1
0
Fork 0
forked from suyu/suyu

Merge pull request #9936 from liamwhite/m_this

kernel: use consistent style
This commit is contained in:
liamwhite 2023-03-13 09:16:16 -04:00 committed by GitHub
commit 1f952f6ac9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
120 changed files with 2172 additions and 2735 deletions

View file

@ -158,6 +158,7 @@ add_library(core STATIC
hid/motion_input.h
hle/api_version.h
hle/ipc.h
hle/kernel/board/nintendo/nx/k_memory_layout.cpp
hle/kernel/board/nintendo/nx/k_memory_layout.h
hle/kernel/board/nintendo/nx/k_system_control.cpp
hle/kernel/board/nintendo/nx/k_system_control.h
@ -211,12 +212,10 @@ add_library(core STATIC
hle/kernel/k_light_condition_variable.h
hle/kernel/k_light_lock.cpp
hle/kernel/k_light_lock.h
hle/kernel/k_linked_list.h
hle/kernel/k_memory_block.h
hle/kernel/k_memory_block_manager.cpp
hle/kernel/k_memory_block_manager.h
hle/kernel/k_memory_layout.cpp
hle/kernel/k_memory_layout.board.nintendo_nx.cpp
hle/kernel/k_memory_layout.h
hle/kernel/k_memory_manager.cpp
hle/kernel/k_memory_manager.h

View file

@ -434,7 +434,7 @@ struct System::Impl {
}
Service::Glue::ApplicationLaunchProperty launch{};
launch.title_id = process.GetProgramID();
launch.title_id = process.GetProgramId();
FileSys::PatchManager pm{launch.title_id, fs_controller, *content_provider};
launch.version = pm.GetGameVersion().value_or(0);
@ -762,7 +762,7 @@ const Core::SpeedLimiter& System::SpeedLimiter() const {
}
u64 System::GetApplicationProcessProgramID() const {
return impl->kernel.ApplicationProcess()->GetProgramID();
return impl->kernel.ApplicationProcess()->GetProgramId();
}
Loader::ResultStatus System::GetGameName(std::string& out) const {

View file

@ -421,7 +421,7 @@ void GDBStub::HandleBreakpointRemove(std::string_view command) {
static std::optional<std::string> GetNameFromThreadType32(Core::Memory::Memory& memory,
const Kernel::KThread* thread) {
// Read thread type from TLS
const VAddr tls_thread_type{memory.Read32(thread->GetTLSAddress() + 0x1fc)};
const VAddr tls_thread_type{memory.Read32(thread->GetTlsAddress() + 0x1fc)};
const VAddr argument_thread_type{thread->GetArgument()};
if (argument_thread_type && tls_thread_type != argument_thread_type) {
@ -452,7 +452,7 @@ static std::optional<std::string> GetNameFromThreadType32(Core::Memory::Memory&
static std::optional<std::string> GetNameFromThreadType64(Core::Memory::Memory& memory,
const Kernel::KThread* thread) {
// Read thread type from TLS
const VAddr tls_thread_type{memory.Read64(thread->GetTLSAddress() + 0x1f8)};
const VAddr tls_thread_type{memory.Read64(thread->GetTlsAddress() + 0x1f8)};
const VAddr argument_thread_type{thread->GetArgument()};
if (argument_thread_type && tls_thread_type != argument_thread_type) {
@ -576,7 +576,7 @@ void GDBStub::HandleQuery(std::string_view command) {
const auto& threads = system.ApplicationProcess()->GetThreadList();
std::vector<std::string> thread_ids;
for (const auto& thread : threads) {
thread_ids.push_back(fmt::format("{:x}", thread->GetThreadID()));
thread_ids.push_back(fmt::format("{:x}", thread->GetThreadId()));
}
SendReply(fmt::format("m{}", fmt::join(thread_ids, ",")));
} else if (command.starts_with("sThreadInfo")) {
@ -591,11 +591,11 @@ void GDBStub::HandleQuery(std::string_view command) {
for (const auto* thread : threads) {
auto thread_name{GetThreadName(system, thread)};
if (!thread_name) {
thread_name = fmt::format("Thread {:d}", thread->GetThreadID());
thread_name = fmt::format("Thread {:d}", thread->GetThreadId());
}
buffer += fmt::format(R"(<thread id="{:x}" core="{:d}" name="{}">{}</thread>)",
thread->GetThreadID(), thread->GetActiveCore(),
thread->GetThreadId(), thread->GetActiveCore(),
EscapeXML(*thread_name), GetThreadState(thread));
}
@ -756,7 +756,7 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
reply = fmt::format("Process: {:#x} ({})\n"
"Program Id: {:#018x}\n",
process->GetProcessID(), process->GetName(), process->GetProgramID());
process->GetProcessId(), process->GetName(), process->GetProgramId());
reply +=
fmt::format("Layout:\n"
" Alias: {:#012x} - {:#012x}\n"
@ -819,7 +819,7 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
Kernel::KThread* GDBStub::GetThreadByID(u64 thread_id) {
const auto& threads{system.ApplicationProcess()->GetThreadList()};
for (auto* thread : threads) {
if (thread->GetThreadID() == thread_id) {
if (thread->GetThreadId() == thread_id) {
return thread;
}
}

View file

@ -259,7 +259,7 @@ void GDBStubA64::WriteRegisters(Kernel::KThread* thread, std::string_view regist
std::string GDBStubA64::ThreadStatus(const Kernel::KThread* thread, u8 signal) const {
return fmt::format("T{:02x}{:02x}:{};{:02x}:{};{:02x}:{};thread:{:x};", signal, PC_REGISTER,
RegRead(thread, PC_REGISTER), SP_REGISTER, RegRead(thread, SP_REGISTER),
LR_REGISTER, RegRead(thread, LR_REGISTER), thread->GetThreadID());
LR_REGISTER, RegRead(thread, LR_REGISTER), thread->GetThreadId());
}
u32 GDBStubA64::BreakpointInstruction() const {
@ -469,7 +469,7 @@ void GDBStubA32::WriteRegisters(Kernel::KThread* thread, std::string_view regist
std::string GDBStubA32::ThreadStatus(const Kernel::KThread* thread, u8 signal) const {
return fmt::format("T{:02x}{:02x}:{};{:02x}:{};{:02x}:{};thread:{:x};", signal, PC_REGISTER,
RegRead(thread, PC_REGISTER), SP_REGISTER, RegRead(thread, SP_REGISTER),
LR_REGISTER, RegRead(thread, LR_REGISTER), thread->GetThreadID());
LR_REGISTER, RegRead(thread, LR_REGISTER), thread->GetThreadId());
}
u32 GDBStubA32::BreakpointInstruction() const {

View file

@ -12,20 +12,19 @@
namespace Kernel {
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel_)
: kernel{kernel_}, scheduler_lock{kernel_} {}
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel)
: m_kernel{kernel}, m_scheduler_lock{kernel} {}
GlobalSchedulerContext::~GlobalSchedulerContext() = default;
void GlobalSchedulerContext::AddThread(KThread* thread) {
std::scoped_lock lock{global_list_guard};
thread_list.push_back(thread);
std::scoped_lock lock{m_global_list_guard};
m_thread_list.push_back(thread);
}
void GlobalSchedulerContext::RemoveThread(KThread* thread) {
std::scoped_lock lock{global_list_guard};
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
std::scoped_lock lock{m_global_list_guard};
std::erase(m_thread_list, thread);
}
void GlobalSchedulerContext::PreemptThreads() {
@ -38,37 +37,37 @@ void GlobalSchedulerContext::PreemptThreads() {
63,
};
ASSERT(IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
const u32 priority = preemption_priorities[core_id];
KScheduler::RotateScheduledQueue(kernel, core_id, priority);
KScheduler::RotateScheduledQueue(m_kernel, core_id, priority);
}
}
bool GlobalSchedulerContext::IsLocked() const {
return scheduler_lock.IsLockedByCurrentThread();
return m_scheduler_lock.IsLockedByCurrentThread();
}
void GlobalSchedulerContext::RegisterDummyThreadForWakeup(KThread* thread) {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
woken_dummy_threads.insert(thread);
m_woken_dummy_threads.insert(thread);
}
void GlobalSchedulerContext::UnregisterDummyThreadForWakeup(KThread* thread) {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
woken_dummy_threads.erase(thread);
m_woken_dummy_threads.erase(thread);
}
void GlobalSchedulerContext::WakeupWaitingDummyThreads() {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
for (auto* thread : woken_dummy_threads) {
for (auto* thread : m_woken_dummy_threads) {
thread->DummyThreadEndWait();
}
woken_dummy_threads.clear();
m_woken_dummy_threads.clear();
}
} // namespace Kernel

View file

@ -33,7 +33,7 @@ class GlobalSchedulerContext final {
public:
using LockType = KAbstractSchedulerLock<KScheduler>;
explicit GlobalSchedulerContext(KernelCore& kernel_);
explicit GlobalSchedulerContext(KernelCore& kernel);
~GlobalSchedulerContext();
/// Adds a new thread to the scheduler
@ -43,8 +43,9 @@ public:
void RemoveThread(KThread* thread);
/// Returns a list of all threads managed by the scheduler
[[nodiscard]] const std::vector<KThread*>& GetThreadList() const {
return thread_list;
/// This is only safe to iterate while holding the scheduler lock
const std::vector<KThread*>& GetThreadList() const {
return m_thread_list;
}
/**
@ -63,30 +64,26 @@ public:
void RegisterDummyThreadForWakeup(KThread* thread);
void WakeupWaitingDummyThreads();
[[nodiscard]] LockType& SchedulerLock() {
return scheduler_lock;
}
[[nodiscard]] const LockType& SchedulerLock() const {
return scheduler_lock;
LockType& SchedulerLock() {
return m_scheduler_lock;
}
private:
friend class KScopedSchedulerLock;
friend class KScopedSchedulerLockAndSleep;
KernelCore& kernel;
KernelCore& m_kernel;
std::atomic_bool scheduler_update_needed{};
KSchedulerPriorityQueue priority_queue;
LockType scheduler_lock;
std::atomic_bool m_scheduler_update_needed{};
KSchedulerPriorityQueue m_priority_queue;
LockType m_scheduler_lock;
/// Lists dummy threads pending wakeup on lock release
std::set<KThread*> woken_dummy_threads;
std::set<KThread*> m_woken_dummy_threads;
/// Lists all thread ids that aren't deleted/etc.
std::vector<KThread*> thread_list;
std::mutex global_list_guard;
std::vector<KThread*> m_thread_list;
std::mutex m_global_list_guard;
};
} // namespace Kernel

View file

@ -14,8 +14,8 @@
namespace Kernel {
KAddressArbiter::KAddressArbiter(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KAddressArbiter::KAddressArbiter(Core::System& system)
: m_system{system}, m_kernel{system.Kernel()} {}
KAddressArbiter::~KAddressArbiter() = default;
namespace {
@ -90,8 +90,8 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
public:
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel, KAddressArbiter::ThreadTree* t)
: KThreadQueue(kernel), m_tree(t) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// If the thread is waiting on an address arbiter, remove it from the tree.
@ -105,7 +105,7 @@ public:
}
private:
KAddressArbiter::ThreadTree* m_tree;
KAddressArbiter::ThreadTree* m_tree{};
};
} // namespace
@ -114,10 +114,10 @@ Result KAddressArbiter::Signal(VAddr addr, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
auto it = thread_tree.nfind_key({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
auto it = m_tree.nfind_key({addr, -1});
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -126,31 +126,27 @@ Result KAddressArbiter::Signal(VAddr addr, s32 count) {
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Check the userspace value.
s32 user_value{};
if (!UpdateIfEqual(system, &user_value, addr, value, value + 1)) {
LOG_ERROR(Kernel, "Invalid current memory!");
return ResultInvalidCurrentMemory;
}
if (user_value != value) {
return ResultInvalidState;
}
R_UNLESS(UpdateIfEqual(m_system, std::addressof(user_value), addr, value, value + 1),
ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState);
auto it = thread_tree.nfind_key({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
auto it = m_tree.nfind_key({addr, -1});
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -159,33 +155,33 @@ Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 cou
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
[[maybe_unused]] const KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
auto it = thread_tree.nfind_key({addr, -1});
auto it = m_tree.nfind_key({addr, -1});
// Determine the updated value.
s32 new_value{};
if (count <= 0) {
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
if (it != m_tree.end() && it->GetAddressArbiterKey() == addr) {
new_value = value - 2;
} else {
new_value = value + 1;
}
} else {
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
if (it != m_tree.end() && it->GetAddressArbiterKey() == addr) {
auto tmp_it = it;
s32 tmp_num_waiters{};
while (++tmp_it != thread_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
while (++tmp_it != m_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
if (tmp_num_waiters++ >= count) {
break;
}
@ -205,20 +201,15 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 val
s32 user_value{};
bool succeeded{};
if (value != new_value) {
succeeded = UpdateIfEqual(system, &user_value, addr, value, new_value);
succeeded = UpdateIfEqual(m_system, std::addressof(user_value), addr, value, new_value);
} else {
succeeded = ReadFromUser(system, &user_value, addr);
succeeded = ReadFromUser(m_system, std::addressof(user_value), addr);
}
if (!succeeded) {
LOG_ERROR(Kernel, "Invalid current memory!");
return ResultInvalidCurrentMemory;
}
if (user_value != value) {
return ResultInvalidState;
}
R_UNLESS(succeeded, ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState);
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -227,57 +218,57 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 val
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = GetCurrentThreadPointer(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
ThreadQueueImplForKAddressArbiter wait_queue(m_kernel, std::addressof(m_tree));
{
KScopedSchedulerLockAndSleep slp{kernel, std::addressof(timer), cur_thread, timeout};
KScopedSchedulerLockAndSleep slp{m_kernel, std::addressof(timer), cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Read the value from userspace.
s32 user_value{};
bool succeeded{};
if (decrement) {
succeeded = DecrementIfLessThan(system, &user_value, addr, value);
succeeded = DecrementIfLessThan(m_system, std::addressof(user_value), addr, value);
} else {
succeeded = ReadFromUser(system, &user_value, addr);
succeeded = ReadFromUser(m_system, std::addressof(user_value), addr);
}
if (!succeeded) {
slp.CancelSleep();
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
// Check that the value is less than the specified one.
if (user_value >= value) {
slp.CancelSleep();
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return ResultTimedOut;
R_THROW(ResultTimedOut);
}
// Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread);
cur_thread->SetAddressArbiter(std::addressof(m_tree), addr);
m_tree.insert(*cur_thread);
// Wait for the thread to finish.
wait_queue.SetHardwareTimer(timer);
@ -291,41 +282,41 @@ Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s6
Result KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = GetCurrentThreadPointer(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
ThreadQueueImplForKAddressArbiter wait_queue(m_kernel, std::addressof(m_tree));
{
KScopedSchedulerLockAndSleep slp{kernel, std::addressof(timer), cur_thread, timeout};
KScopedSchedulerLockAndSleep slp{m_kernel, std::addressof(timer), cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Read the value from userspace.
s32 user_value{};
if (!ReadFromUser(system, &user_value, addr)) {
if (!ReadFromUser(m_system, std::addressof(user_value), addr)) {
slp.CancelSleep();
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
// Check that the value is equal.
if (value != user_value) {
slp.CancelSleep();
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return ResultTimedOut;
R_THROW(ResultTimedOut);
}
// Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread);
cur_thread->SetAddressArbiter(std::addressof(m_tree), addr);
m_tree.insert(*cur_thread);
// Wait for the thread to finish.
wait_queue.SetHardwareTimer(timer);

View file

@ -22,47 +22,46 @@ class KAddressArbiter {
public:
using ThreadTree = KConditionVariable::ThreadTree;
explicit KAddressArbiter(Core::System& system_);
explicit KAddressArbiter(Core::System& system);
~KAddressArbiter();
[[nodiscard]] Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
switch (type) {
case Svc::SignalType::Signal:
return Signal(addr, count);
R_RETURN(this->Signal(addr, count));
case Svc::SignalType::SignalAndIncrementIfEqual:
return SignalAndIncrementIfEqual(addr, value, count);
R_RETURN(this->SignalAndIncrementIfEqual(addr, value, count));
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
R_RETURN(this->SignalAndModifyByWaitingCountIfEqual(addr, value, count));
default:
UNREACHABLE();
}
ASSERT(false);
return ResultUnknown;
}
[[nodiscard]] Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
s64 timeout) {
Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value, s64 timeout) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
return WaitIfLessThan(addr, value, false, timeout);
R_RETURN(WaitIfLessThan(addr, value, false, timeout));
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
return WaitIfLessThan(addr, value, true, timeout);
R_RETURN(WaitIfLessThan(addr, value, true, timeout));
case Svc::ArbitrationType::WaitIfEqual:
return WaitIfEqual(addr, value, timeout);
R_RETURN(WaitIfEqual(addr, value, timeout));
default:
UNREACHABLE();
}
ASSERT(false);
return ResultUnknown;
}
private:
[[nodiscard]] Result Signal(VAddr addr, s32 count);
[[nodiscard]] Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
[[nodiscard]] Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
Result Signal(VAddr addr, s32 count);
Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
private:
ThreadTree m_tree;
Core::System& m_system;
KernelCore& m_kernel;
};
} // namespace Kernel

View file

@ -13,40 +13,40 @@ class KAffinityMask {
public:
constexpr KAffinityMask() = default;
[[nodiscard]] constexpr u64 GetAffinityMask() const {
return this->mask;
constexpr u64 GetAffinityMask() const {
return m_mask;
}
constexpr void SetAffinityMask(u64 new_mask) {
ASSERT((new_mask & ~AllowedAffinityMask) == 0);
this->mask = new_mask;
m_mask = new_mask;
}
[[nodiscard]] constexpr bool GetAffinity(s32 core) const {
return (this->mask & GetCoreBit(core)) != 0;
constexpr bool GetAffinity(s32 core) const {
return (m_mask & GetCoreBit(core)) != 0;
}
constexpr void SetAffinity(s32 core, bool set) {
if (set) {
this->mask |= GetCoreBit(core);
m_mask |= GetCoreBit(core);
} else {
this->mask &= ~GetCoreBit(core);
m_mask &= ~GetCoreBit(core);
}
}
constexpr void SetAll() {
this->mask = AllowedAffinityMask;
m_mask = AllowedAffinityMask;
}
private:
[[nodiscard]] static constexpr u64 GetCoreBit(s32 core) {
static constexpr u64 GetCoreBit(s32 core) {
ASSERT(0 <= core && core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
return (1ULL << core);
}
static constexpr u64 AllowedAffinityMask = (1ULL << Core::Hardware::NUM_CPU_CORES) - 1;
u64 mask{};
u64 m_mask{};
};
} // namespace Kernel

View file

@ -12,11 +12,11 @@ KAutoObject* KAutoObject::Create(KAutoObject* obj) {
}
void KAutoObject::RegisterWithKernel() {
kernel.RegisterKernelObject(this);
m_kernel.RegisterKernelObject(this);
}
void KAutoObject::UnregisterWithKernel() {
kernel.UnregisterKernelObject(this);
m_kernel.UnregisterKernelObject(this);
}
} // namespace Kernel

View file

@ -80,7 +80,7 @@ private:
KERNEL_AUTOOBJECT_TRAITS_IMPL(KAutoObject, KAutoObject, const);
public:
explicit KAutoObject(KernelCore& kernel_) : kernel(kernel_) {
explicit KAutoObject(KernelCore& kernel) : m_kernel(kernel) {
RegisterWithKernel();
}
virtual ~KAutoObject() = default;
@ -164,17 +164,12 @@ public:
}
}
const std::string& GetName() const {
return name;
}
private:
void RegisterWithKernel();
void UnregisterWithKernel();
protected:
KernelCore& kernel;
std::string name;
KernelCore& m_kernel;
private:
std::atomic<u32> m_ref_count{};
@ -184,7 +179,7 @@ class KAutoObjectWithListContainer;
class KAutoObjectWithList : public KAutoObject, public boost::intrusive::set_base_hook<> {
public:
explicit KAutoObjectWithList(KernelCore& kernel_) : KAutoObject(kernel_) {}
explicit KAutoObjectWithList(KernelCore& kernel) : KAutoObject(kernel) {}
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
const u64 lid = lhs.GetId();
@ -200,7 +195,7 @@ public:
}
friend bool operator<(const KAutoObjectWithList& left, const KAutoObjectWithList& right) {
return &left < &right;
return KAutoObjectWithList::Compare(left, right) < 0;
}
public:
@ -208,10 +203,6 @@ public:
return reinterpret_cast<u64>(this);
}
virtual const std::string& GetName() const {
return name;
}
private:
friend class KAutoObjectWithListContainer;
};

View file

@ -11,7 +11,7 @@
namespace Kernel {
Result KCapabilities::InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table) {
Result KCapabilities::InitializeForKip(std::span<const u32> kern_caps, KPageTable* page_table) {
// We're initializing an initial process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();

View file

@ -22,7 +22,7 @@ class KCapabilities {
public:
constexpr explicit KCapabilities() = default;
Result InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table);
Result InitializeForKip(std::span<const u32> kern_caps, KPageTable* page_table);
Result InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table);
static Result CheckCapabilities(KernelCore& kernel, std::span<const u32> user_caps);

View file

@ -11,26 +11,21 @@
namespace Kernel {
KClientPort::KClientPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KClientPort::KClientPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KClientPort::~KClientPort() = default;
void KClientPort::Initialize(KPort* parent_port_, s32 max_sessions_, std::string&& name_) {
void KClientPort::Initialize(KPort* parent, s32 max_sessions) {
// Set member variables.
num_sessions = 0;
peak_sessions = 0;
parent = parent_port_;
max_sessions = max_sessions_;
name = std::move(name_);
m_num_sessions = 0;
m_peak_sessions = 0;
m_parent = parent;
m_max_sessions = max_sessions;
}
void KClientPort::OnSessionFinalized() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// This might happen if a session was improperly used with this port.
ASSERT_MSG(num_sessions > 0, "num_sessions is invalid");
const auto prev = num_sessions--;
if (prev == max_sessions) {
if (const auto prev = m_num_sessions--; prev == m_max_sessions) {
this->NotifyAvailable();
}
}
@ -47,81 +42,81 @@ bool KClientPort::IsServerClosed() const {
void KClientPort::Destroy() {
// Note with our parent that we're closed.
parent->OnClientClosed();
m_parent->OnClientClosed();
// Close our reference to our parent.
parent->Close();
m_parent->Close();
}
bool KClientPort::IsSignaled() const {
return num_sessions < max_sessions;
return m_num_sessions.load() < m_max_sessions;
}
Result KClientPort::CreateSession(KClientSession** out) {
// Declare the session we're going to allocate.
KSession* session{};
// Reserve a new session from the resource limit.
//! FIXME: we are reserving this from the wrong resource limit!
KScopedResourceReservation session_reservation(kernel.ApplicationProcess()->GetResourceLimit(),
LimitableResource::SessionCountMax);
KScopedResourceReservation session_reservation(
m_kernel.ApplicationProcess()->GetResourceLimit(), LimitableResource::SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
// Allocate a session normally.
session = KSession::Create(m_kernel);
// Check that we successfully created a session.
R_UNLESS(session != nullptr, ResultOutOfResource);
// Update the session counts.
{
ON_RESULT_FAILURE {
session->Close();
};
// Atomically increment the number of sessions.
s32 new_sessions{};
{
const auto max = max_sessions;
auto cur_sessions = num_sessions.load(std::memory_order_acquire);
const auto max = m_max_sessions;
auto cur_sessions = m_num_sessions.load(std::memory_order_acquire);
do {
R_UNLESS(cur_sessions < max, ResultOutOfSessions);
new_sessions = cur_sessions + 1;
} while (!num_sessions.compare_exchange_weak(cur_sessions, new_sessions,
std::memory_order_relaxed));
} while (!m_num_sessions.compare_exchange_weak(cur_sessions, new_sessions,
std::memory_order_relaxed));
}
// Atomically update the peak session tracking.
{
auto peak = peak_sessions.load(std::memory_order_acquire);
auto peak = m_peak_sessions.load(std::memory_order_acquire);
do {
if (peak >= new_sessions) {
break;
}
} while (!peak_sessions.compare_exchange_weak(peak, new_sessions,
std::memory_order_relaxed));
} while (!m_peak_sessions.compare_exchange_weak(peak, new_sessions,
std::memory_order_relaxed));
}
}
// Create a new session.
KSession* session = KSession::Create(kernel);
if (session == nullptr) {
// Decrement the session count.
const auto prev = num_sessions--;
if (prev == max_sessions) {
this->NotifyAvailable();
}
return ResultOutOfResource;
}
// Initialize the session.
session->Initialize(this, parent->GetName());
session->Initialize(this, m_parent->GetName());
// Commit the session reservation.
session_reservation.Commit();
// Register the session.
KSession::Register(kernel, session);
auto session_guard = SCOPE_GUARD({
KSession::Register(m_kernel, session);
ON_RESULT_FAILURE {
session->GetClientSession().Close();
session->GetServerSession().Close();
});
};
// Enqueue the session with our parent.
R_TRY(parent->EnqueueSession(std::addressof(session->GetServerSession())));
R_TRY(m_parent->EnqueueSession(std::addressof(session->GetServerSession())));
// We succeeded, so set the output.
session_guard.Cancel();
*out = std::addressof(session->GetClientSession());
return ResultSuccess;
R_SUCCEED();
}
} // namespace Kernel

View file

@ -4,7 +4,6 @@
#pragma once
#include <memory>
#include <string>
#include "common/common_types.h"
#include "core/hle/kernel/k_synchronization_object.h"
@ -20,28 +19,28 @@ class KClientPort final : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KClientPort, KSynchronizationObject);
public:
explicit KClientPort(KernelCore& kernel_);
explicit KClientPort(KernelCore& kernel);
~KClientPort() override;
void Initialize(KPort* parent_, s32 max_sessions_, std::string&& name_);
void Initialize(KPort* parent, s32 max_sessions);
void OnSessionFinalized();
void OnServerClosed();
const KPort* GetParent() const {
return parent;
return m_parent;
}
KPort* GetParent() {
return parent;
return m_parent;
}
s32 GetNumSessions() const {
return num_sessions;
return m_num_sessions;
}
s32 GetPeakSessions() const {
return peak_sessions;
return m_peak_sessions;
}
s32 GetMaxSessions() const {
return max_sessions;
return m_max_sessions;
}
bool IsLight() const;
@ -54,10 +53,10 @@ public:
Result CreateSession(KClientSession** out);
private:
std::atomic<s32> num_sessions{};
std::atomic<s32> peak_sessions{};
s32 max_sessions{};
KPort* parent{};
std::atomic<s32> m_num_sessions{};
std::atomic<s32> m_peak_sessions{};
s32 m_max_sessions{};
KPort* m_parent{};
};
} // namespace Kernel

View file

@ -12,28 +12,27 @@ namespace Kernel {
static constexpr u32 MessageBufferSize = 0x100;
KClientSession::KClientSession(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KClientSession::KClientSession(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
KClientSession::~KClientSession() = default;
void KClientSession::Destroy() {
parent->OnClientClosed();
parent->Close();
m_parent->OnClientClosed();
m_parent->Close();
}
void KClientSession::OnServerClosed() {}
Result KClientSession::SendSyncRequest() {
// Create a session request.
KSessionRequest* request = KSessionRequest::Create(kernel);
KSessionRequest* request = KSessionRequest::Create(m_kernel);
R_UNLESS(request != nullptr, ResultOutOfResource);
SCOPE_EXIT({ request->Close(); });
// Initialize the request.
request->Initialize(nullptr, GetCurrentThread(kernel).GetTLSAddress(), MessageBufferSize);
request->Initialize(nullptr, GetCurrentThread(m_kernel).GetTlsAddress(), MessageBufferSize);
// Send the request.
return parent->GetServerSession().OnRequest(request);
R_RETURN(m_parent->GetServerSession().OnRequest(request));
}
} // namespace Kernel

View file

@ -30,20 +30,19 @@ class KClientSession final
KERNEL_AUTOOBJECT_TRAITS(KClientSession, KAutoObject);
public:
explicit KClientSession(KernelCore& kernel_);
explicit KClientSession(KernelCore& kernel);
~KClientSession() override;
void Initialize(KSession* parent_session_, std::string&& name_) {
void Initialize(KSession* parent) {
// Set member variables.
parent = parent_session_;
name = std::move(name_);
m_parent = parent;
}
void Destroy() override;
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
KSession* GetParent() const {
return parent;
return m_parent;
}
Result SendSyncRequest();
@ -51,7 +50,7 @@ public:
void OnServerClosed();
private:
KSession* parent{};
KSession* m_parent{};
};
} // namespace Kernel

View file

@ -16,18 +16,18 @@
namespace Kernel {
KCodeMemory::KCodeMemory(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_lock(kernel_) {}
KCodeMemory::KCodeMemory(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_lock(kernel) {}
Result KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, size_t size) {
// Set members.
m_owner = GetCurrentProcessPointer(kernel);
m_owner = GetCurrentProcessPointer(m_kernel);
// Get the owner page table.
auto& page_table = m_owner->PageTable();
// Construct the page group.
m_page_group.emplace(kernel, page_table.GetBlockInfoManager());
m_page_group.emplace(m_kernel, page_table.GetBlockInfoManager());
// Lock the memory.
R_TRY(page_table.LockForCodeMemory(std::addressof(*m_page_group), addr, size))
@ -45,7 +45,7 @@ Result KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, si
m_is_mapped = false;
// We succeeded.
return ResultSuccess;
R_SUCCEED();
}
void KCodeMemory::Finalize() {
@ -74,13 +74,13 @@ Result KCodeMemory::Map(VAddr address, size_t size) {
R_UNLESS(!m_is_mapped, ResultInvalidState);
// Map the memory.
R_TRY(GetCurrentProcess(kernel).PageTable().MapPageGroup(
R_TRY(GetCurrentProcess(m_kernel).PageTable().MapPageGroup(
address, *m_page_group, KMemoryState::CodeOut, KMemoryPermission::UserReadWrite));
// Mark ourselves as mapped.
m_is_mapped = true;
return ResultSuccess;
R_SUCCEED();
}
Result KCodeMemory::Unmap(VAddr address, size_t size) {
@ -91,13 +91,13 @@ Result KCodeMemory::Unmap(VAddr address, size_t size) {
KScopedLightLock lk(m_lock);
// Unmap the memory.
R_TRY(GetCurrentProcess(kernel).PageTable().UnmapPageGroup(address, *m_page_group,
KMemoryState::CodeOut));
R_TRY(GetCurrentProcess(m_kernel).PageTable().UnmapPageGroup(address, *m_page_group,
KMemoryState::CodeOut));
// Mark ourselves as unmapped.
m_is_mapped = false;
return ResultSuccess;
R_SUCCEED();
}
Result KCodeMemory::MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm) {
@ -131,7 +131,7 @@ Result KCodeMemory::MapToOwner(VAddr address, size_t size, Svc::MemoryPermission
// Mark ourselves as mapped.
m_is_owner_mapped = true;
return ResultSuccess;
R_SUCCEED();
}
Result KCodeMemory::UnmapFromOwner(VAddr address, size_t size) {
@ -147,7 +147,7 @@ Result KCodeMemory::UnmapFromOwner(VAddr address, size_t size) {
// Mark ourselves as unmapped.
m_is_owner_mapped = false;
return ResultSuccess;
R_SUCCEED();
}
} // namespace Kernel

View file

@ -29,7 +29,7 @@ class KCodeMemory final
KERNEL_AUTOOBJECT_TRAITS(KCodeMemory, KAutoObject);
public:
explicit KCodeMemory(KernelCore& kernel_);
explicit KCodeMemory(KernelCore& kernel);
Result Initialize(Core::DeviceMemory& device_memory, VAddr address, size_t size);
void Finalize() override;
@ -42,7 +42,7 @@ public:
bool IsInitialized() const override {
return m_is_initialized;
}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
KProcess* GetOwner() const override {
return m_owner;

