forked from suyu/suyu
core_timing: Make TimedCallback take std::chrono::nanoseconds
Enforces our desired time units directly with a concrete type.
This commit is contained in:
parent
8b50c660df
commit
bef1844a51
16 changed files with 62 additions and 58 deletions
|
@ -38,7 +38,7 @@ Stream::Stream(Core::Timing::CoreTiming& core_timing, u32 sample_rate, Format fo
|
|||
sink_stream{sink_stream}, core_timing{core_timing}, name{std::move(name_)} {
|
||||
|
||||
release_event = Core::Timing::CreateEvent(
|
||||
name, [this](u64 userdata, s64 cycles_late) { ReleaseActiveBuffer(cycles_late); });
|
||||
name, [this](u64, std::chrono::nanoseconds ns_late) { ReleaseActiveBuffer(ns_late); });
|
||||
}
|
||||
|
||||
void Stream::Play() {
|
||||
|
@ -78,7 +78,7 @@ static void VolumeAdjustSamples(std::vector<s16>& samples, float game_volume) {
|
|||
}
|
||||
}
|
||||
|
||||
void Stream::PlayNextBuffer(s64 cycles_late) {
|
||||
void Stream::PlayNextBuffer(std::chrono::nanoseconds ns_late) {
|
||||
if (!IsPlaying()) {
|
||||
// Ensure we are in playing state before playing the next buffer
|
||||
sink_stream.Flush();
|
||||
|
@ -103,17 +103,18 @@ void Stream::PlayNextBuffer(s64 cycles_late) {
|
|||
|
||||
sink_stream.EnqueueSamples(GetNumChannels(), active_buffer->GetSamples());
|
||||
|
||||
const auto time_stretch_delta = std::chrono::nanoseconds{
|
||||
Settings::values.enable_audio_stretching.GetValue() ? 0 : cycles_late};
|
||||
const auto time_stretch_delta = Settings::values.enable_audio_stretching.GetValue()
|
||||
? std::chrono::nanoseconds::zero()
|
||||
: ns_late;
|
||||
const auto future_time = GetBufferReleaseNS(*active_buffer) - time_stretch_delta;
|
||||
core_timing.ScheduleEvent(future_time, release_event, {});
|
||||
}
|
||||
|
||||
void Stream::ReleaseActiveBuffer(s64 cycles_late) {
|
||||
void Stream::ReleaseActiveBuffer(std::chrono::nanoseconds ns_late) {
|
||||
ASSERT(active_buffer);
|
||||
released_buffers.push(std::move(active_buffer));
|
||||
release_callback();
|
||||
PlayNextBuffer(cycles_late);
|
||||
PlayNextBuffer(ns_late);
|
||||
}
|
||||
|
||||
bool Stream::QueueBuffer(BufferPtr&& buffer) {
|
||||
|
|
|
@ -91,10 +91,10 @@ public:
|
|||
|
||||
private:
|
||||
/// Plays the next queued buffer in the audio stream, starting playback if necessary
|
||||
void PlayNextBuffer(s64 cycles_late = 0);
|
||||
void PlayNextBuffer(std::chrono::nanoseconds ns_late = {});
|
||||
|
||||
/// Releases the actively playing buffer, signalling that it has been completed
|
||||
void ReleaseActiveBuffer(s64 cycles_late = 0);
|
||||
void ReleaseActiveBuffer(std::chrono::nanoseconds ns_late = {});
|
||||
|
||||
/// Gets the number of core cycles when the specified buffer will be released
|
||||
std::chrono::nanoseconds GetBufferReleaseNS(const Buffer& buffer) const;
|
||||
|
|
|
@ -58,7 +58,7 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
|
|||
event_fifo_id = 0;
|
||||
shutting_down = false;
|
||||
ticks = 0;
|
||||
const auto empty_timed_callback = [](u64, s64) {};
|
||||
const auto empty_timed_callback = [](u64, std::chrono::nanoseconds) {};
|
||||
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
||||
if (is_multicore) {
|
||||
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
||||
|
@ -195,8 +195,9 @@ std::optional<s64> CoreTiming::Advance() {
|
|||
event_queue.pop_back();
|
||||
basic_lock.unlock();
|
||||
|
||||
if (auto event_type{evt.type.lock()}) {
|
||||
event_type->callback(evt.userdata, global_timer - evt.time);
|
||||
if (const auto event_type{evt.type.lock()}) {
|
||||
event_type->callback(
|
||||
evt.userdata, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
|
||||
}
|
||||
|
||||
basic_lock.lock();
|
||||
|
|
|
@ -17,14 +17,12 @@
|
|||
#include "common/common_types.h"
|
||||
#include "common/spin_lock.h"
|
||||
#include "common/thread.h"
|
||||
#include "common/threadsafe_queue.h"
|
||||
#include "common/wall_clock.h"
|
||||
#include "core/hardware_properties.h"
|
||||
|
||||
namespace Core::Timing {
|
||||
|
||||
/// A callback that may be scheduled for a particular core timing event.
