||||
Assert.Equal(xwyz, v.Xwyz)
|
||||
Assert.Equal(xwzy, v.Xwzy)
|
||||
|
||||
Assert.Equal(xyz, v.Xyz)
|
||||
Assert.Equal(xyw, v.Xyw)
|
||||
Assert.Equal(xzy, v.Xzy)
|
||||
Assert.Equal(xzw, v.Xzw)
|
||||
Assert.Equal(xwy, v.Xwy)
|
||||
Assert.Equal(xwz, v.Xwz)
|
||||
|
||||
Assert.Equal(xy, v.Xy)
|
||||
Assert.Equal(xz, v.Xz)
|
||||
Assert.Equal(xw, v.Xw)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for Y-primary components`` (x, y, z, w) =
|
||||
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
let yxzw = Vector4(y, x, z, w)
|
||||
let yxwz = Vector4(y, x, w, z)
|
||||
let yyzw = Vector4(y, y, z, w)
|
||||
let yywz = Vector4(y, y, w, z)
|
||||
let yzxw = Vector4(y, z, x, w)
|
||||
let yzwx = Vector4(y, z, w, x)
|
||||
let ywxz = Vector4(y, w, x, z)
|
||||
let ywzx = Vector4(y, w, z, x)
|
||||
|
||||
let yxz = Vector3(y, x, z)
|
||||
let yxw = Vector3(y, x, w)
|
||||
let yzx = Vector3(y, z, x)
|
||||
let yzw = Vector3(y, z, w)
|
||||
let ywx = Vector3(y, w, x)
|
||||
let ywz = Vector3(y, w, z)
|
||||
|
||||
let yx = Vector2(y, x)
|
||||
let yz = Vector2(y, z)
|
||||
let yw = Vector2(y, w)
|
||||
|
||||
// Y primary
|
||||
Assert.Equal(yxzw, v.Yxzw)
|
||||
Assert.Equal(yxwz, v.Yxwz)
|
||||
Assert.Equal(yyzw, v.Yyzw)
|
||||
Assert.Equal(yywz, v.Yywz)
|
||||
Assert.Equal(yzxw, v.Yzxw)
|
||||
Assert.Equal(yzwx, v.Yzwx)
|
||||
Assert.Equal(ywxz, v.Ywxz)
|
||||
Assert.Equal(ywzx, v.Ywzx)
|
||||
|
||||
Assert.Equal(yxz, v.Yxz)
|
||||
Assert.Equal(yxw, v.Yxw)
|
||||
Assert.Equal(yzx, v.Yzx)
|
||||
Assert.Equal(yzw, v.Yzw)
|
||||
Assert.Equal(ywx, v.Ywx)
|
||||
Assert.Equal(ywz, v.Ywz)
|
||||
|
||||
Assert.Equal(yx, v.Yx)
|
||||
Assert.Equal(yz, v.Yz)
|
||||
Assert.Equal(yw, v.Yw)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for Z-primary components`` (x, y, z, w) =
|
||||
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
let zxyw = Vector4(z, x, y, w)
|
||||
let zxwy = Vector4(z, x, w, y)
|
||||
let zyxw = Vector4(z, y, x, w)
|
||||
let zywx = Vector4(z, y, w, x)
|
||||
let zwxy = Vector4(z, w, x, y)
|
||||
let zwyx = Vector4(z, w, y, x)
|
||||
let zwzy = Vector4(z, w, z, y)
|
||||
|
||||
let zxy = Vector3(z, x, y)
|
||||
let zxw = Vector3(z, x, w)
|
||||
let zyx = Vector3(z, y, x)
|
||||
let zyw = Vector3(z, y, w)
|
||||
let zwx = Vector3(z, w, x)
|
||||
let zwy = Vector3(z, w, y)
|
||||
|
||||
let zx = Vector2(z, x)
|
||||
let zy = Vector2(z, y)
|
||||
let zw = Vector2(z, w)
|
||||
|
||||
// Z primary
|
||||
Assert.Equal(zxyw, v.Zxyw)
|
||||
Assert.Equal(zxwy, v.Zxwy)
|
||||
Assert.Equal(zyxw, v.Zyxw)
|
||||
Assert.Equal(zywx, v.Zywx)
|
||||
Assert.Equal(zwxy, v.Zwxy)
|
||||
Assert.Equal(zwyx, v.Zwyx)
|
||||
Assert.Equal(zwzy, v.Zwzy)
|
||||
|
||||
Assert.Equal(zxy, v.Zxy)
|
||||
Assert.Equal(zxw, v.Zxw)
|
||||
Assert.Equal(zyx, v.Zyx)
|
||||
Assert.Equal(zyw, v.Zyw)
|
||||
Assert.Equal(zwx, v.Zwx)
|
||||
Assert.Equal(zwy, v.Zwy)
|
||||
|
||||
Assert.Equal(zx, v.Zx)
|
||||
Assert.Equal(zy, v.Zy)
|
||||
Assert.Equal(zw, v.Zw)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector swizzling returns the correct composite for W-primary components`` (x, y, z, w) =
|
||||
|
||||
let v = Vector4(x, y, z, w)
|
||||
|
||||
let wxyz = Vector4(w, x, y, z)
|
||||
let wxzy = Vector4(w, x, z, y)
|
||||
let wyxz = Vector4(w, y, x, z)
|
||||
let wyzx = Vector4(w, y, z, x)
|
||||
let wzxy = Vector4(w, z, x, y)
|
||||
let wzyx = Vector4(w, z, y, x)
|
||||
let wzyw = Vector4(w, z, y, w)
|
||||
|
||||
let wxy = Vector3(w, x, y)
|
||||
let wxz = Vector3(w, x, z)
|
||||
let wyx = Vector3(w, y, x)
|
||||
let wyz = Vector3(w, y, z)
|