View file

@ -4,7 +4,6 @@
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_linked_list.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
@ -58,8 +57,8 @@ bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
public:
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
: KThreadQueue(kernel_) {}
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel)
: KThreadQueue(kernel) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
@ -76,8 +75,8 @@ private:
public:
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
KernelCore& kernel, KConditionVariable::ThreadTree* t)
: KThreadQueue(kernel), m_tree(t) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
@ -98,17 +97,17 @@ public:
} // namespace
KConditionVariable::KConditionVariable(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KConditionVariable::KConditionVariable(Core::System& system)
: m_system{system}, m_kernel{system.Kernel()} {}
KConditionVariable::~KConditionVariable() = default;
Result KConditionVariable::SignalToAddress(VAddr addr) {
KThread* owner_thread = GetCurrentThreadPointer(kernel);
KThread* owner_thread = GetCurrentThreadPointer(m_kernel);
// Signal the address.
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Remove waiter thread.
bool has_waiters{};
@ -129,7 +128,7 @@ Result KConditionVariable::SignalToAddress(VAddr addr) {
// Write the value to userspace.
Result result{ResultSuccess};
if (WriteToUser(system, addr, std::addressof(next_value))) [[likely]] {
if (WriteToUser(m_system, addr, std::addressof(next_value))) [[likely]] {
result = ResultSuccess;
} else {
result = ResultInvalidCurrentMemory;
@ -145,26 +144,27 @@ Result KConditionVariable::SignalToAddress(VAddr addr) {
}
Result KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(m_kernel);
// Wait for the address.
KThread* owner_thread{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Check if the thread should terminate.
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
// Read the tag from userspace.
u32 test_tag{};
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
R_UNLESS(ReadFromUser(m_system, std::addressof(test_tag), addr),
ResultInvalidCurrentMemory);
// If the tag isn't the handle (with wait mask), we're done.
R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
// Get the lock owner thread.
owner_thread = GetCurrentProcess(kernel)
owner_thread = GetCurrentProcess(m_kernel)
.GetHandleTable()
.GetObjectWithoutPseudoHandle<KThread>(handle)
.ReleasePointerUnsafe();
@ -177,19 +177,18 @@ Result KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value)
// Begin waiting.
cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr);
}
// Close our reference to the owner thread, now that the wait is over.
owner_thread->Close();
// Get the wait result.
return cur_thread->GetWaitResult();
R_RETURN(cur_thread->GetWaitResult());
}
void KConditionVariable::SignalImpl(KThread* thread) {
// Check pre-conditions.
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Update the tag.
VAddr address = thread->GetAddressKey();
@ -204,7 +203,7 @@ void KConditionVariable::SignalImpl(KThread* thread) {
// TODO(bunnei): We should call CanAccessAtomic(..) here.
can_access = true;
if (can_access) [[likely]] {
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
UpdateLockAtomic(m_system, std::addressof(prev_tag), address, own_tag,
Svc::HandleWaitMask);
}
}
@ -215,7 +214,7 @@ void KConditionVariable::SignalImpl(KThread* thread) {
thread->EndWait(ResultSuccess);
} else {
// Get the previous owner.
KThread* owner_thread = GetCurrentProcess(kernel)
KThread* owner_thread = GetCurrentProcess(m_kernel)
.GetHandleTable()
.GetObjectWithoutPseudoHandle<KThread>(
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
@ -240,14 +239,14 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
auto it = thread_tree.nfind_key({cv_key, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
auto it = m_tree.nfind_key({cv_key, -1});
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetConditionVariableKey() == cv_key)) {
KThread* target_thread = std::addressof(*it);
it = thread_tree.erase(it);
it = m_tree.erase(it);
target_thread->ClearConditionVariable();
this->SignalImpl(target_thread);
@ -256,27 +255,27 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
}
// If we have no waiters, clear the has waiter flag.
if (it == thread_tree.end() || it->GetConditionVariableKey() != cv_key) {
if (it == m_tree.end() || it->GetConditionVariableKey() != cv_key) {
const u32 has_waiter_flag{};
WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
WriteToUser(m_system, cv_key, std::addressof(has_waiter_flag));
}
}
}
Result KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = GetCurrentThreadPointer(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(
kernel, std::addressof(thread_tree));
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(m_kernel,
std::addressof(m_tree));
{
KScopedSchedulerLockAndSleep slp(kernel, std::addressof(timer), cur_thread, timeout);
KScopedSchedulerLockAndSleep slp(m_kernel, std::addressof(timer), cur_thread, timeout);
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Update the value and process for the next owner.
@ -302,14 +301,14 @@ Result KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Write to the cv key.
{
const u32 has_waiter_flag = 1;
WriteToUser(system, key, std::addressof(has_waiter_flag));
// TODO(bunnei): We should call DataMemoryBarrier(..) here.
WriteToUser(m_system, key, std::addressof(has_waiter_flag));
std::atomic_thread_fence(std::memory_order_seq_cst);
}
// Write the value to userspace.
if (!WriteToUser(system, addr, std::addressof(next_value))) {
if (!WriteToUser(m_system, addr, std::addressof(next_value))) {
slp.CancelSleep();
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
}
@ -317,18 +316,17 @@ Result KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
R_UNLESS(timeout != 0, ResultTimedOut);
// Update condition variable tracking.
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
thread_tree.insert(*cur_thread);
cur_thread->SetConditionVariable(std::addressof(m_tree), addr, key, value);
m_tree.insert(*cur_thread);
// Begin waiting.
wait_queue.SetHardwareTimer(timer);
cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr);
}
// Get the wait result.
return cur_thread->GetWaitResult();
R_RETURN(cur_thread->GetWaitResult());
}
} // namespace Kernel

View file

@ -21,36 +21,36 @@ class KConditionVariable {
public:
using ThreadTree = typename KThread::ConditionVariableThreadTreeType;
explicit KConditionVariable(Core::System& system_);
explicit KConditionVariable(Core::System& system);
~KConditionVariable();
// Arbitration
[[nodiscard]] Result SignalToAddress(VAddr addr);
[[nodiscard]] Result WaitForAddress(Handle handle, VAddr addr, u32 value);
Result SignalToAddress(VAddr addr);
Result WaitForAddress(Handle handle, VAddr addr, u32 value);
// Condition variable
void Signal(u64 cv_key, s32 count);
[[nodiscard]] Result Wait(VAddr addr, u64 key, u32 value, s64 timeout);
Result Wait(VAddr addr, u64 key, u32 value, s64 timeout);
private:
void SignalImpl(KThread* thread);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
private:
Core::System& m_system;
KernelCore& m_kernel;
ThreadTree m_tree{};
};
inline void BeforeUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
inline void BeforeUpdatePriority(KernelCore& kernel, KConditionVariable::ThreadTree* tree,
KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
tree->erase(tree->iterator_to(*thread));
}
inline void AfterUpdatePriority(const KernelCore& kernel, KConditionVariable::ThreadTree* tree,
inline void AfterUpdatePriority(KernelCore& kernel, KConditionVariable::ThreadTree* tree,
KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
tree->insert(*thread);
}

View file

@ -12,9 +12,9 @@ class KDebug final : public KAutoObjectWithSlabHeapAndContainer<KDebug, KAutoObj
KERNEL_AUTOOBJECT_TRAITS(KDebug, KAutoObject);
public:
explicit KDebug(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
explicit KDebug(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
};
} // namespace Kernel

View file

@ -9,8 +9,8 @@
namespace Kernel {
KDeviceAddressSpace::KDeviceAddressSpace(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer(kernel_), m_lock(kernel_), m_is_initialized(false) {}
KDeviceAddressSpace::KDeviceAddressSpace(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_lock(kernel), m_is_initialized(false) {}
KDeviceAddressSpace::~KDeviceAddressSpace() = default;
void KDeviceAddressSpace::Initialize() {

View file

@ -7,8 +7,8 @@
namespace Kernel {
KEvent::KEvent(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_readable_event{kernel_} {}
KEvent::KEvent(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_readable_event{kernel} {}
KEvent::~KEvent() = default;
@ -36,7 +36,7 @@ void KEvent::Finalize() {
}
Result KEvent::Signal() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_SUCCEED_IF(m_readable_event_destroyed);
@ -44,7 +44,7 @@ Result KEvent::Signal() {
}
Result KEvent::Clear() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_SUCCEED_IF(m_readable_event_destroyed);

View file

@ -16,7 +16,7 @@ class KEvent final : public KAutoObjectWithSlabHeapAndContainer<KEvent, KAutoObj
KERNEL_AUTOOBJECT_TRAITS(KEvent, KAutoObject);
public:
explicit KEvent(KernelCore& kernel_);
explicit KEvent(KernelCore& kernel);
~KEvent() override;
void Initialize(KProcess* owner);

View file

@ -13,9 +13,9 @@ namespace {
class ThreadQueueImplForKLightConditionVariable final : public KThreadQueue {
public:
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel_, KThread::WaiterList* wl,
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel, KThread::WaiterList* wl,
bool term)
: KThreadQueue(kernel_), m_wait_list(wl), m_allow_terminating_thread(term) {}
: KThreadQueue(kernel), m_wait_list(wl), m_allow_terminating_thread(term) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Only process waits if we're allowed to.
@ -39,15 +39,15 @@ private:
void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
// Create thread queue.
KThread* owner = GetCurrentThreadPointer(kernel);
KThread* owner = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKLightConditionVariable wait_queue(kernel, std::addressof(wait_list),
ThreadQueueImplForKLightConditionVariable wait_queue(m_kernel, std::addressof(m_wait_list),
allow_terminating_thread);
// Sleep the thread.
{
KScopedSchedulerLockAndSleep lk(kernel, std::addressof(timer), owner, timeout);
KScopedSchedulerLockAndSleep lk(m_kernel, std::addressof(timer), owner, timeout);
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
lk.CancelSleep();
@ -57,7 +57,7 @@ void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_ter
lock->Unlock();
// Add the thread to the queue.
wait_list.push_back(*owner);
m_wait_list.push_back(*owner);
// Begin waiting.
wait_queue.SetHardwareTimer(timer);
@ -69,10 +69,10 @@ void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_ter
}
void KLightConditionVariable::Broadcast() {
KScopedSchedulerLock lk(kernel);
KScopedSchedulerLock lk(m_kernel);
// Signal all threads.
for (auto it = wait_list.begin(); it != wait_list.end(); it = wait_list.erase(it)) {
for (auto it = m_wait_list.begin(); it != m_wait_list.end(); it = m_wait_list.erase(it)) {
it->EndWait(ResultSuccess);
}
}

View file

@ -13,13 +13,13 @@ class KLightLock;
class KLightConditionVariable {
public:
explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {}
explicit KLightConditionVariable(KernelCore& kernel) : m_kernel{kernel} {}
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true);
void Broadcast();
private:
KernelCore& kernel;
KThread::WaiterList wait_list{};
KernelCore& m_kernel;
KThread::WaiterList m_wait_list{};
};
} // namespace Kernel

View file

@ -13,7 +13,7 @@ namespace {
class ThreadQueueImplForKLightLock final : public KThreadQueue {
public:
explicit ThreadQueueImplForKLightLock(KernelCore& kernel_) : KThreadQueue(kernel_) {}
explicit ThreadQueueImplForKLightLock(KernelCore& kernel) : KThreadQueue(kernel) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
@ -29,13 +29,13 @@ public:
} // namespace
void KLightLock::Lock() {
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(m_kernel));
while (true) {
uintptr_t old_tag = tag.load(std::memory_order_relaxed);
uintptr_t old_tag = m_tag.load(std::memory_order_relaxed);
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
std::memory_order_acquire)) {
while (!m_tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
std::memory_order_acquire)) {
}
if (old_tag == 0 || this->LockSlowPath(old_tag | 1, cur_thread)) {
@ -45,30 +45,30 @@ void KLightLock::Lock() {
}
void KLightLock::Unlock() {
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(m_kernel));
uintptr_t expected = cur_thread;
if (!tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
if (!m_tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
this->UnlockSlowPath(cur_thread);
}
}
bool KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
ThreadQueueImplForKLightLock wait_queue(kernel);
ThreadQueueImplForKLightLock wait_queue(m_kernel);
// Pend the current thread waiting on the owner thread.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Ensure we actually have locking to do.
if (tag.load(std::memory_order_relaxed) != _owner) {
if (m_tag.load(std::memory_order_relaxed) != _owner) {
return false;
}
// Add the current thread as a waiter on the owner.
KThread* owner_thread = reinterpret_cast<KThread*>(_owner & ~1ULL);
cur_thread->SetKernelAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
cur_thread->SetKernelAddressKey(reinterpret_cast<uintptr_t>(std::addressof(m_tag)));
owner_thread->AddWaiter(cur_thread);
// Begin waiting to hold the lock.
@ -87,12 +87,12 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
// Unlock.
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Get the next owner.
bool has_waiters;
KThread* next_owner = owner_thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag)));
std::addressof(has_waiters), reinterpret_cast<uintptr_t>(std::addressof(m_tag)));
// Pass the lock to the next owner.
uintptr_t next_tag = 0;
@ -114,12 +114,13 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
}
// Write the new tag value.
tag.store(next_tag, std::memory_order_release);
m_tag.store(next_tag, std::memory_order_release);
}
}
bool KLightLock::IsLockedByCurrentThread() const {
return (tag | 1ULL) == (reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)) | 1ULL);
return (m_tag.load() | 1ULL) ==
(reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(m_kernel)) | 1ULL);
}
} // namespace Kernel

View file

@ -13,7 +13,7 @@ class KernelCore;
class KLightLock {
public:
explicit KLightLock(KernelCore& kernel_) : kernel{kernel_} {}
explicit KLightLock(KernelCore& kernel) : m_kernel{kernel} {}
void Lock();
@ -24,14 +24,14 @@ public:
void UnlockSlowPath(uintptr_t cur_thread);
bool IsLocked() const {
return tag != 0;
return m_tag.load() != 0;
}
bool IsLockedByCurrentThread() const;
private:
std::atomic<uintptr_t> tag{};
KernelCore& kernel;
std::atomic<uintptr_t> m_tag{};
KernelCore& m_kernel;
};
using KScopedLightLock = KScopedLock<KLightLock>;

View file

@ -1,238 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <boost/intrusive/list.hpp>
#include "common/assert.h"
#include "core/hle/kernel/slab_helpers.h"
namespace Kernel {
class KernelCore;
class KLinkedListNode : public boost::intrusive::list_base_hook<>,
public KSlabAllocated<KLinkedListNode> {
public:
explicit KLinkedListNode(KernelCore&) {}
KLinkedListNode() = default;
void Initialize(void* it) {
m_item = it;
}
void* GetItem() const {
return m_item;
}
private:
void* m_item = nullptr;
};
template <typename T>
class KLinkedList : private boost::intrusive::list<KLinkedListNode> {
private:
using BaseList = boost::intrusive::list<KLinkedListNode>;
public:
template <bool Const>
class Iterator;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
template <bool Const>
class Iterator {
private:
using BaseIterator = BaseList::iterator;
friend class KLinkedList;
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = typename KLinkedList::value_type;
using difference_type = typename KLinkedList::difference_type;
using pointer = std::conditional_t<Const, KLinkedList::const_pointer, KLinkedList::pointer>;
using reference =
std::conditional_t<Const, KLinkedList::const_reference, KLinkedList::reference>;
public:
explicit Iterator(BaseIterator it) : m_base_it(it) {}
pointer GetItem() const {
return static_cast<pointer>(m_base_it->GetItem());
}
bool operator==(const Iterator& rhs) const {
return m_base_it == rhs.m_base_it;
}
bool operator!=(const Iterator& rhs) const {
return !(*this == rhs);
}
pointer operator->() const {
return this->GetItem();
}
reference operator*() const {
return *this->GetItem();
}
Iterator& operator++() {
++m_base_it;
return *this;
}
Iterator& operator--() {
--m_base_it;
return *this;
}
Iterator operator++(int) {
const Iterator it{*this};
++(*this);
return it;
}
Iterator operator--(int) {
const Iterator it{*this};
--(*this);
return it;
}
operator Iterator<true>() const {
return Iterator<true>(m_base_it);
}
private:
BaseIterator m_base_it;
};
public:
constexpr KLinkedList(KernelCore& kernel_) : BaseList(), kernel{kernel_} {}
~KLinkedList() {
// Erase all elements.
for (auto it = begin(); it != end(); it = erase(it)) {
}
// Ensure we succeeded.
ASSERT(this->empty());
}
// Iterator accessors.
iterator begin() {
return iterator(BaseList::begin());
}
const_iterator begin() const {
return const_iterator(BaseList::begin());
}
iterator end() {
return iterator(BaseList::end());
}
const_iterator end() const {
return const_iterator(BaseList::end());
}
const_iterator cbegin() const {
return this->begin();
}
const_iterator cend() const {
return this->end();
}
reverse_iterator rbegin() {
return reverse_iterator(this->end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(this->end());
}
reverse_iterator rend() {
return reverse_iterator(this->begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(this->begin());
}
const_reverse_iterator crbegin() const {
return this->rbegin();
}
const_reverse_iterator crend() const {
return this->rend();
}
// Content management.
using BaseList::empty;
using BaseList::size;
reference back() {
return *(--this->end());
}
const_reference back() const {
return *(--this->end());
}
reference front() {
return *this->begin();
}
const_reference front() const {
return *this->begin();
}
iterator insert(const_iterator pos, reference ref) {
KLinkedListNode* new_node = KLinkedListNode::Allocate(kernel);
ASSERT(new_node != nullptr);
new_node->Initialize(std::addressof(ref));
return iterator(BaseList::insert(pos.m_base_it, *new_node));
}
void push_back(reference ref) {
this->insert(this->end(), ref);
}
void push_front(reference ref) {
this->insert(this->begin(), ref);
}
void pop_back() {
this->erase(--this->end());
}
void pop_front() {
this->erase(this->begin());
}
iterator erase(const iterator pos) {
KLinkedListNode* freed_node = std::addressof(*pos.m_base_it);
iterator ret = iterator(BaseList::erase(pos.m_base_it));
KLinkedListNode::Free(kernel, freed_node);
return ret;
}
private:
KernelCore& kernel;
};
} // namespace Kernel

View file

@ -471,8 +471,8 @@ public:
m_disable_merge_attribute & KMemoryBlockDisableMergeAttribute::AllRight);
}
constexpr void UpdateDeviceDisableMergeStateForShareLeft(
[[maybe_unused]] KMemoryPermission new_perm, bool left, [[maybe_unused]] bool right) {
constexpr void UpdateDeviceDisableMergeStateForShareLeft(KMemoryPermission new_perm, bool left,
bool right) {
// New permission/right aren't used.
if (left) {
m_disable_merge_attribute = static_cast<KMemoryBlockDisableMergeAttribute>(
@ -482,8 +482,8 @@ public:
}
}
constexpr void UpdateDeviceDisableMergeStateForShareRight(
[[maybe_unused]] KMemoryPermission new_perm, [[maybe_unused]] bool left, bool right) {
constexpr void UpdateDeviceDisableMergeStateForShareRight(KMemoryPermission new_perm, bool left,
bool right) {
// New permission/left aren't used.
if (right) {
m_disable_merge_attribute = static_cast<KMemoryBlockDisableMergeAttribute>(
@ -499,8 +499,7 @@ public:
this->UpdateDeviceDisableMergeStateForShareRight(new_perm, left, right);
}
constexpr void ShareToDevice([[maybe_unused]] KMemoryPermission new_perm, bool left,
bool right) {
constexpr void ShareToDevice(KMemoryPermission new_perm, bool left, bool right) {
// New permission isn't used.
// We must either be shared or have a zero lock count.
@ -516,8 +515,8 @@ public:
this->UpdateDeviceDisableMergeStateForShare(new_perm, left, right);
}
constexpr void UpdateDeviceDisableMergeStateForUnshareLeft(
[[maybe_unused]] KMemoryPermission new_perm, bool left, [[maybe_unused]] bool right) {
constexpr void UpdateDeviceDisableMergeStateForUnshareLeft(KMemoryPermission new_perm,
bool left, bool right) {
// New permission/right aren't used.
if (left) {
@ -536,8 +535,8 @@ public:
}
}
constexpr void UpdateDeviceDisableMergeStateForUnshareRight(
[[maybe_unused]] KMemoryPermission new_perm, [[maybe_unused]] bool left, bool right) {
constexpr void UpdateDeviceDisableMergeStateForUnshareRight(KMemoryPermission new_perm,
bool left, bool right) {
// New permission/left aren't used.
if (right) {
@ -556,8 +555,7 @@ public:
this->UpdateDeviceDisableMergeStateForUnshareRight(new_perm, left, right);
}
constexpr void UnshareToDevice([[maybe_unused]] KMemoryPermission new_perm, bool left,
bool right) {
constexpr void UnshareToDevice(KMemoryPermission new_perm, bool left, bool right) {
// New permission isn't used.
// We must be shared.
@ -575,8 +573,7 @@ public:
this->UpdateDeviceDisableMergeStateForUnshare(new_perm, left, right);
}
constexpr void UnshareToDeviceRight([[maybe_unused]] KMemoryPermission new_perm, bool left,
bool right) {
constexpr void UnshareToDeviceRight(KMemoryPermission new_perm, bool left, bool right) {
// New permission isn't used.
// We must be shared.
@ -594,7 +591,7 @@ public:
this->UpdateDeviceDisableMergeStateForUnshareRight(new_perm, left, right);
}
constexpr void LockForIpc(KMemoryPermission new_perm, bool left, [[maybe_unused]] bool right) {
constexpr void LockForIpc(KMemoryPermission new_perm, bool left, bool right) {
// We must either be locked or have a zero lock count.
ASSERT((m_attribute & KMemoryAttribute::IpcLocked) == KMemoryAttribute::IpcLocked ||
m_ipc_lock_count == 0);
@ -626,8 +623,7 @@ public:
}
}
constexpr void UnlockForIpc([[maybe_unused]] KMemoryPermission new_perm, bool left,
[[maybe_unused]] bool right) {
constexpr void UnlockForIpc(KMemoryPermission new_perm, bool left, bool right) {
// New permission isn't used.
// We must be locked.

View file

@ -18,11 +18,11 @@ KMemoryRegion* AllocateRegion(KMemoryRegionAllocator& memory_region_allocator, A
} // namespace
KMemoryRegionTree::KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator_)
: memory_region_allocator{memory_region_allocator_} {}
KMemoryRegionTree::KMemoryRegionTree(KMemoryRegionAllocator& memory_region_allocator)
: m_memory_region_allocator{memory_region_allocator} {}
void KMemoryRegionTree::InsertDirectly(u64 address, u64 last_address, u32 attr, u32 type_id) {
this->insert(*AllocateRegion(memory_region_allocator, address, last_address, attr, type_id));
this->insert(*AllocateRegion(m_memory_region_allocator, address, last_address, attr, type_id));
}
bool KMemoryRegionTree::Insert(u64 address, size_t size, u32 type_id, u32 new_attr, u32 old_attr) {
@ -69,7 +69,7 @@ bool KMemoryRegionTree::Insert(u64 address, size_t size, u32 type_id, u32 new_at
const u64 new_pair = (old_pair != std::numeric_limits<u64>::max())
? old_pair + (address - old_address)
: old_pair;
this->insert(*AllocateRegion(memory_region_allocator, address, inserted_region_last,
this->insert(*AllocateRegion(m_memory_region_allocator, address, inserted_region_last,
new_pair, new_attr, type_id));
}
@ -78,7 +78,7 @@ bool KMemoryRegionTree::Insert(u64 address, size_t size, u32 type_id, u32 new_at
const u64 after_pair = (old_pair != std::numeric_limits<u64>::max())
? old_pair + (inserted_region_end - old_address)
: old_pair;
this->insert(*AllocateRegion(memory_region_allocator, inserted_region_end, old_last,
this->insert(*AllocateRegion(m_memory_region_allocator, inserted_region_end, old_last,
after_pair, old_attr, old_type));
}
@ -126,14 +126,15 @@ VAddr KMemoryRegionTree::GetRandomAlignedRegion(size_t size, size_t alignment, u
}
KMemoryLayout::KMemoryLayout()
: virtual_tree{memory_region_allocator}, physical_tree{memory_region_allocator},
virtual_linear_tree{memory_region_allocator}, physical_linear_tree{memory_region_allocator} {}
: m_virtual_tree{m_memory_region_allocator}, m_physical_tree{m_memory_region_allocator},
m_virtual_linear_tree{m_memory_region_allocator}, m_physical_linear_tree{
m_memory_region_allocator} {}
void KMemoryLayout::InitializeLinearMemoryRegionTrees(PAddr aligned_linear_phys_start,
VAddr linear_virtual_start) {
// Set static differences.
linear_phys_to_virt_diff = linear_virtual_start - aligned_linear_phys_start;
linear_virt_to_phys_diff = aligned_linear_phys_start - linear_virtual_start;
m_linear_phys_to_virt_diff = linear_virtual_start - aligned_linear_phys_start;
m_linear_virt_to_phys_diff = aligned_linear_phys_start - linear_virtual_start;
// Initialize linear trees.
for (auto& region : GetPhysicalMemoryRegionTree()) {

View file

@ -80,35 +80,35 @@ public:
KMemoryLayout();
KMemoryRegionTree& GetVirtualMemoryRegionTree() {
return virtual_tree;
return m_virtual_tree;
}
const KMemoryRegionTree& GetVirtualMemoryRegionTree() const {
return virtual_tree;
return m_virtual_tree;
}
KMemoryRegionTree& GetPhysicalMemoryRegionTree() {
return physical_tree;
return m_physical_tree;
}
const KMemoryRegionTree& GetPhysicalMemoryRegionTree() const {
return physical_tree;
return m_physical_tree;
}
KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() {
return virtual_linear_tree;
return m_virtual_linear_tree;
}
const KMemoryRegionTree& GetVirtualLinearMemoryRegionTree() const {
return virtual_linear_tree;
return m_virtual_linear_tree;
}
KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() {
return physical_linear_tree;
return m_physical_linear_tree;
}
const KMemoryRegionTree& GetPhysicalLinearMemoryRegionTree() const {
return physical_linear_tree;
return m_physical_linear_tree;
}
VAddr GetLinearVirtualAddress(PAddr address) const {
return address + linear_phys_to_virt_diff;
return address + m_linear_phys_to_virt_diff;
}
PAddr GetLinearPhysicalAddress(VAddr address) const {
return address + linear_virt_to_phys_diff;
return address + m_linear_virt_to_phys_diff;
}
const KMemoryRegion* FindVirtual(VAddr address) const {
@ -391,13 +391,13 @@ private:
}
private:
u64 linear_phys_to_virt_diff{};
u64 linear_virt_to_phys_diff{};
KMemoryRegionAllocator memory_region_allocator;
KMemoryRegionTree virtual_tree;
KMemoryRegionTree physical_tree;
KMemoryRegionTree virtual_linear_tree;
KMemoryRegionTree physical_linear_tree;
u64 m_linear_phys_to_virt_diff{};
u64 m_linear_virt_to_phys_diff{};
KMemoryRegionAllocator m_memory_region_allocator;
KMemoryRegionTree m_virtual_tree;
KMemoryRegionTree m_physical_tree;
KMemoryRegionTree m_virtual_linear_tree;
KMemoryRegionTree m_physical_linear_tree;
};
namespace Init {

View file

@ -21,15 +21,15 @@ public:
YUZU_NON_MOVEABLE(KMemoryRegion);
constexpr KMemoryRegion() = default;
constexpr KMemoryRegion(u64 address_, u64 last_address_)
: address{address_}, last_address{last_address_} {}
constexpr KMemoryRegion(u64 address_, u64 last_address_, u64 pair_address_, u32 attributes_,
u32 type_id_)
: address(address_), last_address(last_address_), pair_address(pair_address_),
attributes(attributes_), type_id(type_id_) {}
constexpr KMemoryRegion(u64 address_, u64 last_address_, u32 attributes_, u32 type_id_)
: KMemoryRegion(address_, last_address_, std::numeric_limits<u64>::max(), attributes_,
type_id_) {}
constexpr KMemoryRegion(u64 address, u64 last_address)
: m_address{address}, m_last_address{last_address} {}
constexpr KMemoryRegion(u64 address, u64 last_address, u64 pair_address, u32 attributes,
u32 type_id)
: m_address(address), m_last_address(last_address), m_pair_address(pair_address),
m_attributes(attributes), m_type_id(type_id) {}
constexpr KMemoryRegion(u64 address, u64 last_address, u32 attributes, u32 type_id)
: KMemoryRegion(address, last_address, std::numeric_limits<u64>::max(), attributes,
type_id) {}
~KMemoryRegion() = default;
@ -44,15 +44,15 @@ public:
}
constexpr u64 GetAddress() const {
return address;
return m_address;
}
constexpr u64 GetPairAddress() const {
return pair_address;
return m_pair_address;
}
constexpr u64 GetLastAddress() const {
return last_address;
return m_last_address;
}
constexpr u64 GetEndAddress() const {
@ -64,16 +64,16 @@ public:
}
constexpr u32 GetAttributes() const {
return attributes;
return m_attributes;
}
constexpr u32 GetType() const {
return type_id;
return m_type_id;
}
constexpr void SetType(u32 type) {
ASSERT(this->CanDerive(type));
type_id = type;
m_type_id = type;
}
constexpr bool Contains(u64 addr) const {
@ -94,27 +94,27 @@ public:
}
constexpr void SetPairAddress(u64 a) {
pair_address = a;
m_pair_address = a;
}
constexpr void SetTypeAttribute(u32 attr) {
type_id |= attr;
m_type_id |= attr;
}
private:
constexpr void Reset(u64 a, u64 la, u64 p, u32 r, u32 t) {
address = a;
pair_address = p;
last_address = la;
attributes = r;
type_id = t;
m_address = a;
m_pair_address = p;
m_last_address = la;
m_attributes = r;
m_type_id = t;
}
u64 address{};
u64 last_address{};
u64 pair_address{};
u32 attributes{};
u32 type_id{};
u64 m_address{};
u64 m_last_address{};
u64 m_pair_address{};
u32 m_attributes{};
u32 m_type_id{};
};
class KMemoryRegionTree final {
@ -322,7 +322,7 @@ public:
private:
TreeType m_tree{};
KMemoryRegionAllocator& memory_region_allocator;
KMemoryRegionAllocator& m_memory_region_allocator;
};
class KMemoryRegionAllocator final {
@ -338,18 +338,18 @@ public:
template <typename... Args>
KMemoryRegion* Allocate(Args&&... args) {
// Ensure we stay within the bounds of our heap.
ASSERT(this->num_regions < MaxMemoryRegions);
ASSERT(m_num_regions < MaxMemoryRegions);
// Create the new region.
KMemoryRegion* region = std::addressof(this->region_heap[this->num_regions++]);
new (region) KMemoryRegion(std::forward<Args>(args)...);
KMemoryRegion* region = std::addressof(m_region_heap[m_num_regions++]);
std::construct_at(region, std::forward<Args>(args)...);
return region;
}
private:
std::array<KMemoryRegion, MaxMemoryRegions> region_heap{};
size_t num_regions{};
std::array<KMemoryRegion, MaxMemoryRegions> m_region_heap{};
size_t m_num_regions{};
};
} // namespace Kernel

View file

@ -41,7 +41,7 @@ public:
// Check that the object is closed.
R_UNLESS(derived->IsServerClosed(), ResultInvalidState);
return Delete(kernel, obj.GetPointerUnsafe(), name);
R_RETURN(Delete(kernel, obj.GetPointerUnsafe(), name));
}
template <typename Derived>

View file

@ -29,7 +29,7 @@ public:
static KPageBuffer* FromPhysicalAddress(Core::System& system, PAddr phys_addr);
private:
[[maybe_unused]] alignas(PageSize) std::array<u8, PageSize> m_buffer{};
alignas(PageSize) std::array<u8, PageSize> m_buffer{};
};
static_assert(sizeof(KPageBuffer) == KPageBufferSlabHeap::BufferSize);

View file

@ -484,7 +484,7 @@ private:
}
PageLinkedList* GetPageList() {
return &m_ll;
return std::addressof(m_ll);
}
};

View file

@ -20,7 +20,8 @@ public:
PageTablePage() = default;
private:
std::array<u8, PageSize> m_buffer{};
// Initializer intentionally skipped
std::array<u8, PageSize> m_buffer;
};
static_assert(sizeof(PageTablePage) == PageSize);

View file

@ -7,56 +7,55 @@
namespace Kernel {
KPort::KPort(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
KPort::KPort(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_server{kernel}, m_client{kernel} {}
KPort::~KPort() = default;
void KPort::Initialize(s32 max_sessions_, bool is_light_, const std::string& name_) {
void KPort::Initialize(s32 max_sessions, bool is_light, uintptr_t name) {
// Open a new reference count to the initialized port.
Open();
this->Open();
// Create and initialize our server/client pair.
KAutoObject::Create(std::addressof(server));
KAutoObject::Create(std::addressof(client));
server.Initialize(this, name_ + ":Server");
client.Initialize(this, max_sessions_, name_ + ":Client");
KAutoObject::Create(std::addressof(m_server));
KAutoObject::Create(std::addressof(m_client));
m_server.Initialize(this);
m_client.Initialize(this, max_sessions);
// Set our member variables.
is_light = is_light_;
name = name_;
state = State::Normal;
m_is_light = is_light;
m_name = name;
m_state = State::Normal;
}
void KPort::OnClientClosed() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (state == State::Normal) {
state = State::ClientClosed;
if (m_state == State::Normal) {
m_state = State::ClientClosed;
}
}
void KPort::OnServerClosed() {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (state == State::Normal) {
state = State::ServerClosed;
if (m_state == State::Normal) {
m_state = State::ServerClosed;
}
}
bool KPort::IsServerClosed() const {
KScopedSchedulerLock sl{kernel};
return state == State::ServerClosed;
KScopedSchedulerLock sl{m_kernel};
return m_state == State::ServerClosed;
}
Result KPort::EnqueueSession(KServerSession* session) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
R_UNLESS(state == State::Normal, ResultPortClosed);
R_UNLESS(m_state == State::Normal, ResultPortClosed);
server.EnqueueSession(session);
return ResultSuccess;
m_server.EnqueueSession(session);
R_SUCCEED();
}
} // namespace Kernel