|
||||
using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>;
|
||||
using TimedCallback = std::function<void(u64 userdata, std::chrono::nanoseconds ns_late)>;
|
||||
|
||||
/// Contains the characteristics of a particular event.
|
||||
struct EventType {
|
||||
|
@ -42,12 +40,12 @@ struct EventType {
|
|||
* in main CPU clock cycles.
|
||||
*
|
||||
* To schedule an event, you first have to register its type. This is where you pass in the
|
||||
* callback. You then schedule events using the type id you get back.
|
||||
* callback. You then schedule events using the type ID you get back.
|
||||
*
|
||||
* The int cyclesLate that the callbacks get is how many cycles late it was.
|
||||
* The s64 ns_late that the callbacks get is how many ns late it was.
|
||||
* So to schedule a new event on a regular basis:
|
||||
* inside callback:
|
||||
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
|
||||
* ScheduleEvent(period_in_ns - ns_late, callback, "whatever")
|
||||
*/
|
||||
class CoreTiming {
|
||||
public:
|
||||
|
|
|
@ -11,12 +11,13 @@
|
|||
namespace Core::Hardware {
|
||||
|
||||
InterruptManager::InterruptManager(Core::System& system_in) : system(system_in) {
|
||||
gpu_interrupt_event = Core::Timing::CreateEvent("GPUInterrupt", [this](u64 message, s64) {
|
||||
auto nvdrv = system.ServiceManager().GetService<Service::Nvidia::NVDRV>("nvdrv");
|
||||
const u32 syncpt = static_cast<u32>(message >> 32);
|
||||
const u32 value = static_cast<u32>(message);
|
||||
nvdrv->SignalGPUInterruptSyncpt(syncpt, value);
|
||||
});
|
||||
gpu_interrupt_event =
|
||||
Core::Timing::CreateEvent("GPUInterrupt", [this](u64 message, std::chrono::nanoseconds) {
|
||||
auto nvdrv = system.ServiceManager().GetService<Service::Nvidia::NVDRV>("nvdrv");
|
||||
const u32 syncpt = static_cast<u32>(message >> 32);
|
||||
const u32 value = static_cast<u32>(message);
|
||||
nvdrv->SignalGPUInterruptSyncpt(syncpt, value);
|
||||
});
|
||||
}
|
||||
|
||||
InterruptManager::~InterruptManager() = default;
|
||||
|
|
|
@ -144,7 +144,7 @@ struct KernelCore::Impl {
|
|||
|
||||
void InitializePreemption(KernelCore& kernel) {
|
||||
preemption_event = Core::Timing::CreateEvent(
|
||||
"PreemptionCallback", [this, &kernel](u64 userdata, s64 cycles_late) {
|
||||
"PreemptionCallback", [this, &kernel](u64, std::chrono::nanoseconds) {
|
||||
{
|
||||
SchedulerLock lock(kernel);
|
||||
global_scheduler.PreemptThreads();
|
||||
|
|
|
@ -34,7 +34,7 @@ ResultVal<std::shared_ptr<ServerSession>> ServerSession::Create(KernelCore& kern
|
|||
std::shared_ptr<ServerSession> session{std::make_shared<ServerSession>(kernel)};
|
||||
|
||||
session->request_event = Core::Timing::CreateEvent(
|
||||
name, [session](u64 userdata, s64 cycles_late) { session->CompleteSyncRequest(); });
|
||||
name, [session](u64, std::chrono::nanoseconds) { session->CompleteSyncRequest(); });
|
||||
session->name = std::move(name);
|
||||
session->parent = std::move(parent);
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ namespace Kernel {
|
|||
|
||||