||||
let wzx = Vector3(w, z, x)
|
||||
let wzy = Vector3(w, z, y)
|
||||
|
||||
let wx = Vector2(w, x)
|
||||
let wy = Vector2(w, y)
|
||||
let wz = Vector2(w, z)
|
||||
|
||||
// W primary
|
||||
Assert.Equal(wxyz, v.Wxyz)
|
||||
Assert.Equal(wxzy, v.Wxzy)
|
||||
Assert.Equal(wyxz, v.Wyxz)
|
||||
Assert.Equal(wyzx, v.Wyzx)
|
||||
Assert.Equal(wzxy, v.Wzxy)
|
||||
Assert.Equal(wzyx, v.Wzyx)
|
||||
Assert.Equal(wzyw, v.Wzyw)
|
||||
|
||||
Assert.Equal(wxy, v.Wxy)
|
||||
Assert.Equal(wxz, v.Wxz)
|
||||
Assert.Equal(wyx, v.Wyx)
|
||||
Assert.Equal(wyz, v.Wyz)
|
||||
Assert.Equal(wzx, v.Wzx)
|
||||
Assert.Equal(wzy, v.Wzy)
|
||||
|
||||
Assert.Equal(wx, v.Wx)
|
||||
Assert.Equal(wy, v.Wy)
|
||||
Assert.Equal(wz, v.Wz)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Interpolation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Linear interpolation is by component`` (a : Vector4, b : Vector4, q) =
|
||||
|
||||
let blend = q
|
||||
|
||||
let rX = blend * (b.X - a.X) + a.X
|
||||
let rY = blend * (b.Y - a.Y) + a.Y
|
||||
let rZ = blend * (b.Z - a.Z) + a.Z
|
||||
let rW = blend * (b.W - a.W) + a.W
|
||||
let vExp = Vector4(rX, rY, rZ, rW)
|
||||
|
||||
Assert.Equal(vExp, Vector4.Lerp(a, b, q))
|
||||
|
||||
let vRes = Vector4.Lerp(ref a, ref b, q)
|
||||
Assert.Equal(vExp, vRes)
|
||||
|
||||
[<Property>]
|
||||
let ``Barycentric interpolation follows the barycentric formula`` (a : Vector4, b : Vector4, c : Vector4, u, v) =
|
||||
|
||||
let r = a + u * (b - a) + v * (c - a)
|
||||
|
||||
Assert.Equal(r, Vector4.BaryCentric(a, b, c, u, v))
|
||||
|
||||
let vRes = Vector4.BaryCentric(ref a, ref b, ref c, u, v)
|
||||
Assert.Equal(r, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Vector products`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Dot product method follows the dot product formula`` (a : Vector4, b : Vector4) =
|
||||
let dot = a.X * b.X + a.Y * b.Y + a.Z * b.Z + a.W * b.W
|
||||
|
||||
Assert.Equal(dot, Vector4.Dot(a, b));
|
||||
|
||||
let vRes = Vector4.Dot(ref a, ref b)
|
||||
Assert.Equal(dot, vRes)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Component min and max`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Min selects the vector with lesser magnitude given two vectors`` (x, y, z, w, a, b, c, d) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(a, b, c, d)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector4.Min(v1, v2)
|
||||
|
||||
if vMin = v1 then
|
||||
let v1ShorterThanv2 = l1 < l2
|
||||
Assert.True(v1ShorterThanv2)
|
||||
else
|
||||
let v2ShorterThanv1 = l2 < l1
|
||||
Assert.True(v2ShorterThanv1)
|
||||
|
||||
[<Property>]
|
||||
let ``Max selects the vector with greater magnitude given two vectors`` (x, y, z, w, a, b, c, d) =
|
||||
let v1 = Vector4(x, y, z, w)
|
||||
let v2 = Vector4(a, b, c, d)
|
||||
|
||||
let l1 = v1.LengthSquared
|
||||
let l2 = v2.LengthSquared
|
||||
|
||||
let vMin = Vector4.Max(v1, v2)
|
||||
|
||||
if vMin = v1 then
|
||||
let v1LongerThanOrEqualTov2 = l1 >= l2
|
||||
Assert.True(v1LongerThanOrEqualTov2)
|
||||
else
|
||||
let v2LongerThanv1 = l2 > l1
|
||||
Assert.True(v2LongerThanv1)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Clamping =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors clamps all components between corresponding components`` (a : Vector4, b : Vector4, w : Vector4) =
|
||||
let res = Vector4.Clamp(w, a, b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
||||
let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
Assert.Equal(expZ, res.Z)
|
||||
Assert.Equal(expW, res.W)
|
||||
|
||||
[<Property>]
|
||||