View file

@ -19,17 +19,20 @@ class KPort final : public KAutoObjectWithSlabHeapAndContainer<KPort, KAutoObjec
KERNEL_AUTOOBJECT_TRAITS(KPort, KAutoObject);
public:
explicit KPort(KernelCore& kernel_);
explicit KPort(KernelCore& kernel);
~KPort() override;
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
void Initialize(s32 max_sessions_, bool is_light_, const std::string& name_);
void Initialize(s32 max_sessions, bool is_light, uintptr_t name);
void OnClientClosed();
void OnServerClosed();
uintptr_t GetName() const {
return m_name;
}
bool IsLight() const {
return is_light;
return m_is_light;
}
bool IsServerClosed() const;
@ -37,16 +40,16 @@ public:
Result EnqueueSession(KServerSession* session);
KClientPort& GetClientPort() {
return client;
return m_client;
}
KServerPort& GetServerPort() {
return server;
return m_server;
}
const KClientPort& GetClientPort() const {
return client;
return m_client;
}
const KServerPort& GetServerPort() const {
return server;
return m_server;
}
private:
@ -57,10 +60,11 @@ private:
ServerClosed = 3,
};
KServerPort server;
KClientPort client;
State state{State::Invalid};
bool is_light{};
KServerPort m_server;
KClientPort m_client;
uintptr_t m_name;
State m_state{State::Invalid};
bool m_is_light{};
};
} // namespace Kernel

View file

@ -77,11 +77,11 @@ private:
public:
class KPerCoreQueue {
private:
std::array<Entry, NumCores> root{};
std::array<Entry, NumCores> m_root{};
public:
constexpr KPerCoreQueue() {
for (auto& per_core_root : root) {
for (auto& per_core_root : m_root) {
per_core_root.Initialize();
}
}
@ -91,15 +91,15 @@ public:
Entry& member_entry = member->GetPriorityQueueEntry(core);
// Get the entry associated with the end of the queue.
Member* tail = this->root[core].GetPrev();
Member* tail = m_root[core].GetPrev();
Entry& tail_entry =
(tail != nullptr) ? tail->GetPriorityQueueEntry(core) : this->root[core];
(tail != nullptr) ? tail->GetPriorityQueueEntry(core) : m_root[core];
// Link the entries.
member_entry.SetPrev(tail);
member_entry.SetNext(nullptr);
tail_entry.SetNext(member);
this->root[core].SetPrev(member);
m_root[core].SetPrev(member);
return tail == nullptr;
}
@ -109,15 +109,15 @@ public:
Entry& member_entry = member->GetPriorityQueueEntry(core);
// Get the entry associated with the front of the queue.
Member* head = this->root[core].GetNext();
Member* head = m_root[core].GetNext();
Entry& head_entry =
(head != nullptr) ? head->GetPriorityQueueEntry(core) : this->root[core];
(head != nullptr) ? head->GetPriorityQueueEntry(core) : m_root[core];
// Link the entries.
member_entry.SetPrev(nullptr);
member_entry.SetNext(head);
head_entry.SetPrev(member);
this->root[core].SetNext(member);
m_root[core].SetNext(member);
return (head == nullptr);
}
@ -130,9 +130,9 @@ public:
Member* prev = member_entry.GetPrev();
Member* next = member_entry.GetNext();
Entry& prev_entry =
(prev != nullptr) ? prev->GetPriorityQueueEntry(core) : this->root[core];
(prev != nullptr) ? prev->GetPriorityQueueEntry(core) : m_root[core];
Entry& next_entry =
(next != nullptr) ? next->GetPriorityQueueEntry(core) : this->root[core];
(next != nullptr) ? next->GetPriorityQueueEntry(core) : m_root[core];
// Unlink.
prev_entry.SetNext(next);
@ -142,7 +142,7 @@ public:
}
constexpr Member* GetFront(s32 core) const {
return this->root[core].GetNext();
return m_root[core].GetNext();
}
};
@ -158,8 +158,8 @@ public:
return;
}
if (this->queues[priority].PushBack(core, member)) {
this->available_priorities[core].SetBit(priority);
if (m_queues[priority].PushBack(core, member)) {
m_available_priorities[core].SetBit(priority);
}
}
@ -171,8 +171,8 @@ public:
return;
}
if (this->queues[priority].PushFront(core, member)) {
this->available_priorities[core].SetBit(priority);
if (m_queues[priority].PushFront(core, member)) {
m_available_priorities[core].SetBit(priority);
}
}
@ -184,18 +184,17 @@ public:
return;
}
if (this->queues[priority].Remove(core, member)) {
this->available_priorities[core].ClearBit(priority);
if (m_queues[priority].Remove(core, member)) {
m_available_priorities[core].ClearBit(priority);
}
}
constexpr Member* GetFront(s32 core) const {
ASSERT(IsValidCore(core));
const s32 priority =
static_cast<s32>(this->available_priorities[core].CountLeadingZero());
const s32 priority = static_cast<s32>(m_available_priorities[core].CountLeadingZero());
if (priority <= LowestPriority) {
return this->queues[priority].GetFront(core);
return m_queues[priority].GetFront(core);
} else {
return nullptr;
}
@ -206,7 +205,7 @@ public:
ASSERT(IsValidPriority(priority));
if (priority <= LowestPriority) {
return this->queues[priority].GetFront(core);
return m_queues[priority].GetFront(core);
} else {
return nullptr;
}
@ -218,9 +217,9 @@ public:
Member* next = member->GetPriorityQueueEntry(core).GetNext();
if (next == nullptr) {
const s32 priority = static_cast<s32>(
this->available_priorities[core].GetNextSet(member->GetPriority()));
m_available_priorities[core].GetNextSet(member->GetPriority()));
if (priority <= LowestPriority) {
next = this->queues[priority].GetFront(core);
next = m_queues[priority].GetFront(core);
}
}
return next;
@ -231,8 +230,8 @@ public:
ASSERT(IsValidPriority(priority));
if (priority <= LowestPriority) {
this->queues[priority].Remove(core, member);
this->queues[priority].PushFront(core, member);
m_queues[priority].Remove(core, member);
m_queues[priority].PushFront(core, member);
}
}
@ -241,29 +240,29 @@ public:
ASSERT(IsValidPriority(priority));
if (priority <= LowestPriority) {
this->queues[priority].Remove(core, member);
this->queues[priority].PushBack(core, member);
return this->queues[priority].GetFront(core);
m_queues[priority].Remove(core, member);
m_queues[priority].PushBack(core, member);
return m_queues[priority].GetFront(core);
} else {
return nullptr;
}
}
private:
std::array<KPerCoreQueue, NumPriority> queues{};
std::array<Common::BitSet64<NumPriority>, NumCores> available_priorities{};
std::array<KPerCoreQueue, NumPriority> m_queues{};
std::array<Common::BitSet64<NumPriority>, NumCores> m_available_priorities{};
};
private:
KPriorityQueueImpl scheduled_queue;
KPriorityQueueImpl suggested_queue;
KPriorityQueueImpl m_scheduled_queue;
KPriorityQueueImpl m_suggested_queue;
private:
constexpr void ClearAffinityBit(u64& affinity, s32 core) {
static constexpr void ClearAffinityBit(u64& affinity, s32 core) {
affinity &= ~(UINT64_C(1) << core);
}
constexpr s32 GetNextCore(u64& affinity) {
static constexpr s32 GetNextCore(u64& affinity) {
const s32 core = std::countr_zero(affinity);
ClearAffinityBit(affinity, core);
return core;
@ -275,13 +274,13 @@ private:
// Push onto the scheduled queue for its core, if we can.
u64 affinity = member->GetAffinityMask().GetAffinityMask();
if (const s32 core = member->GetActiveCore(); core >= 0) {
this->scheduled_queue.PushBack(priority, core, member);
m_scheduled_queue.PushBack(priority, core, member);
ClearAffinityBit(affinity, core);
}
// And suggest the thread for all other cores.
while (affinity) {
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
m_suggested_queue.PushBack(priority, GetNextCore(affinity), member);
}
}
@ -291,14 +290,14 @@ private:
// Push onto the scheduled queue for its core, if we can.
u64 affinity = member->GetAffinityMask().GetAffinityMask();
if (const s32 core = member->GetActiveCore(); core >= 0) {
this->scheduled_queue.PushFront(priority, core, member);
m_scheduled_queue.PushFront(priority, core, member);
ClearAffinityBit(affinity, core);
}
// And suggest the thread for all other cores.
// Note: Nintendo pushes onto the back of the suggested queue, not the front.
while (affinity) {
this->suggested_queue.PushBack(priority, GetNextCore(affinity), member);
m_suggested_queue.PushBack(priority, GetNextCore(affinity), member);
}
}
@ -308,13 +307,13 @@ private:
// Remove from the scheduled queue for its core.
u64 affinity = member->GetAffinityMask().GetAffinityMask();
if (const s32 core = member->GetActiveCore(); core >= 0) {
this->scheduled_queue.Remove(priority, core, member);
m_scheduled_queue.Remove(priority, core, member);
ClearAffinityBit(affinity, core);
}
// Remove from the suggested queue for all other cores.
while (affinity) {
this->suggested_queue.Remove(priority, GetNextCore(affinity), member);
m_suggested_queue.Remove(priority, GetNextCore(affinity), member);
}
}
@ -323,27 +322,27 @@ public:
// Getters.
constexpr Member* GetScheduledFront(s32 core) const {
return this->scheduled_queue.GetFront(core);
return m_scheduled_queue.GetFront(core);
}
constexpr Member* GetScheduledFront(s32 core, s32 priority) const {
return this->scheduled_queue.GetFront(priority, core);
return m_scheduled_queue.GetFront(priority, core);
}
constexpr Member* GetSuggestedFront(s32 core) const {
return this->suggested_queue.GetFront(core);
return m_suggested_queue.GetFront(core);
}
constexpr Member* GetSuggestedFront(s32 core, s32 priority) const {
return this->suggested_queue.GetFront(priority, core);
return m_suggested_queue.GetFront(priority, core);
}
constexpr Member* GetScheduledNext(s32 core, const Member* member) const {
return this->scheduled_queue.GetNext(core, member);
return m_scheduled_queue.GetNext(core, member);
}
constexpr Member* GetSuggestedNext(s32 core, const Member* member) const {
return this->suggested_queue.GetNext(core, member);
return m_suggested_queue.GetNext(core, member);
}
constexpr Member* GetSamePriorityNext(s32 core, const Member* member) const {
@ -375,7 +374,7 @@ public:
return;
}
this->scheduled_queue.MoveToFront(member->GetPriority(), member->GetActiveCore(), member);
m_scheduled_queue.MoveToFront(member->GetPriority(), member->GetActiveCore(), member);
}
constexpr KThread* MoveToScheduledBack(Member* member) {
@ -384,8 +383,7 @@ public:
return {};
}
return this->scheduled_queue.MoveToBack(member->GetPriority(), member->GetActiveCore(),
member);
return m_scheduled_queue.MoveToBack(member->GetPriority(), member->GetActiveCore(), member);
}
// First class fancy operations.
@ -425,9 +423,9 @@ public:
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
if (prev_affinity.GetAffinity(core)) {
if (core == prev_core) {
this->scheduled_queue.Remove(priority, core, member);
m_scheduled_queue.Remove(priority, core, member);
} else {
this->suggested_queue.Remove(priority, core, member);
m_suggested_queue.Remove(priority, core, member);
}
}
}
@ -436,9 +434,9 @@ public:
for (s32 core = 0; core < static_cast<s32>(NumCores); core++) {
if (new_affinity.GetAffinity(core)) {
if (core == new_core) {
this->scheduled_queue.PushBack(priority, core, member);
m_scheduled_queue.PushBack(priority, core, member);
} else {
this->suggested_queue.PushBack(priority, core, member);
m_suggested_queue.PushBack(priority, core, member);
}
}
}
@ -458,22 +456,22 @@ public:
if (prev_core != new_core) {
// Remove from the scheduled queue for the previous core.
if (prev_core >= 0) {
this->scheduled_queue.Remove(priority, prev_core, member);
m_scheduled_queue.Remove(priority, prev_core, member);
}
// Remove from the suggested queue and add to the scheduled queue for the new core.
if (new_core >= 0) {
this->suggested_queue.Remove(priority, new_core, member);
m_suggested_queue.Remove(priority, new_core, member);
if (to_front) {
this->scheduled_queue.PushFront(priority, new_core, member);
m_scheduled_queue.PushFront(priority, new_core, member);
} else {
this->scheduled_queue.PushBack(priority, new_core, member);
m_scheduled_queue.PushBack(priority, new_core, member);
}
}
// Add to the suggested queue for the previous core.
if (prev_core >= 0) {
this->suggested_queue.PushBack(priority, prev_core, member);
m_suggested_queue.PushBack(priority, prev_core, member);
}
}
}

View file

@ -44,14 +44,14 @@ void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority
SCOPE_EXIT({ thread->Close(); });
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
owner_process.GetIdealCoreId(), &owner_process)
owner_process.GetIdealCoreId(),
std::addressof(owner_process))
.IsSuccess());
// Register 1 must be a handle to the main thread
Handle thread_handle{};
owner_process.GetHandleTable().Add(&thread_handle, thread);
owner_process.GetHandleTable().Add(std::addressof(thread_handle), thread);
thread->SetName("main");
thread->GetContext32().cpu_registers[0] = 0;
thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle;
@ -71,32 +71,32 @@ Result KProcess::Initialize(KProcess* process, Core::System& system, std::string
auto& kernel = system.Kernel();
process->name = std::move(process_name);
process->resource_limit = res_limit;
process->system_resource_address = 0;
process->state = State::Created;
process->program_id = 0;
process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
: kernel.CreateNewUserProcessID();
process->capabilities.InitializeForMetadatalessProcess();
process->is_initialized = true;
process->m_resource_limit = res_limit;
process->m_system_resource_address = 0;
process->m_state = State::Created;
process->m_program_id = 0;
process->m_process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
: kernel.CreateNewUserProcessID();
process->m_capabilities.InitializeForMetadatalessProcess();
process->m_is_initialized = true;
std::mt19937 rng(Settings::values.rng_seed.GetValue().value_or(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
std::generate(process->m_random_entropy.begin(), process->m_random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
// Clear remaining fields.
process->num_running_threads = 0;
process->is_signaled = false;
process->exception_thread = nullptr;
process->is_suspended = false;
process->schedule_count = 0;
process->is_handle_table_initialized = false;
process->m_num_running_threads = 0;
process->m_is_signaled = false;
process->m_exception_thread = nullptr;
process->m_is_suspended = false;
process->m_schedule_count = 0;
process->m_is_handle_table_initialized = false;
// Open a reference to the resource limit.
process->resource_limit->Open();
process->m_resource_limit->Open();
R_SUCCEED();
}
@ -106,65 +106,65 @@ void KProcess::DoWorkerTaskImpl() {
}
KResourceLimit* KProcess::GetResourceLimit() const {
return resource_limit;
return m_resource_limit;
}
void KProcess::IncrementRunningThreadCount() {
ASSERT(num_running_threads.load() >= 0);
++num_running_threads;
ASSERT(m_num_running_threads.load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
ASSERT(num_running_threads.load() > 0);
ASSERT(m_num_running_threads.load() > 0);
if (const auto prev = num_running_threads--; prev == 1) {
if (const auto prev = m_num_running_threads--; prev == 1) {
// TODO(bunnei): Process termination to be implemented when multiprocess is supported.
}
}
u64 KProcess::GetTotalPhysicalMemoryAvailable() {
const u64 capacity{resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
page_table.GetNormalMemorySize() + GetSystemResourceSize() + image_size +
main_thread_stack_size};
if (const auto pool_size = kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
const u64 capacity{m_resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
m_page_table.GetNormalMemorySize() + GetSystemResourceSize() + m_image_size +
m_main_thread_stack_size};
if (const auto pool_size = m_kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
capacity != pool_size) {
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
}
if (capacity < memory_usage_capacity) {
if (capacity < m_memory_usage_capacity) {
return capacity;
}
return memory_usage_capacity;
return m_memory_usage_capacity;
}
u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() {
return GetTotalPhysicalMemoryAvailable() - GetSystemResourceSize();
return this->GetTotalPhysicalMemoryAvailable() - this->GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsed() {
return image_size + main_thread_stack_size + page_table.GetNormalMemorySize() +
GetSystemResourceSize();
return m_image_size + m_main_thread_stack_size + m_page_table.GetNormalMemorySize() +
this->GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
return this->GetTotalPhysicalMemoryUsed() - this->GetSystemResourceUsage();
}
bool KProcess::ReleaseUserException(KThread* thread) {
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (exception_thread == thread) {
exception_thread = nullptr;
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
// Remove waiter thread.
bool has_waiters{};
if (KThread* next = thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters),
reinterpret_cast<uintptr_t>(std::addressof(exception_thread)));
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)));
next != nullptr) {
next->EndWait(ResultSuccess);
}
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
@ -173,72 +173,72 @@ bool KProcess::ReleaseUserException(KThread* thread) {
}
void KProcess::PinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it.
PinThread(core_id, cur_thread);
this->PinThread(core_id, cur_thread);
cur_thread->Pin(core_id);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread(s32 core_id) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// Unpin it.
cur_thread->Unpin();
UnpinThread(core_id, cur_thread);
this->UnpinThread(core_id, cur_thread);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
UnpinThread(core_id, thread);
this->UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(state_lock);
KScopedLightLock lk(m_state_lock);
// Try to find an existing info for the memory.
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
shared_memory_list.begin(), shared_memory_list.end(),
m_shared_memory_list.begin(), m_shared_memory_list.end(),
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
if (iter != shared_memory_list.end()) {
if (iter != m_shared_memory_list.end()) {
shemen_info = *iter;
}
if (shemen_info == nullptr) {
shemen_info = KSharedMemoryInfo::Allocate(kernel);
shemen_info = KSharedMemoryInfo::Allocate(m_kernel);
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
shemen_info->Initialize(shmem);
shared_memory_list.push_back(shemen_info);
m_shared_memory_list.push_back(shemen_info);
}
// Open a reference to the shared memory and its info.
@ -251,21 +251,21 @@ Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr ad
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(state_lock);
KScopedLightLock lk(m_state_lock);
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
shared_memory_list.begin(), shared_memory_list.end(),
m_shared_memory_list.begin(), m_shared_memory_list.end(),
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
if (iter != shared_memory_list.end()) {
if (iter != m_shared_memory_list.end()) {
shemen_info = *iter;
}
ASSERT(shemen_info != nullptr);
if (shemen_info->Close()) {
shared_memory_list.erase(iter);
KSharedMemoryInfo::Free(kernel, shemen_info);
m_shared_memory_list.erase(iter);
KSharedMemoryInfo::Free(m_kernel, shemen_info);
}
// Close a reference to the shared memory.
@ -273,22 +273,22 @@ void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr a
}
void KProcess::RegisterThread(KThread* thread) {
KScopedLightLock lk{list_lock};
KScopedLightLock lk{m_list_lock};
thread_list.push_back(thread);
m_thread_list.push_back(thread);
}
void KProcess::UnregisterThread(KThread* thread) {
KScopedLightLock lk{list_lock};
KScopedLightLock lk{m_list_lock};
thread_list.remove(thread);
m_thread_list.remove(thread);
}
u64 KProcess::GetFreeThreadCount() const {
if (resource_limit != nullptr) {
if (m_resource_limit != nullptr) {
const auto current_value =
resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
const auto limit_value = resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
m_resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
const auto limit_value = m_resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
return limit_value - current_value;
} else {
return 0;
@ -297,84 +297,85 @@ u64 KProcess::GetFreeThreadCount() const {
Result KProcess::Reset() {
// Lock the process and the scheduler.
KScopedLightLock lk(state_lock);
KScopedSchedulerLock sl{kernel};
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl{m_kernel};
// Validate that we're in a state that we can reset.
R_UNLESS(state != State::Terminated, ResultInvalidState);
R_UNLESS(is_signaled, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
R_UNLESS(m_is_signaled, ResultInvalidState);
// Clear signaled.
is_signaled = false;
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(ProcessActivity activity) {
// Lock ourselves and the scheduler.
KScopedLightLock lk{state_lock};
KScopedLightLock list_lk{list_lock};
KScopedSchedulerLock sl{kernel};
KScopedLightLock lk{m_state_lock};
KScopedLightLock list_lk{m_list_lock};
KScopedSchedulerLock sl{m_kernel};
// Validate our state.
R_UNLESS(state != State::Terminating, ResultInvalidState);
R_UNLESS(state != State::Terminated, ResultInvalidState);
R_UNLESS(m_state != State::Terminating, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
// Either pause or resume.
if (activity == ProcessActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!is_suspended, ResultInvalidState);
R_UNLESS(!m_is_suspended, ResultInvalidState);
// Suspend all threads.
for (auto* thread : GetThreadList()) {
for (auto* thread : this->GetThreadList()) {
thread->RequestSuspend(SuspendType::Process);
}
// Set ourselves as suspended.
SetSuspended(true);
this->SetSuspended(true);
} else {
ASSERT(activity == ProcessActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(is_suspended, ResultInvalidState);
R_UNLESS(m_is_suspended, ResultInvalidState);
// Resume all threads.
for (auto* thread : GetThreadList()) {
for (auto* thread : this->GetThreadList()) {
thread->Resume(SuspendType::Process);
}
// Set ourselves as resumed.
SetSuspended(false);
this->SetSuspended(false);
}
R_SUCCEED();
}
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size) {
program_id = metadata.GetTitleID();
ideal_core = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram();
system_resource_size = metadata.GetSystemResourceSize();
image_size = code_size;
m_program_id = metadata.GetTitleID();
m_ideal_core = metadata.GetMainThreadCore();
m_is_64bit_process = metadata.Is64BitProgram();
m_system_resource_size = metadata.GetSystemResourceSize();
m_image_size = code_size;
KScopedResourceReservation memory_reservation(
resource_limit, LimitableResource::PhysicalMemoryMax, code_size + system_resource_size);
m_resource_limit, LimitableResource::PhysicalMemoryMax, code_size + m_system_resource_size);
if (!memory_reservation.Succeeded()) {
LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
code_size + system_resource_size);
code_size + m_system_resource_size);
R_RETURN(ResultLimitReached);
}
// Initialize process address space
if (const Result result{page_table.InitializeForProcess(
if (const Result result{m_page_table.InitializeForProcess(
metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
0x8000000, code_size, &kernel.GetAppSystemResource(), resource_limit)};
0x8000000, code_size, std::addressof(m_kernel.GetAppSystemResource()),
m_resource_limit)};
result.IsError()) {
R_RETURN(result);
}
// Map process code region
if (const Result result{page_table.MapProcessCode(page_table.GetCodeRegionStart(),
code_size / PageSize, KMemoryState::Code,
KMemoryPermission::None)};
if (const Result result{m_page_table.MapProcessCode(m_page_table.GetCodeRegionStart(),
code_size / PageSize, KMemoryState::Code,
KMemoryPermission::None)};
result.IsError()) {
R_RETURN(result);
}
@ -382,7 +383,7 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
// Initialize process capabilities
const auto& caps{metadata.GetKernelCapabilities()};
if (const Result result{
capabilities.InitializeForUserProcess(caps.data(), caps.size(), page_table)};
m_capabilities.InitializeForUserProcess(caps.data(), caps.size(), m_page_table)};
result.IsError()) {
R_RETURN(result);
}
@ -392,12 +393,14 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is36Bit:
case FileSys::ProgramAddressSpaceType::Is39Bit:
memory_usage_capacity = page_table.GetHeapRegionEnd() - page_table.GetHeapRegionStart();
m_memory_usage_capacity =
m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart();
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
memory_usage_capacity = page_table.GetHeapRegionEnd() - page_table.GetHeapRegionStart() +
page_table.GetAliasRegionEnd() - page_table.GetAliasRegionStart();
m_memory_usage_capacity =
m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart() +
m_page_table.GetAliasRegionEnd() - m_page_table.GetAliasRegionStart();
break;
default:
@ -406,33 +409,34 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
}
// Create TLS region
R_TRY(this->CreateThreadLocalRegion(std::addressof(plr_address)));
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
memory_reservation.Commit();
R_RETURN(handle_table.Initialize(capabilities.GetHandleTableSize()));
R_RETURN(m_handle_table.Initialize(m_capabilities.GetHandleTableSize()));
}
void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
ASSERT(AllocateMainThreadStack(stack_size) == ResultSuccess);
resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
ASSERT(this->AllocateMainThreadStack(stack_size) == ResultSuccess);
m_resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
const std::size_t heap_capacity{memory_usage_capacity - (main_thread_stack_size + image_size)};
ASSERT(!page_table.SetMaxHeapSize(heap_capacity).IsError());
const std::size_t heap_capacity{m_memory_usage_capacity -
(m_main_thread_stack_size + m_image_size)};
ASSERT(!m_page_table.SetMaxHeapSize(heap_capacity).IsError());
ChangeState(State::Running);
this->ChangeState(State::Running);
SetupMainThread(kernel.System(), *this, main_thread_priority, main_thread_stack_top);
SetupMainThread(m_kernel.System(), *this, main_thread_priority, m_main_thread_stack_top);
}
void KProcess::PrepareForTermination() {
ChangeState(State::Terminating);
this->ChangeState(State::Terminating);
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
for (auto* thread : in_thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == GetCurrentThreadPointer(kernel))
if (thread == GetCurrentThreadPointer(m_kernel))
continue;
// TODO(Subv): When are the other running/ready threads terminated?
@ -443,24 +447,24 @@ void KProcess::PrepareForTermination() {
}
};
stop_threads(kernel.System().GlobalSchedulerContext().GetThreadList());
stop_threads(m_kernel.System().GlobalSchedulerContext().GetThreadList());
this->DeleteThreadLocalRegion(plr_address);
plr_address = 0;
this->DeleteThreadLocalRegion(m_plr_address);
m_plr_address = 0;
if (resource_limit) {
resource_limit->Release(LimitableResource::PhysicalMemoryMax,
main_thread_stack_size + image_size);
if (m_resource_limit) {
m_resource_limit->Release(LimitableResource::PhysicalMemoryMax,
m_main_thread_stack_size + m_image_size);
}
ChangeState(State::Terminated);
this->ChangeState(State::Terminated);
}
void KProcess::Finalize() {
// Free all shared memory infos.
{
auto it = shared_memory_list.begin();
while (it != shared_memory_list.end()) {
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
KSharedMemoryInfo* info = *it;
KSharedMemory* shmem = info->GetSharedMemory();
@ -470,22 +474,22 @@ void KProcess::Finalize() {
shmem->Close();
it = shared_memory_list.erase(it);
KSharedMemoryInfo::Free(kernel, info);
it = m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
}
// Release memory to the resource limit.
if (resource_limit != nullptr) {
resource_limit->Close();
resource_limit = nullptr;
if (m_resource_limit != nullptr) {
m_resource_limit->Close();
m_resource_limit = nullptr;
}
// Finalize the page table.
page_table.Finalize();
m_page_table.Finalize();
// Perform inherited finalization.
KAutoObjectWithSlabHeapAndContainer<KProcess, KWorkerTask>::Finalize();
KSynchronizationObject::Finalize();
}
Result KProcess::CreateThreadLocalRegion(VAddr* out) {
@ -494,16 +498,16 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
// See if we can get a region from a partially used TLP.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (auto it = partially_used_tlp_tree.begin(); it != partially_used_tlp_tree.end()) {
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
ASSERT(tlr != 0);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
partially_used_tlp_tree.erase(it);
fully_used_tlp_tree.insert(*tlp);
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
@ -512,12 +516,12 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
}
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(kernel);
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(kernel, tlp); });
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(m_kernel, tlp); });
// Initialize the new page.
R_TRY(tlp->Initialize(kernel, this));
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
@ -525,11 +529,11 @@ Result KProcess::CreateThreadLocalRegion(VAddr* out) {
// Insert into our tree.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (tlp->IsAllUsed()) {
fully_used_tlp_tree.insert(*tlp);
m_fully_used_tlp_tree.insert(*tlp);
} else {
partially_used_tlp_tree.insert(*tlp);
m_partially_used_tlp_tree.insert(*tlp);
}
}
@ -544,25 +548,25 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
// Release the region.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Try to find the page in the partially used list.
auto it = partially_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
if (it == partially_used_tlp_tree.end()) {
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
if (it == m_partially_used_tlp_tree.end()) {
// If we don't find it, it has to be in the fully used list.
it = fully_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
R_UNLESS(it != fully_used_tlp_tree.end(), ResultInvalidAddress);
it = m_fully_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
// Release the region.
it->Release(addr);
// Move the page out of the fully used list.
KThreadLocalPage* tlp = std::addressof(*it);
fully_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
partially_used_tlp_tree.insert(*tlp);
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
// Release the region.
@ -571,7 +575,7 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
// Handle the all-free case.
KThreadLocalPage* tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
partially_used_tlp_tree.erase(it);
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
@ -581,7 +585,7 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(kernel, page_to_free);
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
@ -589,11 +593,11 @@ Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
bool KProcess::InsertWatchpoint(Core::System& system, VAddr addr, u64 size,
DebugWatchpointType type) {
const auto watch{std::find_if(watchpoints.begin(), watchpoints.end(), [&](const auto& wp) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.type == DebugWatchpointType::None;
})};
if (watch == watchpoints.end()) {
if (watch == m_watchpoints.end()) {
return false;
}
@ -602,7 +606,7 @@ bool KProcess::InsertWatchpoint(Core::System& system, VAddr addr, u64 size,
watch->type = type;
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
debug_page_refcounts[page]++;
m_debug_page_refcounts[page]++;
system.Memory().MarkRegionDebug(page, PageSize, true);
}
@ -611,11 +615,11 @@ bool KProcess::InsertWatchpoint(Core::System& system, VAddr addr, u64 size,
bool KProcess::RemoveWatchpoint(Core::System& system, VAddr addr, u64 size,
DebugWatchpointType type) {
const auto watch{std::find_if(watchpoints.begin(), watchpoints.end(), [&](const auto& wp) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
})};
if (watch == watchpoints.end()) {
if (watch == m_watchpoints.end()) {
return false;
}
@ -624,8 +628,8 @@ bool KProcess::RemoveWatchpoint(Core::System& system, VAddr addr, u64 size,
watch->type = DebugWatchpointType::None;
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
debug_page_refcounts[page]--;
if (!debug_page_refcounts[page]) {
m_debug_page_refcounts[page]--;
if (!m_debug_page_refcounts[page]) {
system.Memory().MarkRegionDebug(page, PageSize, false);
}
}
@ -636,11 +640,11 @@ bool KProcess::RemoveWatchpoint(Core::System& system, VAddr addr, u64 size,
void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Svc::MemoryPermission permission) {
page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
code_set.memory.size());
m_kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
@ -648,35 +652,35 @@ void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
}
bool KProcess::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
KProcess::KProcess(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, page_table{kernel_.System()},
handle_table{kernel_}, address_arbiter{kernel_.System()}, condition_var{kernel_.System()},
state_lock{kernel_}, list_lock{kernel_} {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_page_table{m_kernel.System()},
m_handle_table{m_kernel}, m_address_arbiter{m_kernel.System()},
m_condition_var{m_kernel.System()}, m_state_lock{m_kernel}, m_list_lock{m_kernel} {}
KProcess::~KProcess() = default;
void KProcess::ChangeState(State new_state) {
if (state == new_state) {
if (m_state == new_state) {
return;
}
state = new_state;
is_signaled = true;
NotifyAvailable();
m_state = new_state;
m_is_signaled = true;
this->NotifyAvailable();
}
Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
// Ensure that we haven't already allocated stack.
ASSERT(main_thread_stack_size == 0);
ASSERT(m_main_thread_stack_size == 0);
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
// R_UNLESS(stack_size + image_size <= m_max_process_memory, ResultOutOfMemory);
R_UNLESS(stack_size + image_size >= image_size, ResultOutOfMemory);
R_UNLESS(stack_size + m_image_size >= m_image_size, ResultOutOfMemory);
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
@ -686,11 +690,11 @@ Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
// Allocate and map our stack.
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
main_thread_stack_top = stack_bottom + stack_size;
main_thread_stack_size = stack_size;
m_main_thread_stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
// We succeeded! Commit our memory reservation.