TimeManager::TimeManager(Core::System& system_) : system{system_} {
|
||||
time_manager_event_type = Core::Timing::CreateEvent(
|
||||
"Kernel::TimeManagerCallback", [this](u64 thread_handle, [[maybe_unused]] s64 cycles_late) {
|
||||
"Kernel::TimeManagerCallback", [this](u64 thread_handle, std::chrono::nanoseconds) {
|
||||
SchedulerLock lock(system.Kernel());
|
||||
Handle proper_handle = static_cast<Handle>(thread_handle);
|
||||
if (cancelled_events[proper_handle]) {
|
||||
|
|
|
@ -76,8 +76,8 @@ IAppletResource::IAppletResource(Core::System& system)
|
|||
GetController<Controller_Stubbed>(HidController::Unknown3).SetCommonHeaderOffset(0x5000);
|
||||
|
||||
// Register update callbacks
|
||||
pad_update_event =
|
||||
Core::Timing::CreateEvent("HID::UpdatePadCallback", [this](u64 userdata, s64 ns_late) {
|
||||
pad_update_event = Core::Timing::CreateEvent(
|
||||
"HID::UpdatePadCallback", [this](u64 userdata, std::chrono::nanoseconds ns_late) {
|
||||
UpdateControllers(userdata, ns_late);
|
||||
});
|
||||
|
||||
|
@ -108,7 +108,7 @@ void IAppletResource::GetSharedMemoryHandle(Kernel::HLERequestContext& ctx) {
|
|||
rb.PushCopyObjects(shared_mem);
|
||||
}
|
||||
|
||||
void IAppletResource::UpdateControllers(u64 userdata, s64 ns_late) {
|
||||
void IAppletResource::UpdateControllers(u64 userdata, std::chrono::nanoseconds ns_late) {
|
||||
auto& core_timing = system.CoreTiming();
|
||||
|
||||
const bool should_reload = Settings::values.is_device_reload_pending.exchange(false);
|
||||
|
@ -119,8 +119,7 @@ void IAppletResource::UpdateControllers(u64 userdata, s64 ns_late) {
|
|||
controller->OnUpdate(core_timing, shared_mem->GetPointer(), SHARED_MEMORY_SIZE);
|
||||
}
|
||||
|
||||
const auto future_ns = pad_update_ns - std::chrono::nanoseconds{ns_late};
|
||||
core_timing.ScheduleEvent(future_ns, pad_update_event);
|
||||
core_timing.ScheduleEvent(pad_update_ns - ns_late, pad_update_event);
|
||||
}
|
||||
|
||||
class IActiveVibrationDeviceList final : public ServiceFramework<IActiveVibrationDeviceList> {
|
||||
|
|
|
@ -4,10 +4,9 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "core/hle/service/hid/controllers/controller_base.h"
|
||||
#include "core/hle/service/service.h"
|
||||
#include <chrono>
|
||||
|
||||
#include "controllers/controller_base.h"
|
||||
#include "core/hle/service/hid/controllers/controller_base.h"
|
||||
#include "core/hle/service/service.h"
|
||||
|
||||
namespace Core::Timing {
|
||||
|
@ -65,7 +64,7 @@ private:
|
|||
}
|
||||
|
||||
void GetSharedMemoryHandle(Kernel::HLERequestContext& ctx);
|
||||
void UpdateControllers(u64 userdata, s64 cycles_late);
|
||||
void UpdateControllers(u64 userdata, std::chrono::nanoseconds ns_late);
|
||||
|
||||
std::shared_ptr<Kernel::SharedMemory> shared_mem;
|
||||
|
||||
|
|
|
@ -66,13 +66,13 @@ NVFlinger::NVFlinger(Core::System& system) : system(system) {
|
|||
guard = std::make_shared<std::mutex>();
|
||||
|
||||
// Schedule the screen composition events
|
||||
composition_event =
|
||||
Core::Timing::CreateEvent("ScreenComposition", [this](u64 userdata, s64 ns_late) {
|
||||