let ``Clamping one vector between two other vectors by reference clamps all components`` (a : Vector4, b : Vector4, w : Vector4) =
|
||||
let res = Vector4.Clamp(ref w, ref a, ref b)
|
||||
|
||||
let expX = if w.X < a.X then a.X else if w.X > b.X then b.X else w.X
|
||||
let expY = if w.Y < a.Y then a.Y else if w.Y > b.Y then b.Y else w.Y
|
||||
let expZ = if w.Z < a.Z then a.Z else if w.Z > b.Z then b.Z else w.Z
|
||||
let expW = if w.W < a.W then a.W else if w.W > b.W then b.W else w.W
|
||||
|
||||
Assert.Equal(expX, res.X)
|
||||
Assert.Equal(expY, res.Y)
|
||||
Assert.Equal(expZ, res.Z)
|
||||
Assert.Equal(expW, res.W)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Unit vectors``=
|
||||
//
|
||||
[<Property>]
|
||||
let ``Unit X is correct`` =
|
||||
let unitX = Vector4(1.0f, 0.0f, 0.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector4.UnitX, unitX)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit Y is correct`` =
|
||||
let unitY = Vector4(0.0f, 1.0f, 0.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector4.UnitY, unitY)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit Z is correct`` =
|
||||
let unitZ = Vector4(0.0f, 0.0f, 1.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector4.UnitZ, unitZ)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit W is correct`` =
|
||||
let unitW = Vector4(0.0f, 0.0f, 0.0f, 1.0f)
|
||||
|
||||
Assert.Equal(Vector4.UnitW, unitW)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit zero is correct`` =
|
||||
let unitZero = Vector4(0.0f, 0.0f, 0.0f, 0.0f)
|
||||
|
||||
Assert.Equal(Vector4.Zero, unitZero)
|
||||
|
||||
[<Property>]
|
||||
let ``Unit one is correct`` =
|
||||
let unitOne = Vector4(1.0f, 1.0f, 1.0f, 1.0f)
|
||||
|
||||
Assert.Equal(Vector4.One, unitOne)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Serialization =
|
||||
//
|
||||
[<Property>]
|
||||
let ``The absolute size of a Vector4 is always the size of its components`` (v : Vector4) =
|
||||
let expectedSize = sizeof<float32> * 4
|
||||
|
||||
Assert.Equal(expectedSize, Vector4.SizeInBytes)
|
||||
Assert.Equal(expectedSize, Marshal.SizeOf(Vector4()))
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Transformation =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion with static method is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y, transformedQuat.Z, transformedQuat.W)
|
||||
|
||||
Assert.Equal(transformedVector, Vector4.Transform(v, q))
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion with static method by reference is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y,transformedQuat.Z, transformedQuat.W)
|
||||
|
||||
Assert.Equal(transformedVector, Vector4.Transform(ref v, ref q))
|
||||
|
||||
[<Property>]
|
||||
let ``Transformation by quaternion by multiplication using right-handed notation is the same as multiplication by quaternion and its conjugate`` (v : Vector4, q : Quaternion) =
|
||||
let vectorQuat = Quaternion(v.X, v.Y, v.Z, v.W)
|
||||
let inverse = Quaternion.Invert(q)
|
||||
|
||||
let transformedQuat = q * vectorQuat * inverse
|
||||
let transformedVector = Vector4(transformedQuat.X, transformedQuat.Y, transformedQuat.Z, transformedQuat.W)
|
||||
|
||||
Assert.Equal(transformedVector, q * v)
|
|
@ -1,116 +0,0 @@
|
|||
namespace OpenTK.Tests
|
||||
|
||||
open Xunit
|
||||
open FsCheck
|
||||
open FsCheck.Xunit
|
||||
open System
|
||||
open OpenTK
|
||||
|
||||
module Vector2 =
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Constructors =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Single value constructor sets all components to the same value`` (f : float32) =