View file

@ -68,7 +68,7 @@ class KProcess final : public KAutoObjectWithSlabHeapAndContainer<KProcess, KWor
KERNEL_AUTOOBJECT_TRAITS(KProcess, KSynchronizationObject);
public:
explicit KProcess(KernelCore& kernel_);
explicit KProcess(KernelCore& kernel);
~KProcess() override;
enum class State {
@ -107,66 +107,76 @@ public:
/// Gets a reference to the process' page table.
KPageTable& PageTable() {
return page_table;
return m_page_table;
}
/// Gets const a reference to the process' page table.
const KPageTable& PageTable() const {
return page_table;
return m_page_table;
}
/// Gets a reference to the process' page table.
KPageTable& GetPageTable() {
return m_page_table;
}
/// Gets const a reference to the process' page table.
const KPageTable& GetPageTable() const {
return m_page_table;
}
/// Gets a reference to the process' handle table.
KHandleTable& GetHandleTable() {
return handle_table;
return m_handle_table;
}
/// Gets a const reference to the process' handle table.
const KHandleTable& GetHandleTable() const {
return handle_table;
return m_handle_table;
}
Result SignalToAddress(VAddr address) {
return condition_var.SignalToAddress(address);
return m_condition_var.SignalToAddress(address);
}
Result WaitForAddress(Handle handle, VAddr address, u32 tag) {
return condition_var.WaitForAddress(handle, address, tag);
return m_condition_var.WaitForAddress(handle, address, tag);
}
void SignalConditionVariable(u64 cv_key, int32_t count) {
return condition_var.Signal(cv_key, count);
return m_condition_var.Signal(cv_key, count);
}
Result WaitConditionVariable(VAddr address, u64 cv_key, u32 tag, s64 ns) {
R_RETURN(condition_var.Wait(address, cv_key, tag, ns));
R_RETURN(m_condition_var.Wait(address, cv_key, tag, ns));
}
Result SignalAddressArbiter(VAddr address, Svc::SignalType signal_type, s32 value, s32 count) {
R_RETURN(address_arbiter.SignalToAddress(address, signal_type, value, count));
R_RETURN(m_address_arbiter.SignalToAddress(address, signal_type, value, count));
}
Result WaitAddressArbiter(VAddr address, Svc::ArbitrationType arb_type, s32 value,
s64 timeout) {
R_RETURN(address_arbiter.WaitForAddress(address, arb_type, value, timeout));
R_RETURN(m_address_arbiter.WaitForAddress(address, arb_type, value, timeout));
}
VAddr GetProcessLocalRegionAddress() const {
return plr_address;
return m_plr_address;
}
/// Gets the current status of the process
State GetState() const {
return state;
return m_state;
}
/// Gets the unique ID that identifies this particular process.
u64 GetProcessID() const {
return process_id;
u64 GetProcessId() const {
return m_process_id;
}
/// Gets the program ID corresponding to this process.
u64 GetProgramID() const {
return program_id;
u64 GetProgramId() const {
return m_program_id;
}
/// Gets the resource limit descriptor for this process
@ -174,7 +184,7 @@ public:
/// Gets the ideal CPU core ID for this process
u8 GetIdealCoreId() const {
return ideal_core;
return m_ideal_core;
}
/// Checks if the specified thread priority is valid.
@ -184,17 +194,17 @@ public:
/// Gets the bitmask of allowed cores that this process' threads can run on.
u64 GetCoreMask() const {
return capabilities.GetCoreMask();
return m_capabilities.GetCoreMask();
}
/// Gets the bitmask of allowed thread priorities.
u64 GetPriorityMask() const {
return capabilities.GetPriorityMask();
return m_capabilities.GetPriorityMask();
}
/// Gets the amount of secure memory to allocate for memory management.
u32 GetSystemResourceSize() const {
return system_resource_size;
return m_system_resource_size;
}
/// Gets the amount of secure memory currently in use for memory management.
@ -214,67 +224,67 @@ public:
/// Whether this process is an AArch64 or AArch32 process.
bool Is64BitProcess() const {
return is_64bit_process;
return m_is_64bit_process;
}
[[nodiscard]] bool IsSuspended() const {
return is_suspended;
bool IsSuspended() const {
return m_is_suspended;
}
void SetSuspended(bool suspended) {
is_suspended = suspended;
m_is_suspended = suspended;
}
/// Gets the total running time of the process instance in ticks.
u64 GetCPUTimeTicks() const {
return total_process_running_time_ticks;
return m_total_process_running_time_ticks;
}
/// Updates the total running time, adding the given ticks to it.
void UpdateCPUTimeTicks(u64 ticks) {
total_process_running_time_ticks += ticks;
m_total_process_running_time_ticks += ticks;
}
/// Gets the process schedule count, used for thread yielding
s64 GetScheduledCount() const {
return schedule_count;
return m_schedule_count;
}
/// Increments the process schedule count, used for thread yielding.
void IncrementScheduledCount() {
++schedule_count;
++m_schedule_count;
}
void IncrementRunningThreadCount();
void DecrementRunningThreadCount();
void SetRunningThread(s32 core, KThread* thread, u64 idle_count) {
running_threads[core] = thread;
running_thread_idle_counts[core] = idle_count;
m_running_threads[core] = thread;
m_running_thread_idle_counts[core] = idle_count;
}
void ClearRunningThread(KThread* thread) {
for (size_t i = 0; i < running_threads.size(); ++i) {
if (running_threads[i] == thread) {
running_threads[i] = nullptr;
for (size_t i = 0; i < m_running_threads.size(); ++i) {
if (m_running_threads[i] == thread) {
m_running_threads[i] = nullptr;
}
}
}
[[nodiscard]] KThread* GetRunningThread(s32 core) const {
return running_threads[core];
return m_running_threads[core];
}
bool ReleaseUserException(KThread* thread);
[[nodiscard]] KThread* GetPinnedThread(s32 core_id) const {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
return pinned_threads[core_id];
return m_pinned_threads[core_id];
}
/// Gets 8 bytes of random data for svcGetInfo RandomEntropy
u64 GetRandomEntropy(std::size_t index) const {
return random_entropy.at(index);
return m_random_entropy.at(index);
}
/// Retrieves the total physical memory available to this process in bytes.
@ -293,7 +303,7 @@ public:
/// Gets the list of all threads created with this process as their owner.
std::list<KThread*>& GetThreadList() {
return thread_list;
return m_thread_list;
}
/// Registers a thread as being created under this process,
@ -345,15 +355,15 @@ public:
void LoadModule(CodeSet code_set, VAddr base_addr);
bool IsInitialized() const override {
return is_initialized;
return m_is_initialized;
}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
void Finalize() override;
u64 GetId() const override {
return GetProcessID();
return GetProcessId();
}
bool IsSignaled() const override;
@ -367,7 +377,7 @@ public:
void UnpinThread(KThread* thread);
KLightLock& GetStateLock() {
return state_lock;
return m_state_lock;
}
Result AddSharedMemory(KSharedMemory* shmem, VAddr address, size_t size);
@ -392,30 +402,34 @@ public:
bool RemoveWatchpoint(Core::System& system, VAddr addr, u64 size, DebugWatchpointType type);
const std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS>& GetWatchpoints() const {
return watchpoints;
return m_watchpoints;
}
const std::string& GetName() {
return name;
}
private:
void PinThread(s32 core_id, KThread* thread) {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
ASSERT(thread != nullptr);
ASSERT(pinned_threads[core_id] == nullptr);
pinned_threads[core_id] = thread;
ASSERT(m_pinned_threads[core_id] == nullptr);
m_pinned_threads[core_id] = thread;
}
void UnpinThread(s32 core_id, KThread* thread) {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
ASSERT(thread != nullptr);
ASSERT(pinned_threads[core_id] == thread);
pinned_threads[core_id] = nullptr;
ASSERT(m_pinned_threads[core_id] == thread);
m_pinned_threads[core_id] = nullptr;
}
void FinalizeHandleTable() {
// Finalize the table.
handle_table.Finalize();
m_handle_table.Finalize();
// Note that the table is finalized.
is_handle_table_initialized = false;
m_is_handle_table_initialized = false;
}
void ChangeState(State new_state);
@ -424,105 +438,107 @@ private:
Result AllocateMainThreadStack(std::size_t stack_size);
/// Memory manager for this process
KPageTable page_table;
KPageTable m_page_table;
/// Current status of the process
State state{};
State m_state{};
/// The ID of this process
u64 process_id = 0;
u64 m_process_id = 0;
/// Title ID corresponding to the process
u64 program_id = 0;
u64 m_program_id = 0;
/// Specifies additional memory to be reserved for the process's memory management by the
/// system. When this is non-zero, secure memory is allocated and used for page table allocation
/// instead of using the normal global page tables/memory block management.
u32 system_resource_size = 0;
u32 m_system_resource_size = 0;
/// Resource limit descriptor for this process
KResourceLimit* resource_limit{};
KResourceLimit* m_resource_limit{};
VAddr system_resource_address{};
VAddr m_system_resource_address{};
/// The ideal CPU core for this process, threads are scheduled on this core by default.
u8 ideal_core = 0;
u8 m_ideal_core = 0;
/// Contains the parsed process capability descriptors.
ProcessCapabilities capabilities;
ProcessCapabilities m_capabilities;
/// Whether or not this process is AArch64, or AArch32.
/// By default, we currently assume this is true, unless otherwise
/// specified by metadata provided to the process during loading.
bool is_64bit_process = true;
bool m_is_64bit_process = true;
/// Total running time for the process in ticks.
std::atomic<u64> total_process_running_time_ticks = 0;
std::atomic<u64> m_total_process_running_time_ticks = 0;
/// Per-process handle table for storing created object handles in.
KHandleTable handle_table;
KHandleTable m_handle_table;
/// Per-process address arbiter.
KAddressArbiter address_arbiter;
KAddressArbiter m_address_arbiter;
/// The per-process mutex lock instance used for handling various
/// forms of services, such as lock arbitration, and condition
/// variable related facilities.
KConditionVariable condition_var;
KConditionVariable m_condition_var;
/// Address indicating the location of the process' dedicated TLS region.
VAddr plr_address = 0;
VAddr m_plr_address = 0;
/// Random values for svcGetInfo RandomEntropy
std::array<u64, RANDOM_ENTROPY_SIZE> random_entropy{};
std::array<u64, RANDOM_ENTROPY_SIZE> m_random_entropy{};
/// List of threads that are running with this process as their owner.
std::list<KThread*> thread_list;
std::list<KThread*> m_thread_list;
/// List of shared memory that are running with this process as their owner.
std::list<KSharedMemoryInfo*> shared_memory_list;
std::list<KSharedMemoryInfo*> m_shared_memory_list;
/// Address of the top of the main thread's stack
VAddr main_thread_stack_top{};
VAddr m_main_thread_stack_top{};
/// Size of the main thread's stack
std::size_t main_thread_stack_size{};
std::size_t m_main_thread_stack_size{};
/// Memory usage capacity for the process
std::size_t memory_usage_capacity{};
std::size_t m_memory_usage_capacity{};
/// Process total image size
std::size_t image_size{};
std::size_t m_image_size{};
/// Schedule count of this process
s64 schedule_count{};
s64 m_schedule_count{};
size_t memory_release_hint{};
size_t m_memory_release_hint{};
bool is_signaled{};
bool is_suspended{};
bool is_immortal{};
bool is_handle_table_initialized{};
bool is_initialized{};
std::string name{};
std::atomic<u16> num_running_threads{};
bool m_is_signaled{};
bool m_is_suspended{};
bool m_is_immortal{};
bool m_is_handle_table_initialized{};
bool m_is_initialized{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> running_threads{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> running_thread_idle_counts{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> pinned_threads{};
std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS> watchpoints{};
std::map<VAddr, u64> debug_page_refcounts;
std::atomic<u16> m_num_running_threads{};
KThread* exception_thread{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_running_threads{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> m_running_thread_idle_counts{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_pinned_threads{};
std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS> m_watchpoints{};
std::map<VAddr, u64> m_debug_page_refcounts;
KLightLock state_lock;
KLightLock list_lock;
KThread* m_exception_thread{};
KLightLock m_state_lock;
KLightLock m_list_lock;
using TLPTree =
Common::IntrusiveRedBlackTreeBaseTraits<KThreadLocalPage>::TreeType<KThreadLocalPage>;
using TLPIterator = TLPTree::iterator;
TLPTree fully_used_tlp_tree;
TLPTree partially_used_tlp_tree;
TLPTree m_fully_used_tlp_tree;
TLPTree m_partially_used_tlp_tree;
};
} // namespace Kernel

View file

@ -11,7 +11,7 @@
namespace Kernel {
KReadableEvent::KReadableEvent(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KReadableEvent::KReadableEvent(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KReadableEvent::~KReadableEvent() = default;
@ -25,7 +25,7 @@ void KReadableEvent::Initialize(KEvent* parent) {
}
bool KReadableEvent::IsSignaled() const {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
@ -33,7 +33,7 @@ bool KReadableEvent::IsSignaled() const {
void KReadableEvent::Destroy() {
if (m_parent) {
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
m_parent->OnReadableEventDestroyed();
}
m_parent->Close();
@ -41,31 +41,29 @@ void KReadableEvent::Destroy() {
}
Result KReadableEvent::Signal() {
KScopedSchedulerLock lk{kernel};
KScopedSchedulerLock lk{m_kernel};
if (!m_is_signaled) {
m_is_signaled = true;
this->NotifyAvailable();
}
return ResultSuccess;
R_SUCCEED();
}
Result KReadableEvent::Clear() {
this->Reset();
return ResultSuccess;
R_SUCCEED();
}
Result KReadableEvent::Reset() {
KScopedSchedulerLock lk{kernel};
KScopedSchedulerLock lk{m_kernel};
if (!m_is_signaled) {
return ResultInvalidState;
}
R_UNLESS(m_is_signaled, ResultInvalidState);
m_is_signaled = false;
return ResultSuccess;
R_SUCCEED();
}
} // namespace Kernel

View file

@ -17,7 +17,7 @@ class KReadableEvent : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KReadableEvent, KSynchronizationObject);
public:
explicit KReadableEvent(KernelCore& kernel_);
explicit KReadableEvent(KernelCore& kernel);
~KReadableEvent() override;
void Initialize(KEvent* parent);

View file

@ -11,12 +11,12 @@
namespace Kernel {
constexpr s64 DefaultTimeout = 10000000000; // 10 seconds
KResourceLimit::KResourceLimit(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, lock{kernel_}, cond_var{kernel_} {}
KResourceLimit::KResourceLimit(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_lock{m_kernel}, m_cond_var{m_kernel} {}
KResourceLimit::~KResourceLimit() = default;
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing_) {
core_timing = core_timing_;
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing) {
m_core_timing = core_timing;
}
void KResourceLimit::Finalize() {}
@ -25,11 +25,11 @@ s64 KResourceLimit::GetLimitValue(LimitableResource which) const {
const auto index = static_cast<std::size_t>(which);
s64 value{};
{
KScopedLightLock lk{lock};
value = limit_values[index];
KScopedLightLock lk{m_lock};
value = m_limit_values[index];
ASSERT(value >= 0);
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
}
return value;
}
@ -38,11 +38,11 @@ s64 KResourceLimit::GetCurrentValue(LimitableResource which) const {
const auto index = static_cast<std::size_t>(which);
s64 value{};
{
KScopedLightLock lk{lock};
value = current_values[index];
KScopedLightLock lk{m_lock};
value = m_current_values[index];
ASSERT(value >= 0);
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
}
return value;
}
@ -51,11 +51,11 @@ s64 KResourceLimit::GetPeakValue(LimitableResource which) const {
const auto index = static_cast<std::size_t>(which);
s64 value{};
{
KScopedLightLock lk{lock};
value = peak_values[index];
KScopedLightLock lk{m_lock};
value = m_peak_values[index];
ASSERT(value >= 0);
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
}
return value;
}
@ -64,11 +64,11 @@ s64 KResourceLimit::GetFreeValue(LimitableResource which) const {
const auto index = static_cast<std::size_t>(which);
s64 value{};
{
KScopedLightLock lk(lock);
ASSERT(current_values[index] >= 0);
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
value = limit_values[index] - current_values[index];
KScopedLightLock lk(m_lock);
ASSERT(m_current_values[index] >= 0);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
value = m_limit_values[index] - m_current_values[index];
}
return value;
@ -76,51 +76,51 @@ s64 KResourceLimit::GetFreeValue(LimitableResource which) const {
Result KResourceLimit::SetLimitValue(LimitableResource which, s64 value) {
const auto index = static_cast<std::size_t>(which);
KScopedLightLock lk(lock);
R_UNLESS(current_values[index] <= value, ResultInvalidState);
KScopedLightLock lk(m_lock);
R_UNLESS(m_current_values[index] <= value, ResultInvalidState);
limit_values[index] = value;
peak_values[index] = current_values[index];
m_limit_values[index] = value;
m_peak_values[index] = m_current_values[index];
return ResultSuccess;
R_SUCCEED();
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value) {
return Reserve(which, value, core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
return Reserve(which, value, m_core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
ASSERT(value >= 0);
const auto index = static_cast<std::size_t>(which);
KScopedLightLock lk(lock);
KScopedLightLock lk(m_lock);
ASSERT(current_hints[index] <= current_values[index]);
if (current_hints[index] >= limit_values[index]) {
ASSERT(m_current_hints[index] <= m_current_values[index]);
if (m_current_hints[index] >= m_limit_values[index]) {
return false;
}
// Loop until we reserve or run out of time.
while (true) {
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
// If we would overflow, don't allow to succeed.
if (Common::WrappingAdd(current_values[index], value) <= current_values[index]) {
if (Common::WrappingAdd(m_current_values[index], value) <= m_current_values[index]) {
break;
}
if (current_values[index] + value <= limit_values[index]) {
current_values[index] += value;
current_hints[index] += value;
peak_values[index] = std::max(peak_values[index], current_values[index]);
if (m_current_values[index] + value <= m_limit_values[index]) {
m_current_values[index] += value;
m_current_hints[index] += value;
m_peak_values[index] = std::max(m_peak_values[index], m_current_values[index]);
return true;
}
if (current_hints[index] + value <= limit_values[index] &&
(timeout < 0 || core_timing->GetGlobalTimeNs().count() < timeout)) {
waiter_count++;
cond_var.Wait(&lock, timeout, false);
waiter_count--;
if (m_current_hints[index] + value <= m_limit_values[index] &&
(timeout < 0 || m_core_timing->GetGlobalTimeNs().count() < timeout)) {
m_waiter_count++;
m_cond_var.Wait(std::addressof(m_lock), timeout, false);
m_waiter_count--;
} else {
break;
}
@ -138,23 +138,23 @@ void KResourceLimit::Release(LimitableResource which, s64 value, s64 hint) {
ASSERT(hint >= 0);
const auto index = static_cast<std::size_t>(which);
KScopedLightLock lk(lock);
ASSERT(current_values[index] <= limit_values[index]);
ASSERT(current_hints[index] <= current_values[index]);
ASSERT(value <= current_values[index]);
ASSERT(hint <= current_hints[index]);
KScopedLightLock lk(m_lock);
ASSERT(m_current_values[index] <= m_limit_values[index]);
ASSERT(m_current_hints[index] <= m_current_values[index]);
ASSERT(value <= m_current_values[index]);
ASSERT(hint <= m_current_hints[index]);
current_values[index] -= value;
current_hints[index] -= hint;
m_current_values[index] -= value;
m_current_hints[index] -= hint;
if (waiter_count != 0) {
cond_var.Broadcast();
if (m_waiter_count != 0) {
m_cond_var.Broadcast();
}
}
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size) {
auto* resource_limit = KResourceLimit::Create(system.Kernel());
resource_limit->Initialize(&system.CoreTiming());
resource_limit->Initialize(std::addressof(system.CoreTiming()));
// Initialize default resource limit values.
// TODO(bunnei): These values are the system defaults, the limits for service processes are

View file

@ -28,10 +28,10 @@ class KResourceLimit final
KERNEL_AUTOOBJECT_TRAITS(KResourceLimit, KAutoObject);
public:
explicit KResourceLimit(KernelCore& kernel_);
explicit KResourceLimit(KernelCore& kernel);
~KResourceLimit() override;
void Initialize(const Core::Timing::CoreTiming* core_timing_);
void Initialize(const Core::Timing::CoreTiming* core_timing);
void Finalize() override;
s64 GetLimitValue(LimitableResource which) const;
@ -46,18 +46,18 @@ public:
void Release(LimitableResource which, s64 value);
void Release(LimitableResource which, s64 value, s64 hint);
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
private:
using ResourceArray = std::array<s64, static_cast<std::size_t>(LimitableResource::Count)>;
ResourceArray limit_values{};
ResourceArray current_values{};
ResourceArray current_hints{};
ResourceArray peak_values{};
mutable KLightLock lock;
s32 waiter_count{};
KLightConditionVariable cond_var;
const Core::Timing::CoreTiming* core_timing{};
ResourceArray m_limit_values{};
ResourceArray m_current_values{};
ResourceArray m_current_hints{};
ResourceArray m_peak_values{};
mutable KLightLock m_lock;
s32 m_waiter_count{};
KLightConditionVariable m_cond_var;
const Core::Timing::CoreTiming* m_core_timing{};
};
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size);

View file

@ -27,7 +27,7 @@ static void IncrementScheduledCount(Kernel::KThread* thread) {
}
}
KScheduler::KScheduler(KernelCore& kernel_) : kernel{kernel_} {
KScheduler::KScheduler(KernelCore& kernel) : m_kernel{kernel} {
m_switch_fiber = std::make_shared<Common::Fiber>([this] {
while (true) {
ScheduleImplFiber();
@ -47,7 +47,7 @@ void KScheduler::SetInterruptTaskRunnable() {
void KScheduler::RequestScheduleOnInterrupt() {
m_state.needs_scheduling = true;
if (CanSchedule(kernel)) {
if (CanSchedule(m_kernel)) {
ScheduleOnInterrupt();
}
}
@ -97,50 +97,50 @@ u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
}
void KScheduler::Schedule() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(m_core_id == GetCurrentCoreId(kernel));
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
ASSERT(m_core_id == GetCurrentCoreId(m_kernel));
ScheduleImpl();
}
void KScheduler::ScheduleOnInterrupt() {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::PreemptSingleCore() {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
auto* thread = GetCurrentThreadPointer(kernel);
auto& previous_scheduler = kernel.Scheduler(thread->GetCurrentCore());
auto* thread = GetCurrentThreadPointer(m_kernel);
auto& previous_scheduler = m_kernel.Scheduler(thread->GetCurrentCore());
previous_scheduler.Unload(thread);
Common::Fiber::YieldTo(thread->GetHostContext(), *m_switch_fiber);
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
void KScheduler::RescheduleCurrentCore() {
ASSERT(!kernel.IsPhantomModeForSingleCore());
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(!m_kernel.IsPhantomModeForSingleCore());
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
if (m_state.needs_scheduling.load()) {
// Disable interrupts, and then check again if rescheduling is needed.
// KScopedInterruptDisable intr_disable;
kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
m_kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
}
}
void KScheduler::RescheduleCurrentCoreImpl() {
// Check that scheduling is needed.
if (m_state.needs_scheduling.load()) [[likely]] {
GetCurrentThread(kernel).DisableDispatch();
GetCurrentThread(m_kernel).DisableDispatch();
Schedule();
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
}
@ -149,18 +149,18 @@ void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core
m_core_id = core_id;
m_idle_thread = idle_thread;
// m_state.idle_thread_stack = m_idle_thread->GetStackTop();
// m_state.interrupt_task_manager = &kernel.GetInterruptTaskManager();
// m_state.interrupt_task_manager = std::addressof(kernel.GetInterruptTaskManager());
// Insert the main thread into the priority queue.
// {
// KScopedSchedulerLock lk{kernel};
// GetPriorityQueue(kernel).PushBack(GetCurrentThreadPointer(kernel));
// SetSchedulerUpdateNeeded(kernel);
// KScopedSchedulerLock lk{m_kernel};
// GetPriorityQueue(m_kernel).PushBack(GetCurrentThreadPointer(m_kernel));
// SetSchedulerUpdateNeeded(m_kernel);
// }
// Bind interrupt handler.
// kernel.GetInterruptManager().BindHandler(
// GetSchedulerInterruptHandler(kernel), KInterruptName::Scheduler, m_core_id,
// GetSchedulerInterruptHandler(m_kernel), KInterruptName::Scheduler, m_core_id,
// KInterruptController::PriorityLevel::Scheduler, false, false);
// Set the current thread.
@ -168,7 +168,7 @@ void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core
}
void KScheduler::Activate() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
// m_state.should_count_idle = KTargetSystem::IsDebugMode();
m_is_active = true;
@ -176,7 +176,7 @@ void KScheduler::Activate() {
}
void KScheduler::OnThreadStart() {
GetCurrentThread(kernel).EnableDispatch();
GetCurrentThread(m_kernel).EnableDispatch();
}
u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
@ -184,7 +184,7 @@ u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
prev_highest_thread != highest_thread) [[likely]] {
if (prev_highest_thread != nullptr) [[likely]] {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(kernel.System().CoreTiming().GetCPUTicks());
prev_highest_thread->SetLastScheduledTick(m_kernel.System().CoreTiming().GetCPUTicks());
}
if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] {
@ -328,8 +328,8 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
}
void KScheduler::SwitchThread(KThread* next_thread) {
KProcess* const cur_process = GetCurrentProcessPointer(kernel);
KThread* const cur_thread = GetCurrentThreadPointer(kernel);
KProcess* const cur_process = GetCurrentProcessPointer(m_kernel);
KThread* const cur_thread = GetCurrentThreadPointer(m_kernel);
// We never want to schedule a null thread, so use the idle thread if we don't have a next.
if (next_thread == nullptr) {
@ -351,7 +351,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// Update the CPU time tracking variables.
const s64 prev_tick = m_last_context_switch_time;
const s64 cur_tick = kernel.System().CoreTiming().GetCPUTicks();
const s64 cur_tick = m_kernel.System().CoreTiming().GetCPUTicks();
const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) {
@ -375,7 +375,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// }
// Set the new thread.
SetCurrentThread(kernel, next_thread);
SetCurrentThread(m_kernel, next_thread);
m_current_thread = next_thread;
// Set the new Thread Local region.
@ -388,7 +388,7 @@ void KScheduler::ScheduleImpl() {
std::atomic_thread_fence(std::memory_order_seq_cst);
// Load the appropriate thread pointers for scheduling.
KThread* const cur_thread{GetCurrentThreadPointer(kernel)};
KThread* const cur_thread{GetCurrentThreadPointer(m_kernel)};
KThread* highest_priority_thread{m_state.highest_priority_thread};
// Check whether there are runnable interrupt tasks.
@ -411,7 +411,7 @@ void KScheduler::ScheduleImpl() {
m_switch_cur_thread = cur_thread;
m_switch_highest_priority_thread = highest_priority_thread;
m_switch_from_schedule = true;
Common::Fiber::YieldTo(cur_thread->host_context, *m_switch_fiber);
Common::Fiber::YieldTo(cur_thread->m_host_context, *m_switch_fiber);
// Returning from ScheduleImpl occurs after this thread has been scheduled again.
}
@ -450,7 +450,7 @@ void KScheduler::ScheduleImplFiber() {
// We want to try to lock the highest priority thread's context.
// Try to take it.
while (!highest_priority_thread->context_guard.try_lock()) {
while (!highest_priority_thread->m_context_guard.try_lock()) {
// The highest priority thread's context is already locked.
// Check if we need scheduling. If we don't, we can retry directly.
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
@ -468,7 +468,7 @@ void KScheduler::ScheduleImplFiber() {
if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
// Our switch failed.
// We should unlock the thread context, and then retry.
highest_priority_thread->context_guard.unlock();
highest_priority_thread->m_context_guard.unlock();
goto retry;
} else {
break;
@ -489,30 +489,30 @@ void KScheduler::ScheduleImplFiber() {
Reload(highest_priority_thread);
// Reload the host thread.
Common::Fiber::YieldTo(m_switch_fiber, *highest_priority_thread->host_context);
Common::Fiber::YieldTo(m_switch_fiber, *highest_priority_thread->m_host_context);
}
void KScheduler::Unload(KThread* thread) {
auto& cpu_core = kernel.System().ArmInterface(m_core_id);
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
thread->SetTpidrEl0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState();
// Check if the thread is terminated by checking the DPC flags.
if ((thread->GetStackParameters().dpc_flags & static_cast<u32>(DpcFlag::Terminated)) == 0) {
// The thread isn't terminated, so we want to unlock it.
thread->context_guard.unlock();
thread->m_context_guard.unlock();
}
}
void KScheduler::Reload(KThread* thread) {
auto& cpu_core = kernel.System().ArmInterface(m_core_id);
auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64());
cpu_core.SetTlsAddress(thread->GetTLSAddress());
cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
cpu_core.SetTlsAddress(thread->GetTlsAddress());
cpu_core.SetTPIDR_EL0(thread->GetTpidrEl0());
cpu_core.LoadWatchpointArray(thread->GetOwnerProcess()->GetWatchpoints());
cpu_core.ClearExclusiveState();
}
@ -891,7 +891,7 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
RescheduleCores(kernel, core_mask);
RescheduleCores(m_kernel, core_mask);
}
}

View file

@ -80,17 +80,17 @@ public:
return GetCurrentThread(kernel).GetDisableDispatchCount() == 0;
}
static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
return kernel.GlobalSchedulerContext().m_scheduler_lock.IsLockedByCurrentThread();
}
static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().scheduler_update_needed;
return kernel.GlobalSchedulerContext().m_scheduler_update_needed;
}
static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed = true;
kernel.GlobalSchedulerContext().m_scheduler_update_needed = true;
}
static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed = false;
kernel.GlobalSchedulerContext().m_scheduler_update_needed = false;
}
static void DisableScheduling(KernelCore& kernel);
@ -115,7 +115,7 @@ public:
private:
// Static private API.
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().priority_queue;
return kernel.GlobalSchedulerContext().m_priority_queue;
}
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
@ -149,7 +149,7 @@ private:
KInterruptTaskManager* interrupt_task_manager{nullptr};
};
KernelCore& kernel;
KernelCore& m_kernel;
SchedulingState m_state;
bool m_is_active{false};
s32 m_core_id{0};
@ -166,7 +166,7 @@ private:
class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
public:
explicit KScopedSchedulerLock(KernelCore& kernel)
: KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
: KScopedLock(kernel.GlobalSchedulerContext().m_scheduler_lock) {}
~KScopedSchedulerLock() = default;
};

View file

@ -14,74 +14,67 @@
namespace Kernel {
class KernelCore;
class GlobalSchedulerContext;
template <typename SchedulerType>
class KAbstractSchedulerLock {
public:
explicit KAbstractSchedulerLock(KernelCore& kernel_) : kernel{kernel_} {}
explicit KAbstractSchedulerLock(KernelCore& kernel) : m_kernel{kernel} {}
bool IsLockedByCurrentThread() const {
return owner_thread == GetCurrentThreadPointer(kernel);
return m_owner_thread == GetCurrentThreadPointer(m_kernel);
}
void Lock() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
if (IsLockedByCurrentThread()) {
if (this->IsLockedByCurrentThread()) {
// If we already own the lock, the lock count should be > 0.
// For debug, ensure this is true.
ASSERT(lock_count > 0);
ASSERT(m_lock_count > 0);
} else {
// Otherwise, we want to disable scheduling and acquire the spinlock.
SchedulerType::DisableScheduling(kernel);
spin_lock.Lock();
SchedulerType::DisableScheduling(m_kernel);
m_spin_lock.Lock();
ASSERT(lock_count == 0);
ASSERT(owner_thread == nullptr);
ASSERT(m_lock_count == 0);
ASSERT(m_owner_thread == nullptr);
// Take ownership of the lock.
owner_thread = GetCurrentThreadPointer(kernel);
m_owner_thread = GetCurrentThreadPointer(m_kernel);
}
// Increment the lock count.
lock_count++;
m_lock_count++;
}
void Unlock() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
ASSERT(IsLockedByCurrentThread());
ASSERT(lock_count > 0);
ASSERT(this->IsLockedByCurrentThread());
ASSERT(m_lock_count > 0);
// Release an instance of the lock.
if ((--lock_count) == 0) {
if ((--m_lock_count) == 0) {
// Perform a memory barrier here.
std::atomic_thread_fence(std::memory_order_seq_cst);
// We're no longer going to hold the lock. Take note of what cores need scheduling.
const u64 cores_needing_scheduling =
SchedulerType::UpdateHighestPriorityThreads(kernel);
SchedulerType::UpdateHighestPriorityThreads(m_kernel);
// Note that we no longer hold the lock, and unlock the spinlock.
owner_thread = nullptr;
spin_lock.Unlock();
m_owner_thread = nullptr;
m_spin_lock.Unlock();
// Enable scheduling, and perform a rescheduling operation.
SchedulerType::EnableScheduling(kernel, cores_needing_scheduling);
SchedulerType::EnableScheduling(m_kernel, cores_needing_scheduling);
}
}
private:
KernelCore& kernel;
KAlignedSpinLock spin_lock{};
s32 lock_count{};
std::atomic<KThread*> owner_thread{};
friend class GlobalSchedulerContext;
KernelCore& m_kernel;
KAlignedSpinLock m_spin_lock{};
s32 m_lock_count{};
std::atomic<KThread*> m_owner_thread{};
};
} // namespace Kernel