composition_event = Core::Timing::CreateEvent(
|
||||
"ScreenComposition", [this](u64, std::chrono::nanoseconds ns_late) {
|
||||
Lock();
|
||||
Compose();
|
||||
|
||||
const auto ticks = std::chrono::nanoseconds{GetNextTicks()};
|
||||
const auto ticks_delta = ticks - std::chrono::nanoseconds{ns_late};
|
||||
const auto ticks_delta = ticks - ns_late;
|
||||
const auto future_ns = std::max(std::chrono::nanoseconds::zero(), ticks_delta);
|
||||
|
||||
this->system.CoreTiming().ScheduleEvent(future_ns, composition_event);
|
||||
|
|
|
@ -188,9 +188,11 @@ CheatEngine::~CheatEngine() {
|
|||
}
|
||||
|
||||
void CheatEngine::Initialize() {
|
||||
event = Core::Timing::CreateEvent(
|
||||
"CheatEngine::FrameCallback::" + Common::HexToString(metadata.main_nso_build_id),
|
||||
[this](u64 userdata, s64 ns_late) { FrameCallback(userdata, ns_late); });
|
||||
event = Core::Timing::CreateEvent("CheatEngine::FrameCallback::" +
|
||||
Common::HexToString(metadata.main_nso_build_id),
|
||||
[this](u64 userdata, std::chrono::nanoseconds ns_late) {
|
||||
FrameCallback(userdata, ns_late);
|
||||
});
|
||||
core_timing.ScheduleEvent(CHEAT_ENGINE_NS, event);
|
||||
|
||||
metadata.process_id = system.CurrentProcess()->GetProcessID();
|
||||
|
@ -217,7 +219,7 @@ void CheatEngine::Reload(std::vector<CheatEntry> cheats) {
|
|||
|
||||
MICROPROFILE_DEFINE(Cheat_Engine, "Add-Ons", "Cheat Engine", MP_RGB(70, 200, 70));
|
||||
|
||||
void CheatEngine::FrameCallback(u64 userdata, s64 ns_late) {
|
||||
void CheatEngine::FrameCallback(u64, std::chrono::nanoseconds ns_late) {
|
||||
if (is_pending_reload.exchange(false)) {
|
||||
vm.LoadProgram(cheats);
|
||||
}
|
||||
|
@ -230,8 +232,7 @@ void CheatEngine::FrameCallback(u64 userdata, s64 ns_late) {
|
|||
|
||||
vm.Execute(metadata);
|
||||
|
||||
const auto future_ns = CHEAT_ENGINE_NS - std::chrono::nanoseconds{ns_late};
|
||||
core_timing.ScheduleEvent(future_ns, event);
|
||||
core_timing.ScheduleEvent(CHEAT_ENGINE_NS - ns_late, event);
|
||||
}
|
||||
|
||||
} // namespace Core::Memory
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "common/common_types.h"
|
||||
|
@ -71,7 +72,7 @@ public:
|
|||
void Reload(std::vector<CheatEntry> cheats);
|
||||
|
||||
private:
|
||||
void FrameCallback(u64 userdata, s64 cycles_late);
|
||||
void FrameCallback(u64 userdata, std::chrono::nanoseconds ns_late);
|
||||
|
||||
DmntCheatVm vm;
|
||||
CheatProcessMetadata metadata;
|
||||
|
|
|
@ -55,9 +55,10 @@ void MemoryWriteWidth(Core::Memory::Memory& memory, u32 width, VAddr addr, u64 v
|
|||
|
||||
Freezer::Freezer(Core::Timing::CoreTiming& core_timing_, Core::Memory::Memory& memory_)
|
||||
: core_timing{core_timing_}, memory{memory_} {
|
||||
event = Core::Timing::CreateEvent(
|
||||
"MemoryFreezer::FrameCallback",
|
||||
[this](u64 userdata, s64 ns_late) { FrameCallback(userdata, ns_late); });
|
||||
event = Core::Timing::CreateEvent("MemoryFreezer::FrameCallback",
|
||||
[this](u64 userdata, std::chrono::nanoseconds ns_late) {
|
||||
FrameCallback(userdata, ns_late);
|
||||
});
|
||||