|
||||
let v = Vector2(f)
|
||||
Assert.Equal(f,v.X)
|
||||
Assert.Equal(f,v.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Two value constructor sets all components correctly`` (x,y) =
|
||||
let v = Vector2(x,y)
|
||||
Assert.Equal(x,v.X)
|
||||
Assert.Equal(y,v.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Index operators work for the correct components`` (x,y) =
|
||||
let v = Vector2(x,y)
|
||||
Assert.Equal(v.[0],v.X)
|
||||
Assert.Equal(v.[1],v.Y)
|
||||
|
||||
// [<Property>]
|
||||
// disabled - behaviour needs discussion
|
||||
let ``Clamping works for each component`` (a : Vector2,b : Vector2,c : Vector2) =
|
||||
let inline clamp (value : float32) minV maxV = MathHelper.Clamp(value,minV,maxV)
|
||||
let r = Vector2.Clamp(a,b,c)
|
||||
Assert.Equal(clamp a.X b.X c.X,r.X)
|
||||
Assert.Equal(clamp a.Y b.Y c.Y,r.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Length is always >= 0`` (a : Vector2) =
|
||||
//
|
||||
Assert.True(a.Length >= 0.0f)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module ``Simple Properties`` =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector equality is by component`` (a : Vector2,b : Vector2) =
|
||||
//
|
||||
Assert.Equal((a.X = b.X && a.Y = b.Y),(a = b))
|
||||
|
||||
[<Property>]
|
||||
let ``Vector length is always >= 0`` (a : Vector2) =
|
||||
//
|
||||
Assert.True(a.Length >= 0.0f)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Addition =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector addition is the same as component addition`` (a : Vector2,b : Vector2) =
|
||||
let c = a + b
|
||||
Assert.ApproximatelyEqual(a.X + b.X,c.X)
|
||||
Assert.ApproximatelyEqual(a.Y + b.Y,c.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector addition is commutative`` (a : Vector2,b : Vector2) =
|
||||
let c = a + b
|
||||
let c2 = b + a
|
||||
Assert.ApproximatelyEqual(c,c2)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector addition is associative`` (a : Vector2,b : Vector2,c : Vector2) =
|
||||
let r1 = (a + b) + c
|
||||
let r2 = a + (b + c)
|
||||
Assert.ApproximatelyEqual(r1,r2)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Multiplication =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector multiplication is the same as component multiplication`` (a : Vector2,b : Vector2) =
|
||||
let c = a * b
|
||||
Assert.Equal(a.X * b.X,c.X)
|
||||
Assert.Equal(a.Y * b.Y,c.Y)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector multiplication is commutative`` (a : Vector2,b : Vector2) =
|
||||
let r1 = a * b
|
||||
let r2 = b * a
|
||||
Assert.Equal(r1,r2)
|
||||
|
||||
[<Property>]
|
||||
let ``Vector-float multiplication is the same as component-float multiplication`` (a : Vector2,f : float32) =
|
||||
let r = a * f
|
||||
Assert.Equal(a.X * f,r.X)
|
||||
Assert.Equal(a.Y * f,r.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Subtraction =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector subtraction is the same as component subtraction`` (a : Vector2,b : Vector2) =
|
||||
let c = a - b
|
||||
Assert.Equal(a.X - b.X,c.X)
|
||||
Assert.Equal(a.Y - b.Y,c.Y)
|
||||
|
||||
[<Properties(Arbitrary = [| typeof<OpenTKGen> |])>]
|
||||
module Division =
|
||||
//
|
||||
[<Property>]
|
||||
let ``Vector-float division is the same as component-float division`` (a : Vector2,f : float32) =
|
||||
if not (approxEq f 0.0f) then // we don't support diving by zero.
|
||||
let r = a / f
|
||||
Assert.ApproximatelyEqual(a.X / f,r.X)
|
||||
Assert.ApproximatelyEqual(a.Y / f,r.Y)
|
Loading…
Reference in a new issue