View file

@ -18,15 +18,15 @@ std::is_reference_v<T>&& requires(T& t) {
template <typename T>
requires KLockable<T>
class [[nodiscard]] KScopedLock {
class KScopedLock {
public:
explicit KScopedLock(T* l) : lock_ptr(l) {
this->lock_ptr->Lock();
explicit KScopedLock(T* l) : m_lock(*l) {}
explicit KScopedLock(T& l) : m_lock(l) {
m_lock.Lock();
}
explicit KScopedLock(T& l) : KScopedLock(std::addressof(l)) {}
~KScopedLock() {
this->lock_ptr->Unlock();
m_lock.Unlock();
}
KScopedLock(const KScopedLock&) = delete;
@ -36,7 +36,7 @@ public:
KScopedLock& operator=(KScopedLock&&) = delete;
private:
T* lock_ptr;
T& m_lock;
};
} // namespace Kernel

View file

@ -12,20 +12,20 @@ namespace Kernel {
class KScopedResourceReservation {
public:
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v, s64 timeout)
: resource_limit(std::move(l)), value(v), resource(r) {
if (resource_limit && value) {
success = resource_limit->Reserve(resource, value, timeout);
: m_limit(l), m_value(v), m_resource(r) {
if (m_limit && m_value) {
m_succeeded = m_limit->Reserve(m_resource, m_value, timeout);
} else {
success = true;
m_succeeded = true;
}
}
explicit KScopedResourceReservation(KResourceLimit* l, LimitableResource r, s64 v = 1)
: resource_limit(std::move(l)), value(v), resource(r) {
if (resource_limit && value) {
success = resource_limit->Reserve(resource, value);
: m_limit(l), m_value(v), m_resource(r) {
if (m_limit && m_value) {
m_succeeded = m_limit->Reserve(m_resource, m_value);
} else {
success = true;
m_succeeded = true;
}
}
@ -36,26 +36,26 @@ public:
: KScopedResourceReservation(p->GetResourceLimit(), r, v) {}
~KScopedResourceReservation() noexcept {
if (resource_limit && value && success) {
// resource was not committed, release the reservation.
resource_limit->Release(resource, value);
if (m_limit && m_value && m_succeeded) {
// Resource was not committed, release the reservation.
m_limit->Release(m_resource, m_value);
}
}
/// Commit the resource reservation, destruction of this object does not release the resource
void Commit() {
resource_limit = nullptr;
m_limit = nullptr;
}
[[nodiscard]] bool Succeeded() const {
return success;
bool Succeeded() const {
return m_succeeded;
}
private:
KResourceLimit* resource_limit{};
s64 value;
LimitableResource resource;
bool success;
KResourceLimit* m_limit{};
s64 m_value{};
LimitableResource m_resource{};
bool m_succeeded{};
};
} // namespace Kernel

View file

@ -11,39 +11,39 @@
namespace Kernel {
class [[nodiscard]] KScopedSchedulerLockAndSleep {
class KScopedSchedulerLockAndSleep {
public:
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel_, KHardwareTimer** out_timer,
KThread* t, s64 timeout)
: kernel(kernel_), timeout_tick(timeout), thread(t), timer() {
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, KHardwareTimer** out_timer,
KThread* thread, s64 timeout_tick)
: m_kernel(kernel), m_timeout_tick(timeout_tick), m_thread(thread), m_timer() {
// Lock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Lock();
kernel.GlobalSchedulerContext().m_scheduler_lock.Lock();
// Set our timer only if the time is positive.
timer = (timeout_tick > 0) ? std::addressof(kernel.HardwareTimer()) : nullptr;
m_timer = (timeout_tick > 0) ? std::addressof(kernel.HardwareTimer()) : nullptr;
*out_timer = timer;
*out_timer = m_timer;
}
~KScopedSchedulerLockAndSleep() {
// Register the sleep.
if (timeout_tick > 0) {
timer->RegisterTask(thread, timeout_tick);
if (m_timeout_tick > 0) {
m_timer->RegisterTask(m_thread, m_timeout_tick);
}
// Unlock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Unlock();
m_kernel.GlobalSchedulerContext().m_scheduler_lock.Unlock();
}
void CancelSleep() {
timeout_tick = 0;
m_timeout_tick = 0;
}
private:
KernelCore& kernel;
s64 timeout_tick{};
KThread* thread{};
KHardwareTimer* timer{};
KernelCore& m_kernel;
s64 m_timeout_tick{};
KThread* m_thread{};
KHardwareTimer* m_timer{};
};
} // namespace Kernel

View file

@ -12,13 +12,12 @@
namespace Kernel {
KServerPort::KServerPort(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KServerPort::KServerPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KServerPort::~KServerPort() = default;
void KServerPort::Initialize(KPort* parent_port_, std::string&& name_) {
void KServerPort::Initialize(KPort* parent) {
// Set member variables.
parent = parent_port_;
name = std::move(name_);
m_parent = parent;
}
bool KServerPort::IsLight() const {
@ -36,10 +35,10 @@ void KServerPort::CleanupSessions() {
// Get the last session in the list
KServerSession* session = nullptr;
{
KScopedSchedulerLock sl{kernel};
if (!session_list.empty()) {
session = std::addressof(session_list.front());
session_list.pop_front();
KScopedSchedulerLock sl{m_kernel};
if (!m_session_list.empty()) {
session = std::addressof(m_session_list.front());
m_session_list.pop_front();
}
}
@ -54,13 +53,13 @@ void KServerPort::CleanupSessions() {
void KServerPort::Destroy() {
// Note with our parent that we're closed.
parent->OnServerClosed();
m_parent->OnServerClosed();
// Perform necessary cleanup of our session lists.
this->CleanupSessions();
// Close our reference to our parent.
parent->Close();
m_parent->Close();
}
bool KServerPort::IsSignaled() const {
@ -68,18 +67,18 @@ bool KServerPort::IsSignaled() const {
UNIMPLEMENTED();
return false;
} else {
return !session_list.empty();
return !m_session_list.empty();
}
}
void KServerPort::EnqueueSession(KServerSession* session) {
ASSERT(!this->IsLight());
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Add the session to our queue.
session_list.push_back(*session);
if (session_list.size() == 1) {
m_session_list.push_back(*session);
if (m_session_list.size() == 1) {
this->NotifyAvailable();
}
}
@ -87,15 +86,15 @@ void KServerPort::EnqueueSession(KServerSession* session) {
KServerSession* KServerPort::AcceptSession() {
ASSERT(!this->IsLight());
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Return the first session in the list.
if (session_list.empty()) {
if (m_session_list.empty()) {
return nullptr;
}
KServerSession* session = std::addressof(session_list.front());
session_list.pop_front();
KServerSession* session = std::addressof(m_session_list.front());
m_session_list.pop_front();
return session;
}

View file

@ -22,17 +22,17 @@ class KServerPort final : public KSynchronizationObject {
KERNEL_AUTOOBJECT_TRAITS(KServerPort, KSynchronizationObject);
public:
explicit KServerPort(KernelCore& kernel_);
explicit KServerPort(KernelCore& kernel);
~KServerPort() override;
void Initialize(KPort* parent_port_, std::string&& name_);
void Initialize(KPort* parent);
void EnqueueSession(KServerSession* pending_session);
void EnqueueSession(KServerSession* session);
KServerSession* AcceptSession();
const KPort* GetParent() const {
return parent;
return m_parent;
}
bool IsLight() const;
@ -46,8 +46,8 @@ private:
void CleanupSessions();
SessionList session_list;
KPort* parent{};
SessionList m_session_list{};
KPort* m_parent{};
};
} // namespace Kernel

View file

@ -28,23 +28,17 @@ namespace Kernel {
using ThreadQueueImplForKServerSessionRequest = KThreadQueue;
KServerSession::KServerSession(KernelCore& kernel_)
: KSynchronizationObject{kernel_}, m_lock{kernel_} {}
KServerSession::KServerSession(KernelCore& kernel)
: KSynchronizationObject{kernel}, m_lock{m_kernel} {}
KServerSession::~KServerSession() = default;
void KServerSession::Initialize(KSession* parent_session_, std::string&& name_) {
// Set member variables.
parent = parent_session_;
name = std::move(name_);
}
void KServerSession::Destroy() {
parent->OnServerClosed();
m_parent->OnServerClosed();
this->CleanupRequests();
parent->Close();
m_parent->Close();
}
void KServerSession::OnClientClosed() {
@ -62,7 +56,7 @@ void KServerSession::OnClientClosed() {
// Get the next request.
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_current_request != nullptr && m_current_request != prev_request) {
// Set the request, open a reference as we process it.
@ -121,7 +115,7 @@ void KServerSession::OnClientClosed() {
// // Get the process and page table.
// KProcess *client_process = thread->GetOwnerProcess();
// auto &client_pt = client_process->GetPageTable();
// auto& client_pt = client_process->GetPageTable();
// // Reply to the request.
// ReplyAsyncError(client_process, request->GetAddress(), request->GetSize(),
@ -141,10 +135,10 @@ void KServerSession::OnClientClosed() {
}
bool KServerSession::IsSignaled() const {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// If the client is closed, we're always signaled.
if (parent->IsClientClosed()) {
if (m_parent->IsClientClosed()) {
return true;
}
@ -154,17 +148,17 @@ bool KServerSession::IsSignaled() const {
Result KServerSession::OnRequest(KSessionRequest* request) {
// Create the wait queue.
ThreadQueueImplForKServerSessionRequest wait_queue{kernel};
ThreadQueueImplForKServerSessionRequest wait_queue{m_kernel};
{
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Ensure that we can handle new requests.
R_UNLESS(!parent->IsServerClosed(), ResultSessionClosed);
R_UNLESS(!m_parent->IsServerClosed(), ResultSessionClosed);
// Check that we're not terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(), ResultTerminationRequested);
// Get whether we're empty.
const bool was_empty = m_request_list.empty();
@ -182,11 +176,11 @@ Result KServerSession::OnRequest(KSessionRequest* request) {
R_SUCCEED_IF(request->GetEvent() != nullptr);
// This is a synchronous request, so we should wait for our request to complete.
GetCurrentThread(kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
GetCurrentThread(kernel).BeginWait(&wait_queue);
GetCurrentThread(m_kernel).SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue));
}
return GetCurrentThread(kernel).GetWaitResult();
return GetCurrentThread(m_kernel).GetWaitResult();
}
Result KServerSession::SendReply(bool is_hle) {
@ -196,7 +190,7 @@ Result KServerSession::SendReply(bool is_hle) {
// Get the request.
KSessionRequest* request;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Get the current request.
request = m_current_request;
@ -219,7 +213,7 @@ Result KServerSession::SendReply(bool is_hle) {
KEvent* event = request->GetEvent();
// Check whether we're closed.
const bool closed = (client_thread == nullptr || parent->IsClientClosed());
const bool closed = (client_thread == nullptr || m_parent->IsClientClosed());
Result result = ResultSuccess;
if (!closed) {
@ -228,11 +222,11 @@ Result KServerSession::SendReply(bool is_hle) {
// HLE servers write directly to a pointer to the thread command buffer. Therefore
// the reply has already been written in this case.
} else {
Core::Memory::Memory& memory{kernel.System().Memory()};
KThread* server_thread{GetCurrentThreadPointer(kernel)};
Core::Memory::Memory& memory{m_kernel.System().Memory()};
KThread* server_thread{GetCurrentThreadPointer(m_kernel)};
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
auto* src_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
auto* src_msg_buffer = memory.GetPointer(server_thread->GetTlsAddress());
auto* dst_msg_buffer = memory.GetPointer(client_message);
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
}
@ -254,7 +248,7 @@ Result KServerSession::SendReply(bool is_hle) {
if (event != nullptr) {
// // Get the client process/page table.
// KProcess *client_process = client_thread->GetOwnerProcess();
// KPageTable *client_page_table = &client_process->PageTable();
// KPageTable *client_page_table = std::addressof(client_process->PageTable());
// // If we need to, reply with an async error.
// if (R_FAILED(client_result)) {
@ -270,7 +264,7 @@ Result KServerSession::SendReply(bool is_hle) {
event->Signal();
} else {
// End the client thread's wait.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(client_result);
@ -278,7 +272,7 @@ Result KServerSession::SendReply(bool is_hle) {
}
}
return result;
R_RETURN(result);
}
Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext>* out_context,
@ -291,10 +285,10 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext
KThread* client_thread;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
// Ensure that we can service the request.
R_UNLESS(!parent->IsClientClosed(), ResultSessionClosed);
R_UNLESS(!m_parent->IsClientClosed(), ResultSessionClosed);
// Ensure we aren't already servicing a request.
R_UNLESS(m_current_request == nullptr, ResultNotFound);
@ -303,7 +297,7 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext
R_UNLESS(!m_request_list.empty(), ResultNotFound);
// Pop the first request from the list.
request = &m_request_list.front();
request = std::addressof(m_request_list.front());
m_request_list.pop_front();
// Get the thread for the request.
@ -325,27 +319,27 @@ Result KServerSession::ReceiveRequest(std::shared_ptr<Service::HLERequestContext
// bool recv_list_broken = false;
// Receive the message.
Core::Memory::Memory& memory{kernel.System().Memory()};
Core::Memory::Memory& memory{m_kernel.System().Memory()};
if (out_context != nullptr) {
// HLE request.
u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(client_message))};
*out_context =
std::make_shared<Service::HLERequestContext>(kernel, memory, this, client_thread);
std::make_shared<Service::HLERequestContext>(m_kernel, memory, this, client_thread);
(*out_context)->SetSessionRequestManager(manager);
(*out_context)
->PopulateFromIncomingCommandBuffer(client_thread->GetOwnerProcess()->GetHandleTable(),
cmd_buf);
} else {
KThread* server_thread{GetCurrentThreadPointer(kernel)};
KThread* server_thread{GetCurrentThreadPointer(m_kernel)};
UNIMPLEMENTED_IF(server_thread->GetOwnerProcess() != client_thread->GetOwnerProcess());
auto* src_msg_buffer = memory.GetPointer(client_message);
auto* dst_msg_buffer = memory.GetPointer(server_thread->GetTLSAddress());
auto* dst_msg_buffer = memory.GetPointer(server_thread->GetTlsAddress());
std::memcpy(dst_msg_buffer, src_msg_buffer, client_buffer_size);
}
// We succeeded.
return ResultSuccess;
R_SUCCEED();
}
void KServerSession::CleanupRequests() {
@ -356,7 +350,7 @@ void KServerSession::CleanupRequests() {
// Get the next request.
KSessionRequest* request = nullptr;
{
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (m_current_request) {
// Choose the current request if we have one.
@ -364,7 +358,7 @@ void KServerSession::CleanupRequests() {
m_current_request = nullptr;
} else if (!m_request_list.empty()) {
// Pop the request from the front of the list.
request = &m_request_list.front();
request = std::addressof(m_request_list.front());
m_request_list.pop_front();
}
}
@ -387,7 +381,8 @@ void KServerSession::CleanupRequests() {
// KProcess *client_process = (client_thread != nullptr) ?
// client_thread->GetOwnerProcess() : nullptr;
// KProcessPageTable *client_page_table = (client_process != nullptr) ?
// &client_process->GetPageTable() : nullptr;
// std::addressof(client_process->GetPageTable())
// : nullptr;
// Cleanup the mappings.
// Result result = CleanupMap(request, server_process, client_page_table);
@ -407,7 +402,7 @@ void KServerSession::CleanupRequests() {
event->Signal();
} else {
// End the client thread's wait.
KScopedSchedulerLock sl{kernel};
KScopedSchedulerLock sl{m_kernel};
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(ResultSessionClosed);

View file

@ -33,19 +33,17 @@ class KServerSession final : public KSynchronizationObject,
friend class ServiceThread;
public:
explicit KServerSession(KernelCore& kernel_);
explicit KServerSession(KernelCore& kernel);
~KServerSession() override;
void Destroy() override;
void Initialize(KSession* parent_session_, std::string&& name_);
KSession* GetParent() {
return parent;
void Initialize(KSession* p) {
m_parent = p;
}
const KSession* GetParent() const {
return parent;
return m_parent;
}
bool IsSignaled() const override;
@ -66,10 +64,10 @@ private:
void CleanupRequests();
/// KSession that owns this KServerSession
KSession* parent{};
KSession* m_parent{};
/// List of threads which are pending a reply.
boost::intrusive::list<KSessionRequest> m_request_list;
boost::intrusive::list<KSessionRequest> m_request_list{};
KSessionRequest* m_current_request{};
KLightLock m_lock;

View file

@ -9,69 +9,63 @@
namespace Kernel {
KSession::KSession(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, server{kernel_}, client{kernel_} {}
KSession::KSession(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_server{kernel}, m_client{kernel} {}
KSession::~KSession() = default;
void KSession::Initialize(KClientPort* port_, const std::string& name_) {
void KSession::Initialize(KClientPort* client_port, uintptr_t name) {
// Increment reference count.
// Because reference count is one on creation, this will result
// in a reference count of two. Thus, when both server and client are closed
// this object will be destroyed.
Open();
this->Open();
// Create our sub sessions.
KAutoObject::Create(std::addressof(server));
KAutoObject::Create(std::addressof(client));
KAutoObject::Create(std::addressof(m_server));
KAutoObject::Create(std::addressof(m_client));
// Initialize our sub sessions.
server.Initialize(this, name_ + ":Server");
client.Initialize(this, name_ + ":Client");
m_server.Initialize(this);
m_client.Initialize(this);
// Set state and name.
SetState(State::Normal);
name = name_;
this->SetState(State::Normal);
m_name = name;
// Set our owner process.
//! FIXME: this is the wrong process!
process = kernel.ApplicationProcess();
process->Open();
m_process = m_kernel.ApplicationProcess();
m_process->Open();
// Set our port.
port = port_;
if (port != nullptr) {
port->Open();
m_port = client_port;
if (m_port != nullptr) {
m_port->Open();
}
// Mark initialized.
initialized = true;
m_initialized = true;
}
void KSession::Finalize() {
if (port == nullptr) {
return;
if (m_port != nullptr) {
m_port->OnSessionFinalized();
m_port->Close();
}
port->OnSessionFinalized();
port->Close();
}
void KSession::OnServerClosed() {
if (GetState() != State::Normal) {
return;
if (this->GetState() == State::Normal) {
this->SetState(State::ServerClosed);
m_client.OnServerClosed();
}
SetState(State::ServerClosed);
client.OnServerClosed();
}
void KSession::OnClientClosed() {
if (GetState() != State::Normal) {
return;
if (this->GetState() == State::Normal) {
SetState(State::ClientClosed);
m_server.OnClientClosed();
}
SetState(State::ClientClosed);
server.OnClientClosed();
}
void KSession::PostDestroy(uintptr_t arg) {

View file

@ -18,19 +18,18 @@ class KSession final : public KAutoObjectWithSlabHeapAndContainer<KSession, KAut
KERNEL_AUTOOBJECT_TRAITS(KSession, KAutoObject);
public:
explicit KSession(KernelCore& kernel_);
explicit KSession(KernelCore& kernel);
~KSession() override;
void Initialize(KClientPort* port_, const std::string& name_);
void Initialize(KClientPort* port, uintptr_t name);
void Finalize() override;
bool IsInitialized() const override {
return initialized;
return m_initialized;
}
uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(process);
return reinterpret_cast<uintptr_t>(m_process);
}
static void PostDestroy(uintptr_t arg);
@ -48,27 +47,23 @@ public:
}
KClientSession& GetClientSession() {
return client;
return m_client;
}
KServerSession& GetServerSession() {
return server;
return m_server;
}
const KClientSession& GetClientSession() const {
return client;
return m_client;
}
const KServerSession& GetServerSession() const {
return server;
return m_server;
}
const KClientPort* GetParent() const {
return port;
}
KClientPort* GetParent() {
return port;
return m_port;
}
private:
@ -80,20 +75,20 @@ private:
};
void SetState(State state) {
atomic_state = static_cast<u8>(state);
m_atomic_state = static_cast<u8>(state);
}
State GetState() const {
return static_cast<State>(atomic_state.load(std::memory_order_relaxed));
return static_cast<State>(m_atomic_state.load());
}
KServerSession server;
KClientSession client;
std::atomic<std::underlying_type_t<State>> atomic_state{
static_cast<std::underlying_type_t<State>>(State::Invalid)};
KClientPort* port{};
KProcess* process{};
bool initialized{};
KServerSession m_server;
KClientSession m_client;
KClientPort* m_port{};
uintptr_t m_name{};
KProcess* m_process{};
std::atomic<u8> m_atomic_state{static_cast<u8>(State::Invalid)};
bool m_initialized{};
};
} // namespace Kernel

View file

@ -14,46 +14,46 @@ Result KSessionRequest::SessionMappings::PushMap(VAddr client, VAddr server, siz
// Get the mapping.
Mapping* mapping;
if (index < NumStaticMappings) {
mapping = &m_static_mappings[index];
mapping = std::addressof(m_static_mappings[index]);
} else {
// Allocate a page for the extra mappings.
if (m_mappings == nullptr) {
KPageBuffer* page_buffer = KPageBuffer::Allocate(kernel);
KPageBuffer* page_buffer = KPageBuffer::Allocate(m_kernel);
R_UNLESS(page_buffer != nullptr, ResultOutOfMemory);
m_mappings = reinterpret_cast<Mapping*>(page_buffer);
}
mapping = &m_mappings[index - NumStaticMappings];
mapping = std::addressof(m_mappings[index - NumStaticMappings]);
}
// Set the mapping.
mapping->Set(client, server, size, state);
return ResultSuccess;
R_SUCCEED();
}
Result KSessionRequest::SessionMappings::PushSend(VAddr client, VAddr server, size_t size,
KMemoryState state) {
ASSERT(m_num_recv == 0);
ASSERT(m_num_exch == 0);
return this->PushMap(client, server, size, state, m_num_send++);
R_RETURN(this->PushMap(client, server, size, state, m_num_send++));
}
Result KSessionRequest::SessionMappings::PushReceive(VAddr client, VAddr server, size_t size,
KMemoryState state) {
ASSERT(m_num_exch == 0);
return this->PushMap(client, server, size, state, m_num_send + m_num_recv++);
R_RETURN(this->PushMap(client, server, size, state, m_num_send + m_num_recv++));
}
Result KSessionRequest::SessionMappings::PushExchange(VAddr client, VAddr server, size_t size,
KMemoryState state) {
return this->PushMap(client, server, size, state, m_num_send + m_num_recv + m_num_exch++);
R_RETURN(this->PushMap(client, server, size, state, m_num_send + m_num_recv + m_num_exch++));
}
void KSessionRequest::SessionMappings::Finalize() {
if (m_mappings) {
KPageBuffer::Free(kernel, reinterpret_cast<KPageBuffer*>(m_mappings));
KPageBuffer::Free(m_kernel, reinterpret_cast<KPageBuffer*>(m_mappings));
m_mappings = nullptr;
}
}

View file

@ -47,14 +47,14 @@ public:
}
private:
VAddr m_client_address;
VAddr m_server_address;
size_t m_size;
KMemoryState m_state;
VAddr m_client_address{};
VAddr m_server_address{};
size_t m_size{};
KMemoryState m_state{};
};
public:
explicit SessionMappings(KernelCore& kernel_) : kernel(kernel_) {}
explicit SessionMappings(KernelCore& kernel) : m_kernel(kernel) {}
void Initialize() {}
void Finalize();
@ -149,8 +149,8 @@ public:
}
private:
KernelCore& kernel;
std::array<Mapping, NumStaticMappings> m_static_mappings;
KernelCore& m_kernel;
std::array<Mapping, NumStaticMappings> m_static_mappings{};
Mapping* m_mappings{};
u8 m_num_send{};
u8 m_num_recv{};
@ -158,7 +158,7 @@ public:
};
public:
explicit KSessionRequest(KernelCore& kernel_) : KAutoObject(kernel_), m_mappings(kernel_) {}
explicit KSessionRequest(KernelCore& kernel) : KAutoObject(kernel), m_mappings(kernel) {}
static KSessionRequest* Create(KernelCore& kernel) {
KSessionRequest* req = KSessionRequest::Allocate(kernel);
@ -170,13 +170,13 @@ public:
void Destroy() override {
this->Finalize();
KSessionRequest::Free(kernel, this);
KSessionRequest::Free(m_kernel, this);
}
void Initialize(KEvent* event, uintptr_t address, size_t size) {
m_mappings.Initialize();
m_thread = GetCurrentThreadPointer(kernel);
m_thread = GetCurrentThreadPointer(m_kernel);
m_event = event;
m_address = address;
m_size = size;

View file

@ -12,29 +12,27 @@
namespace Kernel {
KSharedMemory::KSharedMemory(KernelCore& kernel_) : KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KSharedMemory::KSharedMemory(KernelCore& kernel) : KAutoObjectWithSlabHeapAndContainer{kernel} {}
KSharedMemory::~KSharedMemory() = default;
Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
Svc::MemoryPermission owner_permission_,
Svc::MemoryPermission user_permission_, std::size_t size_,
std::string name_) {
Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory, KProcess* owner_process,
Svc::MemoryPermission owner_permission,
Svc::MemoryPermission user_permission, std::size_t size) {
// Set members.
owner_process = owner_process_;
device_memory = &device_memory_;
owner_permission = owner_permission_;
user_permission = user_permission_;
size = Common::AlignUp(size_, PageSize);
name = std::move(name_);
m_owner_process = owner_process;
m_device_memory = std::addressof(device_memory);
m_owner_permission = owner_permission;
m_user_permission = user_permission;
m_size = Common::AlignUp(size, PageSize);
const size_t num_pages = Common::DivideUp(size, PageSize);
// Get the resource limit.
KResourceLimit* reslimit = kernel.GetSystemResourceLimit();
KResourceLimit* reslimit = m_kernel.GetSystemResourceLimit();
// Reserve memory for ourselves.
KScopedResourceReservation memory_reservation(reslimit, LimitableResource::PhysicalMemoryMax,
size_);
size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate the memory.
@ -42,67 +40,66 @@ Result KSharedMemory::Initialize(Core::DeviceMemory& device_memory_, KProcess* o
//! HACK: Open continuous mapping from sysmodule pool.
auto option = KMemoryManager::EncodeOption(KMemoryManager::Pool::Secure,
KMemoryManager::Direction::FromBack);
physical_address = kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, option);
R_UNLESS(physical_address != 0, ResultOutOfMemory);
m_physical_address = m_kernel.MemoryManager().AllocateAndOpenContinuous(num_pages, 1, option);
R_UNLESS(m_physical_address != 0, ResultOutOfMemory);
//! Insert the result into our page group.
page_group.emplace(kernel, &kernel.GetSystemSystemResource().GetBlockInfoManager());
page_group->AddBlock(physical_address, num_pages);
m_page_group.emplace(m_kernel,
std::addressof(m_kernel.GetSystemSystemResource().GetBlockInfoManager()));
m_page_group->AddBlock(m_physical_address, num_pages);
// Commit our reservation.
memory_reservation.Commit();
// Set our resource limit.
resource_limit = reslimit;
resource_limit->Open();
m_resource_limit = reslimit;
m_resource_limit->Open();
// Mark initialized.
is_initialized = true;
m_is_initialized = true;
// Clear all pages in the memory.
for (const auto& block : *page_group) {
std::memset(device_memory_.GetPointer<void>(block.GetAddress()), 0, block.GetSize());
for (const auto& block : *m_page_group) {
std::memset(m_device_memory->GetPointer<void>(block.GetAddress()), 0, block.GetSize());
}
return ResultSuccess;
R_SUCCEED();
}
void KSharedMemory::Finalize() {
// Close and finalize the page group.
page_group->Close();
page_group->Finalize();
m_page_group->Close();
m_page_group->Finalize();
// Release the memory reservation.
resource_limit->Release(LimitableResource::PhysicalMemoryMax, size);
resource_limit->Close();
// Perform inherited finalization.
KAutoObjectWithSlabHeapAndContainer<KSharedMemory, KAutoObjectWithList>::Finalize();
m_resource_limit->Release(LimitableResource::PhysicalMemoryMax, m_size);
m_resource_limit->Close();
}
Result KSharedMemory::Map(KProcess& target_process, VAddr address, std::size_t map_size,
Svc::MemoryPermission map_perm) {
// Validate the size.
R_UNLESS(size == map_size, ResultInvalidSize);
R_UNLESS(m_size == map_size, ResultInvalidSize);
// Validate the permission.
const Svc::MemoryPermission test_perm =
&target_process == owner_process ? owner_permission : user_permission;
std::addressof(target_process) == m_owner_process ? m_owner_permission : m_user_permission;
if (test_perm == Svc::MemoryPermission::DontCare) {
ASSERT(map_perm == Svc::MemoryPermission::Read || map_perm == Svc::MemoryPermission::Write);
} else {
R_UNLESS(map_perm == test_perm, ResultInvalidNewMemoryPermission);
}
return target_process.PageTable().MapPageGroup(address, *page_group, KMemoryState::Shared,
ConvertToKMemoryPermission(map_perm));
R_RETURN(target_process.PageTable().MapPageGroup(address, *m_page_group, KMemoryState::Shared,
ConvertToKMemoryPermission(map_perm)));
}
Result KSharedMemory::Unmap(KProcess& target_process, VAddr address, std::size_t unmap_size) {
// Validate the size.
R_UNLESS(size == unmap_size, ResultInvalidSize);
R_UNLESS(m_size == unmap_size, ResultInvalidSize);
return target_process.PageTable().UnmapPageGroup(address, *page_group, KMemoryState::Shared);
R_RETURN(
target_process.PageTable().UnmapPageGroup(address, *m_page_group, KMemoryState::Shared));
}
} // namespace Kernel

View file

@ -23,12 +23,12 @@ class KSharedMemory final
KERNEL_AUTOOBJECT_TRAITS(KSharedMemory, KAutoObject);
public:
explicit KSharedMemory(KernelCore& kernel_);
explicit KSharedMemory(KernelCore& kernel);
~KSharedMemory() override;
Result Initialize(Core::DeviceMemory& device_memory_, KProcess* owner_process_,
Svc::MemoryPermission owner_permission_,
Svc::MemoryPermission user_permission_, std::size_t size_, std::string name_);
Svc::MemoryPermission user_permission_, std::size_t size_);
/**
* Maps a shared memory block to an address in the target process' address space
@ -54,7 +54,7 @@ public:
* @return A pointer to the shared memory block from the specified offset
*/
u8* GetPointer(std::size_t offset = 0) {
return device_memory->GetPointer<u8>(physical_address + offset);
return m_device_memory->GetPointer<u8>(m_physical_address + offset);
}
/**
@ -63,26 +63,26 @@ public:
* @return A pointer to the shared memory block from the specified offset
*/
const u8* GetPointer(std::size_t offset = 0) const {
return device_memory->GetPointer<u8>(physical_address + offset);
return m_device_memory->GetPointer<u8>(m_physical_address + offset);
}
void Finalize() override;
bool IsInitialized() const override {
return is_initialized;
return m_is_initialized;
}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
private:
Core::DeviceMemory* device_memory{};
KProcess* owner_process{};
std::optional<KPageGroup> page_group{};
Svc::MemoryPermission owner_permission{};
Svc::MemoryPermission user_permission{};
PAddr physical_address{};
std::size_t size{};
KResourceLimit* resource_limit{};
bool is_initialized{};
Core::DeviceMemory* m_device_memory{};
KProcess* m_owner_process{};
std::optional<KPageGroup> m_page_group{};
Svc::MemoryPermission m_owner_permission{};
Svc::MemoryPermission m_user_permission{};
PAddr m_physical_address{};
std::size_t m_size{};
KResourceLimit* m_resource_limit{};
bool m_is_initialized{};
};
} // namespace Kernel

View file

@ -18,25 +18,28 @@ public:
explicit KSharedMemoryInfo(KernelCore&) {}
KSharedMemoryInfo() = default;
constexpr void Initialize(KSharedMemory* shmem) {
shared_memory = shmem;
constexpr void Initialize(KSharedMemory* m) {
m_shared_memory = m;
m_reference_count = 0;
}
constexpr KSharedMemory* GetSharedMemory() const {
return shared_memory;
return m_shared_memory;
}
constexpr void Open() {
++reference_count;
++m_reference_count;
ASSERT(m_reference_count > 0);
}
constexpr bool Close() {
return (--reference_count) == 0;
ASSERT(m_reference_count > 0);
return (--m_reference_count) == 0;
}
private:
KSharedMemory* shared_memory{};
size_t reference_count{};
KSharedMemory* m_shared_memory{};
size_t m_reference_count{};
};
} // namespace Kernel

View file

@ -89,7 +89,8 @@ private:
if (alloc_peak <= cur_peak) {
break;
}
} while (!Common::AtomicCompareAndSwap(&m_peak, alloc_peak, cur_peak, cur_peak));
} while (
!Common::AtomicCompareAndSwap(std::addressof(m_peak), alloc_peak, cur_peak, cur_peak));
}
public:

View file

@ -6,15 +6,15 @@
namespace Kernel {
void KSpinLock::Lock() {
lck.lock();
m_lock.lock();
}
void KSpinLock::Unlock() {
lck.unlock();
m_lock.unlock();
}
bool KSpinLock::TryLock() {
return lck.try_lock();
return m_lock.try_lock();
}
} // namespace Kernel

View file

@ -5,26 +5,24 @@
#include <mutex>
#include "common/common_funcs.h"
#include "core/hle/kernel/k_scoped_lock.h"
namespace Kernel {
class KSpinLock {
public:
KSpinLock() = default;
explicit KSpinLock() = default;
KSpinLock(const KSpinLock&) = delete;
KSpinLock& operator=(const KSpinLock&) = delete;
KSpinLock(KSpinLock&&) = delete;
KSpinLock& operator=(KSpinLock&&) = delete;
YUZU_NON_COPYABLE(KSpinLock);
YUZU_NON_MOVEABLE(KSpinLock);
void Lock();
void Unlock();
[[nodiscard]] bool TryLock();
bool TryLock();
private:
std::mutex lck;
std::mutex m_lock;
};
// TODO(bunnei): Alias for now, in case we want to implement these accurately in the future.