core_timing.ScheduleEvent(memory_freezer_ns, event);
|
||||
}
|
||||
|
||||
|
@ -158,7 +159,7 @@ std::vector<Freezer::Entry> Freezer::GetEntries() const {
|
|||
return entries;
|
||||
}
|
||||
|
||||
void Freezer::FrameCallback(u64 userdata, s64 ns_late) {
|
||||
void Freezer::FrameCallback(u64, std::chrono::nanoseconds ns_late) {
|
||||
if (!IsActive()) {
|
||||
LOG_DEBUG(Common_Memory, "Memory freezer has been deactivated, ending callback events.");
|
||||
return;
|
||||
|
@ -173,8 +174,7 @@ void Freezer::FrameCallback(u64 userdata, s64 ns_late) {
|
|||
MemoryWriteWidth(memory, entry.width, entry.address, entry.value);
|
||||
}
|
||||
|
||||
const auto future_ns = memory_freezer_ns - std::chrono::nanoseconds{ns_late};
|
||||
core_timing.ScheduleEvent(future_ns, event);
|
||||
core_timing.ScheduleEvent(memory_freezer_ns - ns_late, event);
|
||||
}
|
||||
|
||||
void Freezer::FillEntryReads() {
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <optional>
|
||||
|
@ -72,7 +73,7 @@ public:
|
|||
std::vector<Entry> GetEntries() const;
|
||||
|
||||
private:
|
||||
void FrameCallback(u64 userdata, s64 cycles_late);
|
||||
void FrameCallback(u64 userdata, std::chrono::nanoseconds ns_late);
|
||||
void FillEntryReads();
|
||||
|
||||
std::atomic_bool active{false};
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
#include <array>
|
||||
#include <bitset>
|
||||
#include <chrono>
|
||||
#include <cstdlib>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
@ -17,7 +18,6 @@
|
|||
namespace {
|
||||
// Numbers are chosen randomly to make sure the correct one is given.
|
||||
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
||||
constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
||||
constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
|
||||
std::array<s64, 5> delays{};
|
||||
|
||||
|
@ -25,12 +25,12 @@ std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|||
u64 expected_callback = 0;
|
||||
|
||||
template <unsigned int IDX>
|
||||
void HostCallbackTemplate(u64 userdata, s64 nanoseconds_late) {
|
||||
void HostCallbackTemplate(u64 userdata, std::chrono::nanoseconds ns_late) {
|
||||
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
||||
callbacks_ran_flags.set(IDX);
|
||||
REQUIRE(CB_IDS[IDX] == userdata);
|
||||
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
|
||||
delays[IDX] = nanoseconds_late;
|
||||
delays[IDX] = ns_late.count();
|
||||
++expected_callback;
|
||||
}
|
||||
|
||||
|
@ -77,10 +77,12 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|||
|
||||
core_timing.SyncPause(true);
|
||||
|
||||
u64 one_micro = 1000U;
|
||||
const u64 one_micro = 1000U;
|
||||
for (std::size_t i = 0; i < events.size(); i++) {
|
||||
u64 order = calls_order[i];
|
||||
core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
|
||||
const u64 order = calls_order[i];
|
||||
const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
|
||||
|
||||
core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
|
||||
}
|
||||
/// test pause
|
||||
REQUIRE(callbacks_ran_flags.none());
|
||||
|
|
Loading…
Reference in a new issue