View file

@ -17,9 +17,9 @@ namespace {
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
public:
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel, KSynchronizationObject** o,
KSynchronizationObject::ThreadListNode* n, s32 c)
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
: KThreadQueueWithoutEndWait(kernel), m_objects(o), m_nodes(n), m_count(c) {}
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
Result wait_result) override {
@ -71,26 +71,26 @@ void KSynchronizationObject::Finalize() {
KAutoObject::Finalize();
}
Result KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
Result KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
KSynchronizationObject** objects, const s32 num_objects,
s64 timeout) {
// Allocate space on stack for thread nodes.
std::vector<ThreadListNode> thread_nodes(num_objects);
// Prepare for wait.
KThread* thread = GetCurrentThreadPointer(kernel_ctx);
KThread* thread = GetCurrentThreadPointer(kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel_ctx, objects,
thread_nodes.data(), num_objects);
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel, objects, thread_nodes.data(),
num_objects);
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(kernel_ctx, std::addressof(timer), thread, timeout);
KScopedSchedulerLockAndSleep slp(kernel, std::addressof(timer), thread, timeout);
// Check if the thread should terminate.
if (thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Check if any of the objects are already signaled.
@ -100,21 +100,21 @@ Result KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
if (objects[i]->IsSignaled()) {
*out_index = i;
slp.CancelSleep();
return ResultSuccess;
R_THROW(ResultSuccess);
}
}
// Check if the timeout is zero.
if (timeout == 0) {
slp.CancelSleep();
return ResultTimedOut;
R_THROW(ResultTimedOut);
}
// Check if waiting was canceled.
if (thread->IsWaitCancelled()) {
slp.CancelSleep();
thread->ClearWaitCancelled();
return ResultCancelled;
R_THROW(ResultCancelled);
}
// Add the waiters.
@ -141,16 +141,15 @@ Result KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
*out_index = thread->GetSyncedIndex();
// Get the wait result.
return thread->GetWaitResult();
R_RETURN(thread->GetWaitResult());
}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
: KAutoObjectWithList{kernel_} {}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel) : KAutoObjectWithList{kernel} {}
KSynchronizationObject::~KSynchronizationObject() = default;
void KSynchronizationObject::NotifyAvailable(Result result) {
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// If we're not signaled, we've nothing to notify.
if (!this->IsSignaled()) {
@ -158,7 +157,7 @@ void KSynchronizationObject::NotifyAvailable(Result result) {
}
// Iterate over each thread.
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
for (auto* cur_node = m_thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
cur_node->thread->NotifyAvailable(this, result);
}
}
@ -168,8 +167,8 @@ std::vector<KThread*> KSynchronizationObject::GetWaitingThreadsForDebugging() co
// If debugging, dump the list of waiters.
{
KScopedSchedulerLock lock(kernel);
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
KScopedSchedulerLock lock(m_kernel);
for (auto* cur_node = m_thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
threads.emplace_back(cur_node->thread);
}
}

View file

@ -24,31 +24,30 @@ public:
KThread* thread{};
};
[[nodiscard]] static Result Wait(KernelCore& kernel, s32* out_index,
KSynchronizationObject** objects, const s32 num_objects,
s64 timeout);
static Result Wait(KernelCore& kernel, s32* out_index, KSynchronizationObject** objects,
const s32 num_objects, s64 timeout);
void Finalize() override;
[[nodiscard]] virtual bool IsSignaled() const = 0;
virtual bool IsSignaled() const = 0;
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
std::vector<KThread*> GetWaitingThreadsForDebugging() const;
void LinkNode(ThreadListNode* node_) {
// Link the node to the list.
if (thread_list_tail == nullptr) {
thread_list_head = node_;
if (m_thread_list_tail == nullptr) {
m_thread_list_head = node_;
} else {
thread_list_tail->next = node_;
m_thread_list_tail->next = node_;
}
thread_list_tail = node_;
m_thread_list_tail = node_;
}
void UnlinkNode(ThreadListNode* node_) {
// Unlink the node from the list.
ThreadListNode* prev_ptr =
reinterpret_cast<ThreadListNode*>(std::addressof(thread_list_head));
reinterpret_cast<ThreadListNode*>(std::addressof(m_thread_list_head));
ThreadListNode* prev_val = nullptr;
ThreadListNode *prev, *tail_prev;
@ -59,8 +58,8 @@ public:
prev_val = prev_ptr;
} while (prev_ptr != node_);
if (thread_list_tail == node_) {
thread_list_tail = tail_prev;
if (m_thread_list_tail == node_) {
m_thread_list_tail = tail_prev;
}
prev->next = node_->next;
@ -78,8 +77,8 @@ protected:
}
private:
ThreadListNode* thread_list_head{};
ThreadListNode* thread_list_tail{};
ThreadListNode* m_thread_list_head{};
ThreadListNode* m_thread_list_tail{};
};
} // namespace Kernel

View file

@ -5,9 +5,8 @@
namespace Kernel {
Result KSecureSystemResource::Initialize([[maybe_unused]] size_t size,
[[maybe_unused]] KResourceLimit* resource_limit,
[[maybe_unused]] KMemoryManager::Pool pool) {
Result KSecureSystemResource::Initialize(size_t size, KResourceLimit* resource_limit,
KMemoryManager::Pool pool) {
// Unimplemented
UNREACHABLE();
}
@ -17,8 +16,8 @@ void KSecureSystemResource::Finalize() {
UNREACHABLE();
}
size_t KSecureSystemResource::CalculateRequiredSecureMemorySize(
[[maybe_unused]] size_t size, [[maybe_unused]] KMemoryManager::Pool pool) {
size_t KSecureSystemResource::CalculateRequiredSecureMemorySize(size_t size,
KMemoryManager::Pool pool) {
// Unimplemented
UNREACHABLE();
}

View file

@ -21,7 +21,7 @@ class KSystemResource : public KAutoObject {
KERNEL_AUTOOBJECT_TRAITS(KSystemResource, KAutoObject);
public:
explicit KSystemResource(KernelCore& kernel_) : KAutoObject(kernel_) {}
explicit KSystemResource(KernelCore& kernel) : KAutoObject(kernel) {}
protected:
void SetSecureResource() {
@ -87,8 +87,8 @@ private:
class KSecureSystemResource final
: public KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource> {
public:
explicit KSecureSystemResource(KernelCore& kernel_)
: KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource>(kernel_) {
explicit KSecureSystemResource(KernelCore& kernel)
: KAutoObjectWithSlabHeap<KSecureSystemResource, KSystemResource>(kernel) {
// Mark ourselves as being a secure resource.
this->SetSecureResource();
}
@ -99,7 +99,7 @@ public:
bool IsInitialized() const {
return m_is_initialized;
}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
static void PostDestroy(uintptr_t arg) {}
size_t CalculateRequiredSecureMemorySize() const {
return CalculateRequiredSecureMemorySize(m_resource_size, m_resource_pool);

File diff suppressed because it is too large Load diff

View file

@ -108,11 +108,11 @@ enum class StepState : u32 {
};
void SetCurrentThread(KernelCore& kernel, KThread* thread);
[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel);
[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel);
[[nodiscard]] KProcess* GetCurrentProcessPointer(KernelCore& kernel);
[[nodiscard]] KProcess& GetCurrentProcess(KernelCore& kernel);
[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel);
KThread* GetCurrentThreadPointer(KernelCore& kernel);
KThread& GetCurrentThread(KernelCore& kernel);
KProcess* GetCurrentProcessPointer(KernelCore& kernel);
KProcess& GetCurrentProcess(KernelCore& kernel);
s32 GetCurrentCoreId(KernelCore& kernel);
class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>,
public boost::intrusive::list_base_hook<>,
@ -128,7 +128,7 @@ public:
static constexpr s32 IdleThreadPriority = Svc::LowestThreadPriority + 1;
static constexpr s32 DummyThreadPriority = Svc::LowestThreadPriority + 2;
explicit KThread(KernelCore& kernel_);
explicit KThread(KernelCore& kernel);
~KThread() override;
public:
@ -136,16 +136,12 @@ public:
using ThreadContext64 = Core::ARM_Interface::ThreadContext64;
using WaiterList = boost::intrusive::list<KThread>;
void SetName(std::string new_name) {
name = std::move(new_name);
}
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
[[nodiscard]] s32 GetPriority() const {
return priority;
s32 GetPriority() const {
return m_priority;
}
/**
@ -153,23 +149,23 @@ public:
* @param priority The new priority.
*/
void SetPriority(s32 value) {
priority = value;
m_priority = value;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
[[nodiscard]] s32 GetBasePriority() const {
return base_priority;
s32 GetBasePriority() const {
return m_base_priority;
}
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
[[nodiscard]] u64 GetThreadID() const {
return thread_id;
u64 GetThreadId() const {
return m_thread_id;
}
void ContinueIfHasKernelWaiters() {
@ -180,7 +176,7 @@ public:
void SetBasePriority(s32 value);
[[nodiscard]] Result Run();
Result Run();
void Exit();
@ -188,22 +184,22 @@ public:
ThreadState RequestTerminate();
[[nodiscard]] u32 GetSuspendFlags() const {
return suspend_allowed_flags & suspend_request_flags;
u32 GetSuspendFlags() const {
return m_suspend_allowed_flags & m_suspend_request_flags;
}
[[nodiscard]] bool IsSuspended() const {
bool IsSuspended() const {
return GetSuspendFlags() != 0;
}
[[nodiscard]] bool IsSuspendRequested(SuspendType type) const {
return (suspend_request_flags &
(1u << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)))) !=
bool IsSuspendRequested(SuspendType type) const {
return (m_suspend_request_flags &
(1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)))) !=
0;
}
[[nodiscard]] bool IsSuspendRequested() const {
return suspend_request_flags != 0;
bool IsSuspendRequested() const {
return m_suspend_request_flags != 0;
}
void RequestSuspend(SuspendType type);
@ -217,124 +213,124 @@ public:
void Continue();
constexpr void SetSyncedIndex(s32 index) {
synced_index = index;
m_synced_index = index;
}
[[nodiscard]] constexpr s32 GetSyncedIndex() const {
return synced_index;
constexpr s32 GetSyncedIndex() const {
return m_synced_index;
}
constexpr void SetWaitResult(Result wait_res) {
wait_result = wait_res;
m_wait_result = wait_res;
}
[[nodiscard]] constexpr Result GetWaitResult() const {
return wait_result;
constexpr Result GetWaitResult() const {
return m_wait_result;
}
/*
* Returns the Thread Local Storage address of the current thread
* @returns VAddr of the thread's TLS
*/
[[nodiscard]] VAddr GetTLSAddress() const {
return tls_address;
VAddr GetTlsAddress() const {
return m_tls_address;
}
/*
* Returns the value of the TPIDR_EL0 Read/Write system register for this thread.
* @returns The value of the TPIDR_EL0 register.
*/
[[nodiscard]] u64 GetTPIDR_EL0() const {
return thread_context_64.tpidr;
u64 GetTpidrEl0() const {
return m_thread_context_64.tpidr;
}
/// Sets the value of the TPIDR_EL0 Read/Write system register for this thread.
void SetTPIDR_EL0(u64 value) {
thread_context_64.tpidr = value;
thread_context_32.tpidr = static_cast<u32>(value);
void SetTpidrEl0(u64 value) {
m_thread_context_64.tpidr = value;
m_thread_context_32.tpidr = static_cast<u32>(value);
}
void CloneFpuStatus();
[[nodiscard]] ThreadContext32& GetContext32() {
return thread_context_32;
ThreadContext32& GetContext32() {
return m_thread_context_32;
}
[[nodiscard]] const ThreadContext32& GetContext32() const {
return thread_context_32;
const ThreadContext32& GetContext32() const {
return m_thread_context_32;
}
[[nodiscard]] ThreadContext64& GetContext64() {
return thread_context_64;
ThreadContext64& GetContext64() {
return m_thread_context_64;
}
[[nodiscard]] const ThreadContext64& GetContext64() const {
return thread_context_64;
const ThreadContext64& GetContext64() const {
return m_thread_context_64;
}
[[nodiscard]] std::shared_ptr<Common::Fiber>& GetHostContext();
std::shared_ptr<Common::Fiber>& GetHostContext();
[[nodiscard]] ThreadState GetState() const {
return thread_state.load(std::memory_order_relaxed) & ThreadState::Mask;
ThreadState GetState() const {
return m_thread_state.load(std::memory_order_relaxed) & ThreadState::Mask;
}
[[nodiscard]] ThreadState GetRawState() const {
return thread_state.load(std::memory_order_relaxed);
ThreadState GetRawState() const {
return m_thread_state.load(std::memory_order_relaxed);
}
void SetState(ThreadState state);
[[nodiscard]] StepState GetStepState() const {
return step_state;
StepState GetStepState() const {
return m_step_state;
}
void SetStepState(StepState state) {
step_state = state;
m_step_state = state;
}
[[nodiscard]] s64 GetLastScheduledTick() const {
return last_scheduled_tick;
s64 GetLastScheduledTick() const {
return m_last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
last_scheduled_tick = tick;
m_last_scheduled_tick = tick;
}
void AddCpuTime([[maybe_unused]] s32 core_id_, s64 amount) {
cpu_time += amount;
void AddCpuTime(s32 core_id, s64 amount) {
m_cpu_time += amount;
// TODO(bunnei): Debug kernels track per-core tick counts. Should we?
}
[[nodiscard]] s64 GetCpuTime() const {
return cpu_time;
s64 GetCpuTime() const {
return m_cpu_time;
}
[[nodiscard]] s32 GetActiveCore() const {
return core_id;
s32 GetActiveCore() const {
return m_core_id;
}
void SetActiveCore(s32 core) {
core_id = core;
m_core_id = core;
}
[[nodiscard]] s32 GetCurrentCore() const {
return current_core_id;
s32 GetCurrentCore() const {
return m_current_core_id;
}
void SetCurrentCore(s32 core) {
current_core_id = core;
m_current_core_id = core;
}
[[nodiscard]] KProcess* GetOwnerProcess() {
return parent;
KProcess* GetOwnerProcess() {
return m_parent;
}
[[nodiscard]] const KProcess* GetOwnerProcess() const {
return parent;
const KProcess* GetOwnerProcess() const {
return m_parent;
}
[[nodiscard]] bool IsUserThread() const {
return parent != nullptr;
bool IsUserThread() const {
return m_parent != nullptr;
}
u16 GetUserDisableCount() const;
@ -343,69 +339,69 @@ public:
KThread* GetLockOwner() const;
[[nodiscard]] const KAffinityMask& GetAffinityMask() const {
return physical_affinity_mask;
const KAffinityMask& GetAffinityMask() const {
return m_physical_affinity_mask;
}
[[nodiscard]] Result GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
Result GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
[[nodiscard]] Result GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
Result GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
[[nodiscard]] Result SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask);
Result SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask);
[[nodiscard]] Result SetActivity(Svc::ThreadActivity activity);
Result SetActivity(Svc::ThreadActivity activity);
[[nodiscard]] Result Sleep(s64 timeout);
Result Sleep(s64 timeout);
[[nodiscard]] s64 GetYieldScheduleCount() const {
return schedule_count;
s64 GetYieldScheduleCount() const {
return m_schedule_count;
}
void SetYieldScheduleCount(s64 count) {
schedule_count = count;
m_schedule_count = count;
}
void WaitCancel();
[[nodiscard]] bool IsWaitCancelled() const {
return wait_cancelled;
bool IsWaitCancelled() const {
return m_wait_cancelled;
}
void ClearWaitCancelled() {
wait_cancelled = false;
m_wait_cancelled = false;
}
[[nodiscard]] bool IsCancellable() const {
return cancellable;
bool IsCancellable() const {
return m_cancellable;
}
void SetCancellable() {
cancellable = true;
m_cancellable = true;
}
void ClearCancellable() {
cancellable = false;
m_cancellable = false;
}
[[nodiscard]] bool IsTerminationRequested() const {
return termination_requested || GetRawState() == ThreadState::Terminated;
bool IsTerminationRequested() const {
return m_termination_requested || GetRawState() == ThreadState::Terminated;
}
[[nodiscard]] u64 GetId() const override {
return this->GetThreadID();
u64 GetId() const override {
return this->GetThreadId();
}
[[nodiscard]] bool IsInitialized() const override {
return initialized;
bool IsInitialized() const override {
return m_initialized;
}
[[nodiscard]] uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(parent) | (resource_limit_release_hint ? 1 : 0);
uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(m_parent) | (m_resource_limit_release_hint ? 1 : 0);
}
void Finalize() override;
[[nodiscard]] bool IsSignaled() const override;
bool IsSignaled() const override;
void OnTimer();
@ -413,26 +409,22 @@ public:
static void PostDestroy(uintptr_t arg);
[[nodiscard]] static Result InitializeDummyThread(KThread* thread, KProcess* owner);
static Result InitializeDummyThread(KThread* thread, KProcess* owner);
[[nodiscard]] static Result InitializeMainThread(Core::System& system, KThread* thread,
s32 virt_core);
static Result InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core);
[[nodiscard]] static Result InitializeIdleThread(Core::System& system, KThread* thread,
s32 virt_core);
static Result InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core);
[[nodiscard]] static Result InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg,
s32 virt_core);
static Result InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg, s32 virt_core);
[[nodiscard]] static Result InitializeUserThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg,
VAddr user_stack_top, s32 prio, s32 virt_core,
KProcess* owner);
static Result InitializeUserThread(Core::System& system, KThread* thread, KThreadFunction func,
uintptr_t arg, VAddr user_stack_top, s32 prio, s32 virt_core,
KProcess* owner);
[[nodiscard]] static Result InitializeServiceThread(Core::System& system, KThread* thread,
std::function<void()>&& thread_func,
s32 prio, s32 virt_core, KProcess* owner);
static Result InitializeServiceThread(Core::System& system, KThread* thread,
std::function<void()>&& thread_func, s32 prio,
s32 virt_core, KProcess* owner);
public:
struct StackParameters {
@ -446,12 +438,12 @@ public:
KThread* cur_thread;
};
[[nodiscard]] StackParameters& GetStackParameters() {
return stack_parameters;
StackParameters& GetStackParameters() {
return m_stack_parameters;
}
[[nodiscard]] const StackParameters& GetStackParameters() const {
return stack_parameters;
const StackParameters& GetStackParameters() const {
return m_stack_parameters;
}
class QueueEntry {
@ -459,47 +451,47 @@ public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
prev = nullptr;
next = nullptr;
m_prev = nullptr;
m_next = nullptr;
}
constexpr KThread* GetPrev() const {
return prev;
return m_prev;
}
constexpr KThread* GetNext() const {
return next;
return m_next;
}
constexpr void SetPrev(KThread* thread) {
prev = thread;
m_prev = thread;
}
constexpr void SetNext(KThread* thread) {
next = thread;
m_next = thread;
}
private:
KThread* prev{};
KThread* next{};
KThread* m_prev{};
KThread* m_next{};
};
[[nodiscard]] QueueEntry& GetPriorityQueueEntry(s32 core) {
return per_core_priority_queue_entry[core];
QueueEntry& GetPriorityQueueEntry(s32 core) {
return m_per_core_priority_queue_entry[core];
}
[[nodiscard]] const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return per_core_priority_queue_entry[core];
const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return m_per_core_priority_queue_entry[core];
}
[[nodiscard]] s32 GetDisableDispatchCount() const {
s32 GetDisableDispatchCount() const {
return this->GetStackParameters().disable_count;
}
void DisableDispatch() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++;
}
void EnableDispatch() {
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0);
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--;
}
@ -515,7 +507,7 @@ public:
this->GetStackParameters().is_in_exception_handler = false;
}
[[nodiscard]] bool IsInExceptionHandler() const {
bool IsInExceptionHandler() const {
return this->GetStackParameters().is_in_exception_handler;
}
@ -527,11 +519,11 @@ public:
this->GetStackParameters().is_calling_svc = false;
}
[[nodiscard]] bool IsCallingSvc() const {
bool IsCallingSvc() const {
return this->GetStackParameters().is_calling_svc;
}
[[nodiscard]] u8 GetSvcId() const {
u8 GetSvcId() const {
return this->GetStackParameters().current_svc_id;
}
@ -543,78 +535,54 @@ public:
this->GetStackParameters().dpc_flags &= ~static_cast<u8>(flag);
}
[[nodiscard]] u8 GetDpc() const {
u8 GetDpc() const {
return this->GetStackParameters().dpc_flags;
}
[[nodiscard]] bool HasDpc() const {
bool HasDpc() const {
return this->GetDpc() != 0;
}
void SetWaitReasonForDebugging(ThreadWaitReasonForDebugging reason) {
wait_reason_for_debugging = reason;
m_wait_reason_for_debugging = reason;
}
[[nodiscard]] ThreadWaitReasonForDebugging GetWaitReasonForDebugging() const {
return wait_reason_for_debugging;
ThreadWaitReasonForDebugging GetWaitReasonForDebugging() const {
return m_wait_reason_for_debugging;
}
[[nodiscard]] ThreadType GetThreadType() const {
return thread_type;
ThreadType GetThreadType() const {
return m_thread_type;
}
[[nodiscard]] bool IsDummyThread() const {
return GetThreadType() == ThreadType::Dummy;
}
void SetWaitObjectsForDebugging(const std::span<KSynchronizationObject*>& objects) {
wait_objects_for_debugging.clear();
wait_objects_for_debugging.reserve(objects.size());
for (const auto& object : objects) {
wait_objects_for_debugging.emplace_back(object);
}
}
[[nodiscard]] const std::vector<KSynchronizationObject*>& GetWaitObjectsForDebugging() const {
return wait_objects_for_debugging;
}
void SetMutexWaitAddressForDebugging(VAddr address) {
mutex_wait_address_for_debugging = address;
}
[[nodiscard]] VAddr GetMutexWaitAddressForDebugging() const {
return mutex_wait_address_for_debugging;
}
[[nodiscard]] s32 GetIdealCoreForDebugging() const {
return virtual_ideal_core_id;
bool IsDummyThread() const {
return this->GetThreadType() == ThreadType::Dummy;
}
void AddWaiter(KThread* thread);
void RemoveWaiter(KThread* thread);
[[nodiscard]] Result GetThreadContext3(std::vector<u8>& out);
Result GetThreadContext3(std::vector<u8>& out);
[[nodiscard]] KThread* RemoveUserWaiterByKey(bool* out_has_waiters, VAddr key) {
KThread* RemoveUserWaiterByKey(bool* out_has_waiters, VAddr key) {
return this->RemoveWaiterByKey(out_has_waiters, key, false);
}
[[nodiscard]] KThread* RemoveKernelWaiterByKey(bool* out_has_waiters, VAddr key) {
KThread* RemoveKernelWaiterByKey(bool* out_has_waiters, VAddr key) {
return this->RemoveWaiterByKey(out_has_waiters, key, true);
}
[[nodiscard]] VAddr GetAddressKey() const {
return address_key;
VAddr GetAddressKey() const {
return m_address_key;
}
[[nodiscard]] u32 GetAddressKeyValue() const {
return address_key_value;
u32 GetAddressKeyValue() const {
return m_address_key_value;
}
[[nodiscard]] bool GetIsKernelAddressKey() const {
return is_kernel_address_key;
bool GetIsKernelAddressKey() const {
return m_is_kernel_address_key;
}
//! NB: intentional deviation from official kernel.
@ -624,37 +592,37 @@ public:
// into things.
void SetUserAddressKey(VAddr key, u32 val) {
ASSERT(waiting_lock_info == nullptr);
address_key = key;
address_key_value = val;
is_kernel_address_key = false;
ASSERT(m_waiting_lock_info == nullptr);
m_address_key = key;
m_address_key_value = val;
m_is_kernel_address_key = false;
}
void SetKernelAddressKey(VAddr key) {
ASSERT(waiting_lock_info == nullptr);
address_key = key;
is_kernel_address_key = true;
ASSERT(m_waiting_lock_info == nullptr);
m_address_key = key;
m_is_kernel_address_key = true;
}
void ClearWaitQueue() {
wait_queue = nullptr;
m_wait_queue = nullptr;
}
void BeginWait(KThreadQueue* queue);
void NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result_);
void EndWait(Result wait_result_);
void CancelWait(Result wait_result_, bool cancel_timer_task);
void NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result);
void EndWait(Result wait_result);
void CancelWait(Result wait_result, bool cancel_timer_task);
[[nodiscard]] s32 GetNumKernelWaiters() const {
return num_kernel_waiters;
s32 GetNumKernelWaiters() const {
return m_num_kernel_waiters;
}
[[nodiscard]] u64 GetConditionVariableKey() const {
return condvar_key;
u64 GetConditionVariableKey() const {
return m_condvar_key;
}
[[nodiscard]] u64 GetAddressArbiterKey() const {
return condvar_key;
u64 GetAddressArbiterKey() const {
return m_condvar_key;
}
// Dummy threads (used for HLE host threads) cannot wait based on the guest scheduler, and
@ -665,17 +633,16 @@ public:
void DummyThreadBeginWait();
void DummyThreadEndWait();
[[nodiscard]] uintptr_t GetArgument() const {
return argument;
uintptr_t GetArgument() const {
return m_argument;
}
[[nodiscard]] VAddr GetUserStackTop() const {
return stack_top;
VAddr GetUserStackTop() const {
return m_stack_top;
}
private:
[[nodiscard]] KThread* RemoveWaiterByKey(bool* out_has_waiters, VAddr key,
bool is_kernel_address_key);
KThread* RemoveWaiterByKey(bool* out_has_waiters, VAddr key, bool is_kernel_address_key);
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
@ -692,11 +659,11 @@ private:
u64 cv_key{};
s32 priority{};
[[nodiscard]] constexpr u64 GetConditionVariableKey() const {
constexpr u64 GetConditionVariableKey() const {
return cv_key;
}
[[nodiscard]] constexpr s32 GetPriority() const {
constexpr s32 GetPriority() const {
return priority;
}
};
@ -728,22 +695,21 @@ private:
void IncreaseBasePriority(s32 priority);
[[nodiscard]] Result Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top,
s32 prio, s32 virt_core, KProcess* owner, ThreadType type);
Result Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top, s32 prio,
s32 virt_core, KProcess* owner, ThreadType type);
[[nodiscard]] static Result InitializeThread(KThread* thread, KThreadFunction func,
uintptr_t arg, VAddr user_stack_top, s32 prio,
s32 core, KProcess* owner, ThreadType type,
std::function<void()>&& init_func);
static Result InitializeThread(KThread* thread, KThreadFunction func, uintptr_t arg,
VAddr user_stack_top, s32 prio, s32 core, KProcess* owner,
ThreadType type, std::function<void()>&& init_func);
// For core KThread implementation
ThreadContext32 thread_context_32{};
ThreadContext64 thread_context_64{};
Common::IntrusiveRedBlackTreeNode condvar_arbiter_tree_node{};
s32 priority{};
ThreadContext32 m_thread_context_32{};
ThreadContext64 m_thread_context_64{};
Common::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node{};
s32 m_priority{};
using ConditionVariableThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<
&KThread::condvar_arbiter_tree_node>;
&KThread::m_condvar_arbiter_tree_node>;
using ConditionVariableThreadTree =
ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
@ -773,7 +739,7 @@ private:
using LockWithPriorityInheritanceThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<
&KThread::condvar_arbiter_tree_node>;
&KThread::m_condvar_arbiter_tree_node>;
using LockWithPriorityInheritanceThreadTree =
ConditionVariableThreadTreeTraits::TreeType<LockWithPriorityInheritanceComparator>;
@ -809,7 +775,7 @@ public:
waiter->SetWaitingLockInfo(this);
}
[[nodiscard]] bool RemoveWaiter(KThread* waiter) {
bool RemoveWaiter(KThread* waiter) {
m_tree.erase(m_tree.iterator_to(*waiter));
waiter->SetWaitingLockInfo(nullptr);
@ -853,11 +819,11 @@ public:
};
void SetWaitingLockInfo(LockWithPriorityInheritanceInfo* lock) {
waiting_lock_info = lock;
m_waiting_lock_info = lock;
}
LockWithPriorityInheritanceInfo* GetWaitingLockInfo() {
return waiting_lock_info;
return m_waiting_lock_info;
}
void AddHeldLock(LockWithPriorityInheritanceInfo* lock_info);
@ -867,111 +833,110 @@ private:
using LockWithPriorityInheritanceInfoList =
boost::intrusive::list<LockWithPriorityInheritanceInfo>;
ConditionVariableThreadTree* condvar_tree{};
u64 condvar_key{};
u64 virtual_affinity_mask{};
KAffinityMask physical_affinity_mask{};
u64 thread_id{};
std::atomic<s64> cpu_time{};
VAddr address_key{};
KProcess* parent{};
VAddr kernel_stack_top{};
u32* light_ipc_data{};
VAddr tls_address{};
KLightLock activity_pause_lock;
s64 schedule_count{};
s64 last_scheduled_tick{};
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
KThreadQueue* wait_queue{};
LockWithPriorityInheritanceInfoList held_lock_info_list{};
LockWithPriorityInheritanceInfo* waiting_lock_info{};
WaiterList pinned_waiter_list{};
u32 address_key_value{};
u32 suspend_request_flags{};
u32 suspend_allowed_flags{};
s32 synced_index{};
Result wait_result{ResultSuccess};
s32 base_priority{};
s32 physical_ideal_core_id{};
s32 virtual_ideal_core_id{};
s32 num_kernel_waiters{};
s32 current_core_id{};
s32 core_id{};
KAffinityMask original_physical_affinity_mask{};
s32 original_physical_ideal_core_id{};
s32 num_core_migration_disables{};
std::atomic<ThreadState> thread_state{};
std::atomic<bool> termination_requested{};
bool wait_cancelled{};
bool cancellable{};
bool signaled{};
bool initialized{};
bool debug_attached{};
s8 priority_inheritance_count{};
bool resource_limit_release_hint{};
bool is_kernel_address_key{};
StackParameters stack_parameters{};
Common::SpinLock context_guard{};
ConditionVariableThreadTree* m_condvar_tree{};
u64 m_condvar_key{};
u64 m_virtual_affinity_mask{};
KAffinityMask m_physical_affinity_mask{};
u64 m_thread_id{};
std::atomic<s64> m_cpu_time{};
VAddr m_address_key{};
KProcess* m_parent{};
VAddr m_kernel_stack_top{};
u32* m_light_ipc_data{};
VAddr m_tls_address{};
KLightLock m_activity_pause_lock;
s64 m_schedule_count{};
s64 m_last_scheduled_tick{};
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> m_per_core_priority_queue_entry{};
KThreadQueue* m_wait_queue{};
LockWithPriorityInheritanceInfoList m_held_lock_info_list{};
LockWithPriorityInheritanceInfo* m_waiting_lock_info{};
WaiterList m_pinned_waiter_list{};
u32 m_address_key_value{};
u32 m_suspend_request_flags{};
u32 m_suspend_allowed_flags{};
s32 m_synced_index{};
Result m_wait_result{ResultSuccess};
s32 m_base_priority{};
s32 m_physical_ideal_core_id{};
s32 m_virtual_ideal_core_id{};
s32 m_num_kernel_waiters{};
s32 m_current_core_id{};
s32 m_core_id{};
KAffinityMask m_original_physical_affinity_mask{};
s32 m_original_physical_ideal_core_id{};
s32 m_num_core_migration_disables{};
std::atomic<ThreadState> m_thread_state{};
std::atomic<bool> m_termination_requested{};
bool m_wait_cancelled{};
bool m_cancellable{};
bool m_signaled{};
bool m_initialized{};
bool m_debug_attached{};
s8 m_priority_inheritance_count{};
bool m_resource_limit_release_hint{};
bool m_is_kernel_address_key{};
StackParameters m_stack_parameters{};
Common::SpinLock m_context_guard{};
// For emulation
std::shared_ptr<Common::Fiber> host_context{};
bool is_single_core{};
ThreadType thread_type{};
StepState step_state{};
std::atomic<bool> dummy_thread_runnable{true};
std::shared_ptr<Common::Fiber> m_host_context{};
ThreadType m_thread_type{};
StepState m_step_state{};
std::atomic<bool> m_dummy_thread_runnable{true};
// For debugging
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
VAddr mutex_wait_address_for_debugging{};
ThreadWaitReasonForDebugging wait_reason_for_debugging{};
uintptr_t argument{};
VAddr stack_top{};
std::vector<KSynchronizationObject*> m_wait_objects_for_debugging{};
VAddr m_mutex_wait_address_for_debugging{};
ThreadWaitReasonForDebugging m_wait_reason_for_debugging{};
uintptr_t m_argument{};
VAddr m_stack_top{};
public:
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
void SetConditionVariable(ConditionVariableThreadTree* tree, VAddr address, u64 cv_key,
u32 value) {
ASSERT(waiting_lock_info == nullptr);
condvar_tree = tree;
condvar_key = cv_key;
address_key = address;
address_key_value = value;
is_kernel_address_key = false;
ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = cv_key;
m_address_key = address;
m_address_key_value = value;
m_is_kernel_address_key = false;
}
void ClearConditionVariable() {
condvar_tree = nullptr;
m_condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForConditionVariable() const {
return condvar_tree != nullptr;
bool IsWaitingForConditionVariable() const {
return m_condvar_tree != nullptr;
}
void SetAddressArbiter(ConditionVariableThreadTree* tree, u64 address) {
ASSERT(waiting_lock_info == nullptr);
condvar_tree = tree;
condvar_key = address;
ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = address;
}
void ClearAddressArbiter() {
condvar_tree = nullptr;
m_condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForAddressArbiter() const {
return condvar_tree != nullptr;
bool IsWaitingForAddressArbiter() const {
return m_condvar_tree != nullptr;
}
[[nodiscard]] ConditionVariableThreadTree* GetConditionVariableTree() const {
return condvar_tree;
ConditionVariableThreadTree* GetConditionVariableTree() const {
return m_condvar_tree;
}
};
class KScopedDisableDispatch {
public:
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel_) : kernel{kernel_} {
explicit KScopedDisableDispatch(KernelCore& kernel) : m_kernel{kernel} {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
if (m_kernel.IsShuttingDown()) {
return;
}
GetCurrentThread(kernel).DisableDispatch();
@ -980,7 +945,7 @@ public:
~KScopedDisableDispatch();
private:
KernelCore& kernel;
KernelCore& m_kernel;
};
inline void KTimerTask::OnTimer() {

View file

@ -16,7 +16,7 @@ namespace Kernel {
Result KThreadLocalPage::Initialize(KernelCore& kernel, KProcess* process) {
// Set that this process owns us.
m_owner = process;
m_kernel = &kernel;
m_kernel = std::addressof(kernel);
// Allocate a new page.
KPageBuffer* page_buf = KPageBuffer::Allocate(kernel);

View file

@ -7,9 +7,10 @@
namespace Kernel {
void KThreadQueue::NotifyAvailable([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] KSynchronizationObject* signaled_object,
[[maybe_unused]] Result wait_result) {}
void KThreadQueue::NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
Result wait_result) {
UNREACHABLE();
}
void KThreadQueue::EndWait(KThread* waiting_thread, Result wait_result) {
// Set the thread's wait result.
@ -43,7 +44,8 @@ void KThreadQueue::CancelWait(KThread* waiting_thread, Result wait_result, bool
}
}
void KThreadQueueWithoutEndWait::EndWait([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] Result wait_result) {}
void KThreadQueueWithoutEndWait::EndWait(KThread* waiting_thread, Result wait_result) {
UNREACHABLE();
}
} // namespace Kernel

View file

@ -12,7 +12,7 @@ class KHardwareTimer;
class KThreadQueue {
public:
explicit KThreadQueue(KernelCore& kernel_) : kernel{kernel_}, m_hardware_timer{} {}
explicit KThreadQueue(KernelCore& kernel) : m_kernel{kernel}, m_hardware_timer{} {}
virtual ~KThreadQueue() = default;
void SetHardwareTimer(KHardwareTimer* timer) {
@ -25,13 +25,13 @@ public:
virtual void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task);
private:
KernelCore& kernel;
KernelCore& m_kernel;
KHardwareTimer* m_hardware_timer{};
};
class KThreadQueueWithoutEndWait : public KThreadQueue {
public:
explicit KThreadQueueWithoutEndWait(KernelCore& kernel_) : KThreadQueue(kernel_) {}
explicit KThreadQueueWithoutEndWait(KernelCore& kernel) : KThreadQueue(kernel) {}
void EndWait(KThread* waiting_thread, Result wait_result) override final;
};

View file

@ -8,32 +8,29 @@
namespace Kernel {
KTransferMemory::KTransferMemory(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_} {}
KTransferMemory::KTransferMemory(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel} {}
KTransferMemory::~KTransferMemory() = default;
Result KTransferMemory::Initialize(VAddr address_, std::size_t size_,
Svc::MemoryPermission owner_perm_) {
Result KTransferMemory::Initialize(VAddr address, std::size_t size,
Svc::MemoryPermission owner_perm) {
// Set members.
owner = GetCurrentProcessPointer(kernel);
m_owner = GetCurrentProcessPointer(m_kernel);
// TODO(bunnei): Lock for transfer memory
// Set remaining tracking members.
owner->Open();
owner_perm = owner_perm_;
address = address_;
size = size_;
is_initialized = true;
m_owner->Open();
m_owner_perm = owner_perm;
m_address = address;
m_size = size;
m_is_initialized = true;
return ResultSuccess;
R_SUCCEED();
}
void KTransferMemory::Finalize() {
// Perform inherited finalization.
KAutoObjectWithSlabHeapAndContainer<KTransferMemory, KAutoObjectWithList>::Finalize();
}
void KTransferMemory::Finalize() {}
void KTransferMemory::PostDestroy(uintptr_t arg) {
KProcess* owner = reinterpret_cast<KProcess*>(arg);

View file

@ -23,41 +23,41 @@ class KTransferMemory final
KERNEL_AUTOOBJECT_TRAITS(KTransferMemory, KAutoObject);
public:
explicit KTransferMemory(KernelCore& kernel_);
explicit KTransferMemory(KernelCore& kernel);
~KTransferMemory() override;
Result Initialize(VAddr address_, std::size_t size_, Svc::MemoryPermission owner_perm_);
Result Initialize(VAddr address, std::size_t size, Svc::MemoryPermission owner_perm);
void Finalize() override;
bool IsInitialized() const override {
return is_initialized;
return m_is_initialized;
}
uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(owner);
return reinterpret_cast<uintptr_t>(m_owner);
}
static void PostDestroy(uintptr_t arg);
KProcess* GetOwner() const override {
return owner;
return m_owner;
}
VAddr GetSourceAddress() const {
return address;
return m_address;
}
size_t GetSize() const {
return is_initialized ? size : 0;
return m_is_initialized ? m_size : 0;
}
private:
KProcess* owner{};
VAddr address{};
Svc::MemoryPermission owner_perm{};
size_t size{};
bool is_initialized{};
KProcess* m_owner{};
VAddr m_address{};
Svc::MemoryPermission m_owner_perm{};
size_t m_size{};
bool m_is_initialized{};
};
} // namespace Kernel

View file

@ -9,7 +9,7 @@ namespace Kernel {
class KWorkerTask : public KSynchronizationObject {
public:
explicit KWorkerTask(KernelCore& kernel_);
explicit KWorkerTask(KernelCore& kernel);
void DoWorkerTask();
};

View file

@ -10,7 +10,7 @@
namespace Kernel {
KWorkerTask::KWorkerTask(KernelCore& kernel_) : KSynchronizationObject{kernel_} {}
KWorkerTask::KWorkerTask(KernelCore& kernel) : KSynchronizationObject{kernel} {}
void KWorkerTask::DoWorkerTask() {
if (auto* const thread = this->DynamicCast<KThread*>(); thread != nullptr) {

View file

@ -20,7 +20,7 @@ public:
KWorkerTaskManager();
static void AddTask(KernelCore& kernel_, WorkerType type, KWorkerTask* task);
static void AddTask(KernelCore& kernel, WorkerType type, KWorkerTask* task);
private:
void AddTask(KernelCore& kernel, KWorkerTask* task);

View file

@ -214,7 +214,6 @@ struct KernelCore::Impl {
cores[i] = std::make_unique<Kernel::PhysicalCore>(i, system, *schedulers[i]);
auto* main_thread{Kernel::KThread::Create(system.Kernel())};
main_thread->SetName(fmt::format("MainThread:{}", core));
main_thread->SetCurrentCore(core);
ASSERT(Kernel::KThread::InitializeMainThread(system, main_thread, core).IsSuccess());
@ -356,7 +355,6 @@ struct KernelCore::Impl {
ASSERT(KThread::InitializeHighPriorityThread(system, shutdown_threads[core_id], {}, {},
core_id)
.IsSuccess());
shutdown_threads[core_id]->SetName(fmt::format("SuspendThread:{}", core_id));
}
}
@ -388,11 +386,10 @@ struct KernelCore::Impl {
// Gets the dummy KThread for the caller, allocating a new one if this is the first time
KThread* GetHostDummyThread(KThread* existing_thread) {
auto initialize = [this](KThread* thread) {
const auto initialize{[](KThread* thread) {
ASSERT(KThread::InitializeDummyThread(thread, nullptr).IsSuccess());
thread->SetName(fmt::format("DummyThread:{}", next_host_thread_id++));
return thread;
};
}};
thread_local KThread raw_thread{system.Kernel()};
thread_local KThread* thread = existing_thread ? existing_thread : initialize(&raw_thread);
@ -742,16 +739,15 @@ struct KernelCore::Impl {
hidbus_shared_mem = KSharedMemory::Create(system.Kernel());
hid_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
Svc::MemoryPermission::Read, hid_size, "HID:SharedMemory");
Svc::MemoryPermission::Read, hid_size);
font_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
Svc::MemoryPermission::Read, font_size, "Font:SharedMemory");
Svc::MemoryPermission::Read, font_size);
irs_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
Svc::MemoryPermission::Read, irs_size, "IRS:SharedMemory");
Svc::MemoryPermission::Read, irs_size);
time_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
Svc::MemoryPermission::Read, time_size, "Time:SharedMemory");
Svc::MemoryPermission::Read, time_size);
hidbus_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
Svc::MemoryPermission::Read, hidbus_size,
"HidBus:SharedMemory");
Svc::MemoryPermission::Read, hidbus_size);
}
std::mutex registered_objects_lock;
@ -1321,7 +1317,6 @@ const Core::System& KernelCore::System() const {
struct KernelCore::SlabHeapContainer {
KSlabHeap<KClientSession> client_session;
KSlabHeap<KEvent> event;
KSlabHeap<KLinkedListNode> linked_list_node;
KSlabHeap<KPort> port;
KSlabHeap<KProcess> process;
KSlabHeap<KResourceLimit> resource_limit;
@ -1348,8 +1343,6 @@ KSlabHeap<T>& KernelCore::SlabHeap() {
return slab_heap_container->client_session;
} else if constexpr (std::is_same_v<T, KEvent>) {
return slab_heap_container->event;
} else if constexpr (std::is_same_v<T, KLinkedListNode>) {
return slab_heap_container->linked_list_node;
} else if constexpr (std::is_same_v<T, KPort>) {
return slab_heap_container->port;
} else if constexpr (std::is_same_v<T, KProcess>) {
@ -1391,7 +1384,6 @@ KSlabHeap<T>& KernelCore::SlabHeap() {
template KSlabHeap<KClientSession>& KernelCore::SlabHeap();
template KSlabHeap<KEvent>& KernelCore::SlabHeap();
template KSlabHeap<KLinkedListNode>& KernelCore::SlabHeap();
template KSlabHeap<KPort>& KernelCore::SlabHeap();
template KSlabHeap<KProcess>& KernelCore::SlabHeap();
template KSlabHeap<KResourceLimit>& KernelCore::SlabHeap();

View file

@ -47,7 +47,6 @@ class KEvent;
class KEventInfo;
class KHandleTable;
class KHardwareTimer;
class KLinkedListNode;
class KMemoryLayout;
class KMemoryManager;
class KObjectName;

View file

@ -10,14 +10,14 @@
namespace Kernel {
PhysicalCore::PhysicalCore(std::size_t core_index_, Core::System& system_, KScheduler& scheduler_)
: core_index{core_index_}, system{system_}, scheduler{scheduler_} {
PhysicalCore::PhysicalCore(std::size_t core_index, Core::System& system, KScheduler& scheduler)
: m_core_index{core_index}, m_system{system}, m_scheduler{scheduler} {
#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64)
// TODO(bunnei): Initialization relies on a core being available. We may later replace this with
// a 32-bit instance of Dynarmic. This should be abstracted out to a CPU manager.
auto& kernel = system.Kernel();
arm_interface = std::make_unique<Core::ARM_Dynarmic_64>(
system, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), core_index);
m_arm_interface = std::make_unique<Core::ARM_Dynarmic_64>(
system, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), m_core_index);
#else
#error Platform not supported yet.
#endif
@ -25,13 +25,13 @@ PhysicalCore::PhysicalCore(std::size_t core_index_, Core::System& system_, KSche
PhysicalCore::~PhysicalCore() = default;
void PhysicalCore::Initialize([[maybe_unused]] bool is_64_bit) {
void PhysicalCore::Initialize(bool is_64_bit) {
#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64)
auto& kernel = system.Kernel();
auto& kernel = m_system.Kernel();
if (!is_64_bit) {
// We already initialized a 64-bit core, replace with a 32-bit one.
arm_interface = std::make_unique<Core::ARM_Dynarmic_32>(
system, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), core_index);
m_arm_interface = std::make_unique<Core::ARM_Dynarmic_32>(
m_system, kernel.IsMulticore(), kernel.GetExclusiveMonitor(), m_core_index);
}
#else
#error Platform not supported yet.
@ -39,31 +39,30 @@ void PhysicalCore::Initialize([[maybe_unused]] bool is_64_bit) {
}
void PhysicalCore::Run() {
arm_interface->Run();
arm_interface->ClearExclusiveState();
m_arm_interface->Run();
m_arm_interface->ClearExclusiveState();
}
void PhysicalCore::Idle() {
std::unique_lock lk{guard};
on_interrupt.wait(lk, [this] { return is_interrupted; });
std::unique_lock lk{m_guard};
m_on_interrupt.wait(lk, [this] { return m_is_interrupted; });
}
bool PhysicalCore::IsInterrupted() const {
return is_interrupted;
return m_is_interrupted;
}
void PhysicalCore::Interrupt() {
std::unique_lock lk{guard};
is_interrupted = true;
arm_interface->SignalInterrupt();
on_interrupt.notify_all();
std::unique_lock lk{m_guard};
m_is_interrupted = true;
m_arm_interface->SignalInterrupt();
m_on_interrupt.notify_all();
}
void PhysicalCore::ClearInterrupt() {
std::unique_lock lk{guard};
is_interrupted = false;
arm_interface->ClearInterrupt();
on_interrupt.notify_all();
std::unique_lock lk{m_guard};
m_is_interrupted = false;
m_arm_interface->ClearInterrupt();
}
} // namespace Kernel

View file

@ -47,46 +47,38 @@ public:
bool IsInterrupted() const;
bool IsInitialized() const {
return arm_interface != nullptr;
return m_arm_interface != nullptr;
}
Core::ARM_Interface& ArmInterface() {
return *arm_interface;
return *m_arm_interface;
}
const Core::ARM_Interface& ArmInterface() const {
return *arm_interface;
}
bool IsMainCore() const {
return core_index == 0;
}
bool IsSystemCore() const {
return core_index == 3;
return *m_arm_interface;
}
std::size_t CoreIndex() const {
return core_index;
return m_core_index;
}
Kernel::KScheduler& Scheduler() {
return scheduler;
return m_scheduler;
}
const Kernel::KScheduler& Scheduler() const {
return scheduler;
return m_scheduler;
}
private:
const std::size_t core_index;
Core::System& system;
Kernel::KScheduler& scheduler;
const std::size_t m_core_index;
Core::System& m_system;
Kernel::KScheduler& m_scheduler;
std::mutex guard;
std::condition_variable on_interrupt;
std::unique_ptr<Core::ARM_Interface> arm_interface;
bool is_interrupted{};
std::mutex m_guard;
std::condition_variable m_on_interrupt;
std::unique_ptr<Core::ARM_Interface> m_arm_interface;
bool m_is_interrupted{};
};
} // namespace Kernel

View file

@ -66,7 +66,7 @@ private:
}
public:
explicit KAutoObjectWithSlabHeap(KernelCore& kernel_) : Base(kernel_), kernel(kernel_) {}
explicit KAutoObjectWithSlabHeap(KernelCore& kernel) : Base(kernel) {}
virtual ~KAutoObjectWithSlabHeap() = default;
virtual void Destroy() override {
@ -76,7 +76,7 @@ public:
arg = this->GetPostDestroyArgument();
this->Finalize();
}
Free(kernel, static_cast<Derived*>(this));
Free(Base::m_kernel, static_cast<Derived*>(this));
if (is_initialized) {
Derived::PostDestroy(arg);
}
@ -90,7 +90,7 @@ public:
}
size_t GetSlabIndex() const {
return SlabHeap<Derived>(kernel).GetObjectIndex(static_cast<const Derived*>(this));
return SlabHeap<Derived>(Base::m_kernel).GetObjectIndex(static_cast<const Derived*>(this));
}
public:
@ -125,14 +125,11 @@ public:
static size_t GetNumRemaining(KernelCore& kernel) {
return kernel.SlabHeap<Derived>().GetNumRemaining();
}
protected:
KernelCore& kernel;
};
template <typename Derived, typename Base>
class KAutoObjectWithSlabHeapAndContainer : public Base {
static_assert(std::is_base_of<KAutoObjectWithList, Base>::value);
static_assert(std::is_base_of_v<KAutoObjectWithList, Base>);
private:
static Derived* Allocate(KernelCore& kernel) {
@ -144,18 +141,18 @@ private:
}
public:
KAutoObjectWithSlabHeapAndContainer(KernelCore& kernel_) : Base(kernel_), kernel(kernel_) {}
KAutoObjectWithSlabHeapAndContainer(KernelCore& kernel) : Base(kernel) {}
virtual ~KAutoObjectWithSlabHeapAndContainer() {}
virtual void Destroy() override {
const bool is_initialized = this->IsInitialized();
uintptr_t arg = 0;
if (is_initialized) {
kernel.ObjectListContainer().Unregister(this);
Base::m_kernel.ObjectListContainer().Unregister(this);
arg = this->GetPostDestroyArgument();
this->Finalize();
}
Free(kernel, static_cast<Derived*>(this));
Free(Base::m_kernel, static_cast<Derived*>(this));
if (is_initialized) {
Derived::PostDestroy(arg);
}
@ -169,7 +166,7 @@ public:
}
size_t GetSlabIndex() const {
return SlabHeap<Derived>(kernel).GetObjectIndex(static_cast<const Derived*>(this));
return SlabHeap<Derived>(Base::m_kernel).GetObjectIndex(static_cast<const Derived*>(this));
}
public:
@ -209,9 +206,6 @@ public:
static size_t GetNumRemaining(KernelCore& kernel) {
return kernel.SlabHeap<Derived>().GetNumRemaining();
}
protected:
KernelCore& kernel;
};
} // namespace Kernel

View file

@ -36,9 +36,9 @@ static To Convert(const From& from) {
To to{};
if constexpr (sizeof(To) >= sizeof(From)) {
std::memcpy(&to, &from, sizeof(From));
std::memcpy(std::addressof(to), std::addressof(from), sizeof(From));
} else {
std::memcpy(&to, &from, sizeof(To));
std::memcpy(std::addressof(to), std::addressof(from), sizeof(To));
}
return to;
@ -87,7 +87,7 @@ static void SvcWrap_SetHeapSize64From32(Core::System& system) {
size = Convert<uint32_t>(GetReg32(system, 1));
ret = SetHeapSize64From32(system, &out_address, size);
ret = SetHeapSize64From32(system, std::addressof(out_address), size);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_address));
@ -169,7 +169,7 @@ static void SvcWrap_QueryMemory64From32(Core::System& system) {
out_memory_info = Convert<uint32_t>(GetReg32(system, 0));
address = Convert<uint32_t>(GetReg32(system, 2));
ret = QueryMemory64From32(system, out_memory_info, &out_page_info, address);
ret = QueryMemory64From32(system, out_memory_info, std::addressof(out_page_info), address);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_page_info));
@ -195,7 +195,7 @@ static void SvcWrap_CreateThread64From32(Core::System& system) {
priority = Convert<int32_t>(GetReg32(system, 0));
core_id = Convert<int32_t>(GetReg32(system, 4));
ret = CreateThread64From32(system, &out_handle, func, arg, stack_bottom, priority, core_id);
ret = CreateThread64From32(system, std::addressof(out_handle), func, arg, stack_bottom, priority, core_id);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -236,7 +236,7 @@ static void SvcWrap_GetThreadPriority64From32(Core::System& system) {
thread_handle = Convert<Handle>(GetReg32(system, 1));
ret = GetThreadPriority64From32(system, &out_priority, thread_handle);
ret = GetThreadPriority64From32(system, std::addressof(out_priority), thread_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_priority));
@ -265,7 +265,7 @@ static void SvcWrap_GetThreadCoreMask64From32(Core::System& system) {
thread_handle = Convert<Handle>(GetReg32(system, 2));
ret = GetThreadCoreMask64From32(system, &out_core_id, &out_affinity_mask, thread_handle);
ret = GetThreadCoreMask64From32(system, std::addressof(out_core_id), std::addressof(out_affinity_mask), thread_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_core_id));
@ -371,7 +371,7 @@ static void SvcWrap_CreateTransferMemory64From32(Core::System& system) {
size = Convert<uint32_t>(GetReg32(system, 2));
map_perm = Convert<MemoryPermission>(GetReg32(system, 3));
ret = CreateTransferMemory64From32(system, &out_handle, address, size, map_perm);
ret = CreateTransferMemory64From32(system, std::addressof(out_handle), address, size, map_perm);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -416,7 +416,7 @@ static void SvcWrap_WaitSynchronization64From32(Core::System& system) {
timeout_ns_gather[1] = GetReg32(system, 3);
timeout_ns = Convert<int64_t>(timeout_ns_gather);
ret = WaitSynchronization64From32(system, &out_index, handles, num_handles, timeout_ns);
ret = WaitSynchronization64From32(system, std::addressof(out_index), handles, num_handles, timeout_ns);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_index));
@ -511,7 +511,7 @@ static void SvcWrap_ConnectToNamedPort64From32(Core::System& system) {
name = Convert<uint32_t>(GetReg32(system, 1));
ret = ConnectToNamedPort64From32(system, &out_handle, name);
ret = ConnectToNamedPort64From32(system, std::addressof(out_handle), name);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -557,7 +557,7 @@ static void SvcWrap_SendAsyncRequestWithUserBuffer64From32(Core::System& system)
message_buffer_size = Convert<uint32_t>(GetReg32(system, 2));
session_handle = Convert<Handle>(GetReg32(system, 3));
ret = SendAsyncRequestWithUserBuffer64From32(system, &out_event_handle, message_buffer, message_buffer_size, session_handle);
ret = SendAsyncRequestWithUserBuffer64From32(system, std::addressof(out_event_handle), message_buffer, message_buffer_size, session_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_event_handle));
@ -571,7 +571,7 @@ static void SvcWrap_GetProcessId64From32(Core::System& system) {
process_handle = Convert<Handle>(GetReg32(system, 1));
ret = GetProcessId64From32(system, &out_process_id, process_handle);
ret = GetProcessId64From32(system, std::addressof(out_process_id), process_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_process_id_scatter = Convert<std::array<uint32_t, 2>>(out_process_id);
@ -587,7 +587,7 @@ static void SvcWrap_GetThreadId64From32(Core::System& system) {
thread_handle = Convert<Handle>(GetReg32(system, 1));
ret = GetThreadId64From32(system, &out_thread_id, thread_handle);
ret = GetThreadId64From32(system, std::addressof(out_thread_id), thread_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_thread_id_scatter = Convert<std::array<uint32_t, 2>>(out_thread_id);
@ -644,7 +644,7 @@ static void SvcWrap_GetInfo64From32(Core::System& system) {
info_subtype_gather[1] = GetReg32(system, 3);
info_subtype = Convert<uint64_t>(info_subtype_gather);
ret = GetInfo64From32(system, &out, info_type, handle, info_subtype);
ret = GetInfo64From32(system, std::addressof(out), info_type, handle, info_subtype);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_scatter = Convert<std::array<uint32_t, 2>>(out);
@ -712,7 +712,7 @@ static void SvcWrap_GetDebugFutureThreadInfo64From32(Core::System& system) {
ns_gather[1] = GetReg32(system, 1);
ns = Convert<int64_t>(ns_gather);
ret = GetDebugFutureThreadInfo64From32(system, &out_context, &out_thread_id, debug_handle, ns);
ret = GetDebugFutureThreadInfo64From32(system, std::addressof(out_context), std::addressof(out_thread_id), debug_handle, ns);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_context_scatter = Convert<std::array<uint32_t, 4>>(out_context);
@ -732,7 +732,7 @@ static void SvcWrap_GetLastThreadInfo64From32(Core::System& system) {
uint64_t out_tls_address{};
uint32_t out_flags{};
ret = GetLastThreadInfo64From32(system, &out_context, &out_tls_address, &out_flags);
ret = GetLastThreadInfo64From32(system, std::addressof(out_context), std::addressof(out_tls_address), std::addressof(out_flags));
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_context_scatter = Convert<std::array<uint32_t, 4>>(out_context);
@ -754,7 +754,7 @@ static void SvcWrap_GetResourceLimitLimitValue64From32(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg32(system, 1));
which = Convert<LimitableResource>(GetReg32(system, 2));
ret = GetResourceLimitLimitValue64From32(system, &out_limit_value, resource_limit_handle, which);
ret = GetResourceLimitLimitValue64From32(system, std::addressof(out_limit_value), resource_limit_handle, which);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_limit_value_scatter = Convert<std::array<uint32_t, 2>>(out_limit_value);
@ -772,7 +772,7 @@ static void SvcWrap_GetResourceLimitCurrentValue64From32(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg32(system, 1));
which = Convert<LimitableResource>(GetReg32(system, 2));
ret = GetResourceLimitCurrentValue64From32(system, &out_current_value, resource_limit_handle, which);
ret = GetResourceLimitCurrentValue64From32(system, std::addressof(out_current_value), resource_limit_handle, which);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_current_value_scatter = Convert<std::array<uint32_t, 2>>(out_current_value);
@ -861,7 +861,7 @@ static void SvcWrap_GetResourceLimitPeakValue64From32(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg32(system, 1));
which = Convert<LimitableResource>(GetReg32(system, 2));
ret = GetResourceLimitPeakValue64From32(system, &out_peak_value, resource_limit_handle, which);
ret = GetResourceLimitPeakValue64From32(system, std::addressof(out_peak_value), resource_limit_handle, which);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_peak_value_scatter = Convert<std::array<uint32_t, 2>>(out_peak_value);
@ -877,7 +877,7 @@ static void SvcWrap_CreateIoPool64From32(Core::System& system) {
which = Convert<IoPoolType>(GetReg32(system, 1));
ret = CreateIoPool64From32(system, &out_handle, which);
ret = CreateIoPool64From32(system, std::addressof(out_handle), which);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -902,7 +902,7 @@ static void SvcWrap_CreateIoRegion64From32(Core::System& system) {
mapping = Convert<MemoryMapping>(GetReg32(system, 4));
perm = Convert<MemoryPermission>(GetReg32(system, 5));
ret = CreateIoRegion64From32(system, &out_handle, io_pool, physical_address, size, mapping, perm);
ret = CreateIoRegion64From32(system, std::addressof(out_handle), io_pool, physical_address, size, mapping, perm);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -950,7 +950,7 @@ static void SvcWrap_CreateSession64From32(Core::System& system) {
is_light = Convert<bool>(GetReg32(system, 2));
name = Convert<uint32_t>(GetReg32(system, 3));
ret = CreateSession64From32(system, &out_server_session_handle, &out_client_session_handle, is_light, name);
ret = CreateSession64From32(system, std::addressof(out_server_session_handle), std::addressof(out_client_session_handle), is_light, name);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_server_session_handle));
@ -965,7 +965,7 @@ static void SvcWrap_AcceptSession64From32(Core::System& system) {
port = Convert<Handle>(GetReg32(system, 1));
ret = AcceptSession64From32(system, &out_handle, port);
ret = AcceptSession64From32(system, std::addressof(out_handle), port);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -988,7 +988,7 @@ static void SvcWrap_ReplyAndReceive64From32(Core::System& system) {
timeout_ns_gather[1] = GetReg32(system, 4);
timeout_ns = Convert<int64_t>(timeout_ns_gather);
ret = ReplyAndReceive64From32(system, &out_index, handles, num_handles, reply_target, timeout_ns);
ret = ReplyAndReceive64From32(system, std::addressof(out_index), handles, num_handles, reply_target, timeout_ns);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_index));
@ -1015,7 +1015,7 @@ static void SvcWrap_ReplyAndReceiveWithUserBuffer64From32(Core::System& system)
timeout_ns_gather[1] = GetReg32(system, 6);
timeout_ns = Convert<int64_t>(timeout_ns_gather);
ret = ReplyAndReceiveWithUserBuffer64From32(system, &out_index, message_buffer, message_buffer_size, handles, num_handles, reply_target, timeout_ns);
ret = ReplyAndReceiveWithUserBuffer64From32(system, std::addressof(out_index), message_buffer, message_buffer_size, handles, num_handles, reply_target, timeout_ns);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_index));
@ -1027,7 +1027,7 @@ static void SvcWrap_CreateEvent64From32(Core::System& system) {
Handle out_write_handle{};
Handle out_read_handle{};
ret = CreateEvent64From32(system, &out_write_handle, &out_read_handle);
ret = CreateEvent64From32(system, std::addressof(out_write_handle), std::addressof(out_read_handle));
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_write_handle));
@ -1118,7 +1118,7 @@ static void SvcWrap_CreateCodeMemory64From32(Core::System& system) {
address = Convert<uint32_t>(GetReg32(system, 1));
size = Convert<uint32_t>(GetReg32(system, 2));
ret = CreateCodeMemory64From32(system, &out_handle, address, size);
ret = CreateCodeMemory64From32(system, std::addressof(out_handle), address, size);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -1169,7 +1169,7 @@ static void SvcWrap_ReadWriteRegister64From32(Core::System& system) {
mask = Convert<uint32_t>(GetReg32(system, 0));
value = Convert<uint32_t>(GetReg32(system, 1));
ret = ReadWriteRegister64From32(system, &out_value, address, mask, value);
ret = ReadWriteRegister64From32(system, std::addressof(out_value), address, mask, value);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_value));
@ -1201,7 +1201,7 @@ static void SvcWrap_CreateSharedMemory64From32(Core::System& system) {
owner_perm = Convert<MemoryPermission>(GetReg32(system, 2));
remote_perm = Convert<MemoryPermission>(GetReg32(system, 3));
ret = CreateSharedMemory64From32(system, &out_handle, size, owner_perm, remote_perm);
ret = CreateSharedMemory64From32(system, std::addressof(out_handle), size, owner_perm, remote_perm);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -1251,7 +1251,7 @@ static void SvcWrap_CreateInterruptEvent64From32(Core::System& system) {
interrupt_id = Convert<int32_t>(GetReg32(system, 1));
interrupt_type = Convert<InterruptType>(GetReg32(system, 2));
ret = CreateInterruptEvent64From32(system, &out_read_handle, interrupt_id, interrupt_type);
ret = CreateInterruptEvent64From32(system, std::addressof(out_read_handle), interrupt_id, interrupt_type);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_read_handle));
@ -1265,7 +1265,7 @@ static void SvcWrap_QueryPhysicalAddress64From32(Core::System& system) {
address = Convert<uint32_t>(GetReg32(system, 1));
ret = QueryPhysicalAddress64From32(system, &out_info, address);
ret = QueryPhysicalAddress64From32(system, std::addressof(out_info), address);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_info_scatter = Convert<std::array<uint32_t, 4>>(out_info);
@ -1289,7 +1289,7 @@ static void SvcWrap_QueryIoMapping64From32(Core::System& system) {
physical_address = Convert<uint64_t>(physical_address_gather);
size = Convert<uint32_t>(GetReg32(system, 0));
ret = QueryIoMapping64From32(system, &out_address, &out_size, physical_address, size);
ret = QueryIoMapping64From32(system, std::addressof(out_address), std::addressof(out_size), physical_address, size);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_address));
@ -1312,7 +1312,7 @@ static void SvcWrap_CreateDeviceAddressSpace64From32(Core::System& system) {
das_size_gather[1] = GetReg32(system, 1);
das_size = Convert<uint64_t>(das_size_gather);
ret = CreateDeviceAddressSpace64From32(system, &out_handle, das_address, das_size);
ret = CreateDeviceAddressSpace64From32(system, std::addressof(out_handle), das_address, das_size);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -1505,7 +1505,7 @@ static void SvcWrap_DebugActiveProcess64From32(Core::System& system) {
process_id_gather[1] = GetReg32(system, 3);
process_id = Convert<uint64_t>(process_id_gather);
ret = DebugActiveProcess64From32(system, &out_handle, process_id);
ret = DebugActiveProcess64From32(system, std::addressof(out_handle), process_id);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -1577,7 +1577,7 @@ static void SvcWrap_GetProcessList64From32(Core::System& system) {
out_process_ids = Convert<uint32_t>(GetReg32(system, 1));
max_out_count = Convert<int32_t>(GetReg32(system, 2));
ret = GetProcessList64From32(system, &out_num_processes, out_process_ids, max_out_count);
ret = GetProcessList64From32(system, std::addressof(out_num_processes), out_process_ids, max_out_count);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_num_processes));
@ -1595,7 +1595,7 @@ static void SvcWrap_GetThreadList64From32(Core::System& system) {
max_out_count = Convert<int32_t>(GetReg32(system, 2));
debug_handle = Convert<Handle>(GetReg32(system, 3));
ret = GetThreadList64From32(system, &out_num_threads, out_thread_ids, max_out_count, debug_handle);
ret = GetThreadList64From32(system, std::addressof(out_num_threads), out_thread_ids, max_out_count, debug_handle);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_num_threads));
@ -1655,7 +1655,7 @@ static void SvcWrap_QueryDebugProcessMemory64From32(Core::System& system) {
process_handle = Convert<Handle>(GetReg32(system, 2));
address = Convert<uint32_t>(GetReg32(system, 3));
ret = QueryDebugProcessMemory64From32(system, out_memory_info, &out_page_info, process_handle, address);
ret = QueryDebugProcessMemory64From32(system, out_memory_info, std::addressof(out_page_info), process_handle, address);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_page_info));
@ -1735,7 +1735,7 @@ static void SvcWrap_GetDebugThreadParam64From32(Core::System& system) {
thread_id = Convert<uint64_t>(thread_id_gather);
param = Convert<DebugThreadParam>(GetReg32(system, 3));
ret = GetDebugThreadParam64From32(system, &out_64, &out_32, debug_handle, thread_id, param);
ret = GetDebugThreadParam64From32(system, std::addressof(out_64), std::addressof(out_32), debug_handle, thread_id, param);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_64_scatter = Convert<std::array<uint32_t, 2>>(out_64);
@ -1759,7 +1759,7 @@ static void SvcWrap_GetSystemInfo64From32(Core::System& system) {
info_subtype_gather[1] = GetReg32(system, 3);
info_subtype = Convert<uint64_t>(info_subtype_gather);
ret = GetSystemInfo64From32(system, &out, info_type, handle, info_subtype);
ret = GetSystemInfo64From32(system, std::addressof(out), info_type, handle, info_subtype);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_scatter = Convert<std::array<uint32_t, 2>>(out);
@ -1780,7 +1780,7 @@ static void SvcWrap_CreatePort64From32(Core::System& system) {
is_light = Convert<bool>(GetReg32(system, 3));
name = Convert<uint32_t>(GetReg32(system, 0));
ret = CreatePort64From32(system, &out_server_handle, &out_client_handle, max_sessions, is_light, name);
ret = CreatePort64From32(system, std::addressof(out_server_handle), std::addressof(out_client_handle), max_sessions, is_light, name);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_server_handle));
@ -1797,7 +1797,7 @@ static void SvcWrap_ManageNamedPort64From32(Core::System& system) {
name = Convert<uint32_t>(GetReg32(system, 1));
max_sessions = Convert<int32_t>(GetReg32(system, 2));
ret = ManageNamedPort64From32(system, &out_server_handle, name, max_sessions);
ret = ManageNamedPort64From32(system, std::addressof(out_server_handle), name, max_sessions);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_server_handle));
@ -1811,7 +1811,7 @@ static void SvcWrap_ConnectToPort64From32(Core::System& system) {
port = Convert<Handle>(GetReg32(system, 1));
ret = ConnectToPort64From32(system, &out_handle, port);
ret = ConnectToPort64From32(system, std::addressof(out_handle), port);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -1898,7 +1898,7 @@ static void SvcWrap_QueryProcessMemory64From32(Core::System& system) {
address_gather[1] = GetReg32(system, 3);
address = Convert<uint64_t>(address_gather);
ret = QueryProcessMemory64From32(system, out_memory_info, &out_page_info, process_handle, address);
ret = QueryProcessMemory64From32(system, out_memory_info, std::addressof(out_page_info), process_handle, address);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_page_info));
@ -1970,7 +1970,7 @@ static void SvcWrap_CreateProcess64From32(Core::System& system) {
caps = Convert<uint32_t>(GetReg32(system, 2));
num_caps = Convert<int32_t>(GetReg32(system, 3));
ret = CreateProcess64From32(system, &out_handle, parameters, caps, num_caps);
ret = CreateProcess64From32(system, std::addressof(out_handle), parameters, caps, num_caps);
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -2019,7 +2019,7 @@ static void SvcWrap_GetProcessInfo64From32(Core::System& system) {
process_handle = Convert<Handle>(GetReg32(system, 1));
info_type = Convert<ProcessInfoType>(GetReg32(system, 2));
ret = GetProcessInfo64From32(system, &out_info, process_handle, info_type);
ret = GetProcessInfo64From32(system, std::addressof(out_info), process_handle, info_type);
SetReg32(system, 0, Convert<uint32_t>(ret));
auto out_info_scatter = Convert<std::array<uint32_t, 2>>(out_info);
@ -2032,7 +2032,7 @@ static void SvcWrap_CreateResourceLimit64From32(Core::System& system) {
Handle out_handle{};
ret = CreateResourceLimit64From32(system, &out_handle);
ret = CreateResourceLimit64From32(system, std::addressof(out_handle));
SetReg32(system, 0, Convert<uint32_t>(ret));
SetReg32(system, 1, Convert<uint32_t>(out_handle));
@ -2093,7 +2093,7 @@ static void SvcWrap_SetHeapSize64(Core::System& system) {
size = Convert<uint64_t>(GetReg64(system, 1));
ret = SetHeapSize64(system, &out_address, size);
ret = SetHeapSize64(system, std::addressof(out_address), size);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_address));
@ -2175,7 +2175,7 @@ static void SvcWrap_QueryMemory64(Core::System& system) {
out_memory_info = Convert<uint64_t>(GetReg64(system, 0));
address = Convert<uint64_t>(GetReg64(system, 2));
ret = QueryMemory64(system, out_memory_info, &out_page_info, address);
ret = QueryMemory64(system, out_memory_info, std::addressof(out_page_info), address);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_page_info));
@ -2201,7 +2201,7 @@ static void SvcWrap_CreateThread64(Core::System& system) {
priority = Convert<int32_t>(GetReg64(system, 4));
core_id = Convert<int32_t>(GetReg64(system, 5));
ret = CreateThread64(system, &out_handle, func, arg, stack_bottom, priority, core_id);
ret = CreateThread64(system, std::addressof(out_handle), func, arg, stack_bottom, priority, core_id);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2239,7 +2239,7 @@ static void SvcWrap_GetThreadPriority64(Core::System& system) {
thread_handle = Convert<Handle>(GetReg64(system, 1));
ret = GetThreadPriority64(system, &out_priority, thread_handle);
ret = GetThreadPriority64(system, std::addressof(out_priority), thread_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_priority));
@ -2268,7 +2268,7 @@ static void SvcWrap_GetThreadCoreMask64(Core::System& system) {
thread_handle = Convert<Handle>(GetReg64(system, 2));
ret = GetThreadCoreMask64(system, &out_core_id, &out_affinity_mask, thread_handle);
ret = GetThreadCoreMask64(system, std::addressof(out_core_id), std::addressof(out_affinity_mask), thread_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_core_id));
@ -2369,7 +2369,7 @@ static void SvcWrap_CreateTransferMemory64(Core::System& system) {
size = Convert<uint64_t>(GetReg64(system, 2));
map_perm = Convert<MemoryPermission>(GetReg64(system, 3));
ret = CreateTransferMemory64(system, &out_handle, address, size, map_perm);
ret = CreateTransferMemory64(system, std::addressof(out_handle), address, size, map_perm);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2411,7 +2411,7 @@ static void SvcWrap_WaitSynchronization64(Core::System& system) {
num_handles = Convert<int32_t>(GetReg64(system, 2));
timeout_ns = Convert<int64_t>(GetReg64(system, 3));
ret = WaitSynchronization64(system, &out_index, handles, num_handles, timeout_ns);
ret = WaitSynchronization64(system, std::addressof(out_index), handles, num_handles, timeout_ns);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_index));
@ -2501,7 +2501,7 @@ static void SvcWrap_ConnectToNamedPort64(Core::System& system) {
name = Convert<uint64_t>(GetReg64(system, 1));
ret = ConnectToNamedPort64(system, &out_handle, name);
ret = ConnectToNamedPort64(system, std::addressof(out_handle), name);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2547,7 +2547,7 @@ static void SvcWrap_SendAsyncRequestWithUserBuffer64(Core::System& system) {
message_buffer_size = Convert<uint64_t>(GetReg64(system, 2));
session_handle = Convert<Handle>(GetReg64(system, 3));
ret = SendAsyncRequestWithUserBuffer64(system, &out_event_handle, message_buffer, message_buffer_size, session_handle);
ret = SendAsyncRequestWithUserBuffer64(system, std::addressof(out_event_handle), message_buffer, message_buffer_size, session_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_event_handle));
@ -2561,7 +2561,7 @@ static void SvcWrap_GetProcessId64(Core::System& system) {
process_handle = Convert<Handle>(GetReg64(system, 1));
ret = GetProcessId64(system, &out_process_id, process_handle);
ret = GetProcessId64(system, std::addressof(out_process_id), process_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_process_id));
@ -2575,7 +2575,7 @@ static void SvcWrap_GetThreadId64(Core::System& system) {
thread_handle = Convert<Handle>(GetReg64(system, 1));
ret = GetThreadId64(system, &out_thread_id, thread_handle);
ret = GetThreadId64(system, std::addressof(out_thread_id), thread_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_thread_id));
@ -2627,7 +2627,7 @@ static void SvcWrap_GetInfo64(Core::System& system) {
handle = Convert<Handle>(GetReg64(system, 2));
info_subtype = Convert<uint64_t>(GetReg64(system, 3));
ret = GetInfo64(system, &out, info_type, handle, info_subtype);
ret = GetInfo64(system, std::addressof(out), info_type, handle, info_subtype);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out));
@ -2690,7 +2690,7 @@ static void SvcWrap_GetDebugFutureThreadInfo64(Core::System& system) {
debug_handle = Convert<Handle>(GetReg64(system, 2));
ns = Convert<int64_t>(GetReg64(system, 3));
ret = GetDebugFutureThreadInfo64(system, &out_context, &out_thread_id, debug_handle, ns);
ret = GetDebugFutureThreadInfo64(system, std::addressof(out_context), std::addressof(out_thread_id), debug_handle, ns);
SetReg64(system, 0, Convert<uint64_t>(ret));
auto out_context_scatter = Convert<std::array<uint64_t, 4>>(out_context);
@ -2708,7 +2708,7 @@ static void SvcWrap_GetLastThreadInfo64(Core::System& system) {
uint64_t out_tls_address{};
uint32_t out_flags{};
ret = GetLastThreadInfo64(system, &out_context, &out_tls_address, &out_flags);
ret = GetLastThreadInfo64(system, std::addressof(out_context), std::addressof(out_tls_address), std::addressof(out_flags));
SetReg64(system, 0, Convert<uint64_t>(ret));
auto out_context_scatter = Convert<std::array<uint64_t, 4>>(out_context);
@ -2730,7 +2730,7 @@ static void SvcWrap_GetResourceLimitLimitValue64(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg64(system, 1));
which = Convert<LimitableResource>(GetReg64(system, 2));
ret = GetResourceLimitLimitValue64(system, &out_limit_value, resource_limit_handle, which);
ret = GetResourceLimitLimitValue64(system, std::addressof(out_limit_value), resource_limit_handle, which);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_limit_value));
@ -2746,7 +2746,7 @@ static void SvcWrap_GetResourceLimitCurrentValue64(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg64(system, 1));
which = Convert<LimitableResource>(GetReg64(system, 2));
ret = GetResourceLimitCurrentValue64(system, &out_current_value, resource_limit_handle, which);
ret = GetResourceLimitCurrentValue64(system, std::addressof(out_current_value), resource_limit_handle, which);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_current_value));
@ -2830,7 +2830,7 @@ static void SvcWrap_GetResourceLimitPeakValue64(Core::System& system) {
resource_limit_handle = Convert<Handle>(GetReg64(system, 1));
which = Convert<LimitableResource>(GetReg64(system, 2));
ret = GetResourceLimitPeakValue64(system, &out_peak_value, resource_limit_handle, which);
ret = GetResourceLimitPeakValue64(system, std::addressof(out_peak_value), resource_limit_handle, which);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_peak_value));
@ -2844,7 +2844,7 @@ static void SvcWrap_CreateIoPool64(Core::System& system) {
which = Convert<IoPoolType>(GetReg64(system, 1));
ret = CreateIoPool64(system, &out_handle, which);
ret = CreateIoPool64(system, std::addressof(out_handle), which);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2866,7 +2866,7 @@ static void SvcWrap_CreateIoRegion64(Core::System& system) {
mapping = Convert<MemoryMapping>(GetReg64(system, 4));
perm = Convert<MemoryPermission>(GetReg64(system, 5));
ret = CreateIoRegion64(system, &out_handle, io_pool, physical_address, size, mapping, perm);
ret = CreateIoRegion64(system, std::addressof(out_handle), io_pool, physical_address, size, mapping, perm);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2905,7 +2905,7 @@ static void SvcWrap_CreateSession64(Core::System& system) {
is_light = Convert<bool>(GetReg64(system, 2));
name = Convert<uint64_t>(GetReg64(system, 3));
ret = CreateSession64(system, &out_server_session_handle, &out_client_session_handle, is_light, name);
ret = CreateSession64(system, std::addressof(out_server_session_handle), std::addressof(out_client_session_handle), is_light, name);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_server_session_handle));
@ -2920,7 +2920,7 @@ static void SvcWrap_AcceptSession64(Core::System& system) {
port = Convert<Handle>(GetReg64(system, 1));
ret = AcceptSession64(system, &out_handle, port);
ret = AcceptSession64(system, std::addressof(out_handle), port);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -2940,7 +2940,7 @@ static void SvcWrap_ReplyAndReceive64(Core::System& system) {
reply_target = Convert<Handle>(GetReg64(system, 3));
timeout_ns = Convert<int64_t>(GetReg64(system, 4));
ret = ReplyAndReceive64(system, &out_index, handles, num_handles, reply_target, timeout_ns);
ret = ReplyAndReceive64(system, std::addressof(out_index), handles, num_handles, reply_target, timeout_ns);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_index));
@ -2964,7 +2964,7 @@ static void SvcWrap_ReplyAndReceiveWithUserBuffer64(Core::System& system) {
reply_target = Convert<Handle>(GetReg64(system, 5));
timeout_ns = Convert<int64_t>(GetReg64(system, 6));
ret = ReplyAndReceiveWithUserBuffer64(system, &out_index, message_buffer, message_buffer_size, handles, num_handles, reply_target, timeout_ns);
ret = ReplyAndReceiveWithUserBuffer64(system, std::addressof(out_index), message_buffer, message_buffer_size, handles, num_handles, reply_target, timeout_ns);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_index));
@ -2976,7 +2976,7 @@ static void SvcWrap_CreateEvent64(Core::System& system) {
Handle out_write_handle{};
Handle out_read_handle{};
ret = CreateEvent64(system, &out_write_handle, &out_read_handle);
ret = CreateEvent64(system, std::addressof(out_write_handle), std::addressof(out_read_handle));
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_write_handle));
@ -3067,7 +3067,7 @@ static void SvcWrap_CreateCodeMemory64(Core::System& system) {
address = Convert<uint64_t>(GetReg64(system, 1));
size = Convert<uint64_t>(GetReg64(system, 2));
ret = CreateCodeMemory64(system, &out_handle, address, size);
ret = CreateCodeMemory64(system, std::addressof(out_handle), address, size);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3109,7 +3109,7 @@ static void SvcWrap_ReadWriteRegister64(Core::System& system) {
mask = Convert<uint32_t>(GetReg64(system, 2));
value = Convert<uint32_t>(GetReg64(system, 3));
ret = ReadWriteRegister64(system, &out_value, address, mask, value);
ret = ReadWriteRegister64(system, std::addressof(out_value), address, mask, value);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_value));
@ -3141,7 +3141,7 @@ static void SvcWrap_CreateSharedMemory64(Core::System& system) {
owner_perm = Convert<MemoryPermission>(GetReg64(system, 2));
remote_perm = Convert<MemoryPermission>(GetReg64(system, 3));
ret = CreateSharedMemory64(system, &out_handle, size, owner_perm, remote_perm);
ret = CreateSharedMemory64(system, std::addressof(out_handle), size, owner_perm, remote_perm);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3191,7 +3191,7 @@ static void SvcWrap_CreateInterruptEvent64(Core::System& system) {
interrupt_id = Convert<int32_t>(GetReg64(system, 1));
interrupt_type = Convert<InterruptType>(GetReg64(system, 2));
ret = CreateInterruptEvent64(system, &out_read_handle, interrupt_id, interrupt_type);
ret = CreateInterruptEvent64(system, std::addressof(out_read_handle), interrupt_id, interrupt_type);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_read_handle));
@ -3205,7 +3205,7 @@ static void SvcWrap_QueryPhysicalAddress64(Core::System& system) {
address = Convert<uint64_t>(GetReg64(system, 1));
ret = QueryPhysicalAddress64(system, &out_info, address);
ret = QueryPhysicalAddress64(system, std::addressof(out_info), address);
SetReg64(system, 0, Convert<uint64_t>(ret));
auto out_info_scatter = Convert<std::array<uint64_t, 3>>(out_info);
@ -3225,7 +3225,7 @@ static void SvcWrap_QueryIoMapping64(Core::System& system) {
physical_address = Convert<uint64_t>(GetReg64(system, 2));
size = Convert<uint64_t>(GetReg64(system, 3));
ret = QueryIoMapping64(system, &out_address, &out_size, physical_address, size);
ret = QueryIoMapping64(system, std::addressof(out_address), std::addressof(out_size), physical_address, size);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_address));
@ -3242,7 +3242,7 @@ static void SvcWrap_CreateDeviceAddressSpace64(Core::System& system) {
das_address = Convert<uint64_t>(GetReg64(system, 1));
das_size = Convert<uint64_t>(GetReg64(system, 2));
ret = CreateDeviceAddressSpace64(system, &out_handle, das_address, das_size);
ret = CreateDeviceAddressSpace64(system, std::addressof(out_handle), das_address, das_size);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3396,7 +3396,7 @@ static void SvcWrap_DebugActiveProcess64(Core::System& system) {
process_id = Convert<uint64_t>(GetReg64(system, 1));
ret = DebugActiveProcess64(system, &out_handle, process_id);
ret = DebugActiveProcess64(system, std::addressof(out_handle), process_id);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3468,7 +3468,7 @@ static void SvcWrap_GetProcessList64(Core::System& system) {
out_process_ids = Convert<uint64_t>(GetReg64(system, 1));
max_out_count = Convert<int32_t>(GetReg64(system, 2));
ret = GetProcessList64(system, &out_num_processes, out_process_ids, max_out_count);
ret = GetProcessList64(system, std::addressof(out_num_processes), out_process_ids, max_out_count);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_num_processes));
@ -3486,7 +3486,7 @@ static void SvcWrap_GetThreadList64(Core::System& system) {
max_out_count = Convert<int32_t>(GetReg64(system, 2));
debug_handle = Convert<Handle>(GetReg64(system, 3));
ret = GetThreadList64(system, &out_num_threads, out_thread_ids, max_out_count, debug_handle);
ret = GetThreadList64(system, std::addressof(out_num_threads), out_thread_ids, max_out_count, debug_handle);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_num_threads));
@ -3540,7 +3540,7 @@ static void SvcWrap_QueryDebugProcessMemory64(Core::System& system) {
process_handle = Convert<Handle>(GetReg64(system, 2));
address = Convert<uint64_t>(GetReg64(system, 3));
ret = QueryDebugProcessMemory64(system, out_memory_info, &out_page_info, process_handle, address);
ret = QueryDebugProcessMemory64(system, out_memory_info, std::addressof(out_page_info), process_handle, address);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_page_info));
@ -3611,7 +3611,7 @@ static void SvcWrap_GetDebugThreadParam64(Core::System& system) {
thread_id = Convert<uint64_t>(GetReg64(system, 3));
param = Convert<DebugThreadParam>(GetReg64(system, 4));
ret = GetDebugThreadParam64(system, &out_64, &out_32, debug_handle, thread_id, param);
ret = GetDebugThreadParam64(system, std::addressof(out_64), std::addressof(out_32), debug_handle, thread_id, param);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_64));
@ -3630,7 +3630,7 @@ static void SvcWrap_GetSystemInfo64(Core::System& system) {
handle = Convert<Handle>(GetReg64(system, 2));
info_subtype = Convert<uint64_t>(GetReg64(system, 3));
ret = GetSystemInfo64(system, &out, info_type, handle, info_subtype);
ret = GetSystemInfo64(system, std::addressof(out), info_type, handle, info_subtype);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out));
@ -3649,7 +3649,7 @@ static void SvcWrap_CreatePort64(Core::System& system) {
is_light = Convert<bool>(GetReg64(system, 3));
name = Convert<uint64_t>(GetReg64(system, 4));
ret = CreatePort64(system, &out_server_handle, &out_client_handle, max_sessions, is_light, name);
ret = CreatePort64(system, std::addressof(out_server_handle), std::addressof(out_client_handle), max_sessions, is_light, name);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_server_handle));
@ -3666,7 +3666,7 @@ static void SvcWrap_ManageNamedPort64(Core::System& system) {
name = Convert<uint64_t>(GetReg64(system, 1));
max_sessions = Convert<int32_t>(GetReg64(system, 2));
ret = ManageNamedPort64(system, &out_server_handle, name, max_sessions);
ret = ManageNamedPort64(system, std::addressof(out_server_handle), name, max_sessions);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_server_handle));
@ -3680,7 +3680,7 @@ static void SvcWrap_ConnectToPort64(Core::System& system) {
port = Convert<Handle>(GetReg64(system, 1));
ret = ConnectToPort64(system, &out_handle, port);
ret = ConnectToPort64(system, std::addressof(out_handle), port);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3752,7 +3752,7 @@ static void SvcWrap_QueryProcessMemory64(Core::System& system) {
process_handle = Convert<Handle>(GetReg64(system, 2));
address = Convert<uint64_t>(GetReg64(system, 3));
ret = QueryProcessMemory64(system, out_memory_info, &out_page_info, process_handle, address);
ret = QueryProcessMemory64(system, out_memory_info, std::addressof(out_page_info), process_handle, address);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_page_info));
@ -3806,7 +3806,7 @@ static void SvcWrap_CreateProcess64(Core::System& system) {
caps = Convert<uint64_t>(GetReg64(system, 2));
num_caps = Convert<int32_t>(GetReg64(system, 3));
ret = CreateProcess64(system, &out_handle, parameters, caps, num_caps);
ret = CreateProcess64(system, std::addressof(out_handle), parameters, caps, num_caps);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));
@ -3852,7 +3852,7 @@ static void SvcWrap_GetProcessInfo64(Core::System& system) {
process_handle = Convert<Handle>(GetReg64(system, 1));
info_type = Convert<ProcessInfoType>(GetReg64(system, 2));
ret = GetProcessInfo64(system, &out_info, process_handle, info_type);
ret = GetProcessInfo64(system, std::addressof(out_info), process_handle, info_type);
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_info));
@ -3863,7 +3863,7 @@ static void SvcWrap_CreateResourceLimit64(Core::System& system) {
Handle out_handle{};
ret = CreateResourceLimit64(system, &out_handle);
ret = CreateResourceLimit64(system, std::addressof(out_handle));
SetReg64(system, 0, Convert<uint64_t>(ret));
SetReg64(system, 1, Convert<uint64_t>(out_handle));

View file

@ -43,18 +43,9 @@ Result WaitForAddress(Core::System& system, VAddr address, ArbitrationType arb_t
address, arb_type, value, timeout_ns);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to wait on kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Wait address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
if (!IsValidArbitrationType(arb_type)) {
LOG_ERROR(Kernel_SVC, "Invalid arbitration type specified (type={})", arb_type);
return ResultInvalidEnumValue;
}
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(s32)), ResultInvalidAddress);
R_UNLESS(IsValidArbitrationType(arb_type), ResultInvalidEnumValue);
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
@ -72,7 +63,8 @@ Result WaitForAddress(Core::System& system, VAddr address, ArbitrationType arb_t
timeout = timeout_ns;
}
return GetCurrentProcess(system.Kernel()).WaitAddressArbiter(address, arb_type, value, timeout);
R_RETURN(
GetCurrentProcess(system.Kernel()).WaitAddressArbiter(address, arb_type, value, timeout));
}
// Signals to an address (via Address Arbiter)
@ -82,41 +74,32 @@ Result SignalToAddress(Core::System& system, VAddr address, SignalType signal_ty
address, signal_type, value, count);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to signal to a kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Signaled address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
if (!IsValidSignalType(signal_type)) {
LOG_ERROR(Kernel_SVC, "Invalid signal type specified (type={})", signal_type);
return ResultInvalidEnumValue;
}
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(s32)), ResultInvalidAddress);
R_UNLESS(IsValidSignalType(signal_type), ResultInvalidEnumValue);
return GetCurrentProcess(system.Kernel())
.SignalAddressArbiter(address, signal_type, value, count);
R_RETURN(GetCurrentProcess(system.Kernel())
.SignalAddressArbiter(address, signal_type, value, count));
}
Result WaitForAddress64(Core::System& system, VAddr address, ArbitrationType arb_type, s32 value,
s64 timeout_ns) {
return WaitForAddress(system, address, arb_type, value, timeout_ns);
R_RETURN(WaitForAddress(system, address, arb_type, value, timeout_ns));
}
Result SignalToAddress64(Core::System& system, VAddr address, SignalType signal_type, s32 value,
s32 count) {
return SignalToAddress(system, address, signal_type, value, count);
R_RETURN(SignalToAddress(system, address, signal_type, value, count));
}
Result WaitForAddress64From32(Core::System& system, u32 address, ArbitrationType arb_type,
s32 value, s64 timeout_ns) {
return WaitForAddress(system, address, arb_type, value, timeout_ns);
R_RETURN(WaitForAddress(system, address, arb_type, value, timeout_ns));
}
Result SignalToAddress64From32(Core::System& system, u32 address, SignalType signal_type, s32 value,
s32 count) {
return SignalToAddress(system, address, signal_type, value, count);
R_RETURN(SignalToAddress(system, address, signal_type, value, count));
}
} // namespace Kernel::Svc

View file

@ -1,6 +1,7 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/k_code_memory.h"
#include "core/hle/kernel/k_process.h"
@ -44,6 +45,7 @@ Result CreateCodeMemory(Core::System& system, Handle* out, VAddr address, uint64
KCodeMemory* code_mem = KCodeMemory::Create(kernel);
R_UNLESS(code_mem != nullptr, ResultOutOfResource);
SCOPE_EXIT({ code_mem->Close(); });
// Verify that the region is in range.
R_UNLESS(GetCurrentProcess(system.Kernel()).PageTable().Contains(address, size),
@ -58,9 +60,7 @@ Result CreateCodeMemory(Core::System& system, Handle* out, VAddr address, uint64
// Add the code memory to the handle table.
R_TRY(GetCurrentProcess(system.Kernel()).GetHandleTable().Add(out, code_mem));
code_mem->Close();
return ResultSuccess;
R_SUCCEED();
}
Result ControlCodeMemory(Core::System& system, Handle code_memory_handle,
@ -140,10 +140,10 @@ Result ControlCodeMemory(Core::System& system, Handle code_memory_handle,
R_TRY(code_mem->UnmapFromOwner(address, size));
} break;
default:
return ResultInvalidEnumValue;
R_THROW(ResultInvalidEnumValue);
}
return ResultSuccess;
R_SUCCEED();
}
Result CreateCodeMemory64(Core::System& system, Handle* out_handle, uint64_t address,

View file

@ -17,14 +17,8 @@ Result WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_ke
cv_key, tag, timeout_ns);
// Validate input.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempted to wait on kernel address (address={:08X})", address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(s32))) {
LOG_ERROR(Kernel_SVC, "Address must be 4 byte aligned (address={:08X})", address);
return ResultInvalidAddress;
}
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(s32)), ResultInvalidAddress);
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
@ -43,8 +37,9 @@ Result WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_ke
}
// Wait on the condition variable.
return GetCurrentProcess(system.Kernel())
.WaitConditionVariable(address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout);
R_RETURN(
GetCurrentProcess(system.Kernel())
.WaitConditionVariable(address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout));
}
/// Signal process wide key

View file

@ -21,7 +21,7 @@ Result SignalEvent(Core::System& system, Handle event_handle) {
KScopedAutoObject event = handle_table.GetObject<KEvent>(event_handle);
R_UNLESS(event.IsNotNull(), ResultInvalidHandle);
return event->Signal();
R_RETURN(event->Signal());
}
Result ClearEvent(Core::System& system, Handle event_handle) {
@ -34,7 +34,7 @@ Result ClearEvent(Core::System& system, Handle event_handle) {
{
KScopedAutoObject event = handle_table.GetObject<KEvent>(event_handle);
if (event.IsNotNull()) {
return event->Clear();
R_RETURN(event->Clear());
}
}
@ -42,13 +42,11 @@ Result ClearEvent(Core::System& system, Handle event_handle) {
{
KScopedAutoObject readable_event = handle_table.GetObject<KReadableEvent>(event_handle);
if (readable_event.IsNotNull()) {
return readable_event->Clear();
R_RETURN(readable_event->Clear());
}
}
LOG_ERROR(Kernel_SVC, "Event handle does not exist, event_handle=0x{:08X}", event_handle);
return ResultInvalidHandle;
R_THROW(ResultInvalidHandle);
}
Result CreateEvent(Core::System& system, Handle* out_write, Handle* out_read) {
@ -86,14 +84,12 @@ Result CreateEvent(Core::System& system, Handle* out_write, Handle* out_read) {
R_TRY(handle_table.Add(out_write, event));
// Ensure that we maintain a clean handle state on exit.
auto handle_guard = SCOPE_GUARD({ handle_table.Remove(*out_write); });
ON_RESULT_FAILURE {
handle_table.Remove(*out_write);
};
// Add the readable event to the handle table.
R_TRY(handle_table.Add(out_read, std::addressof(event->GetReadableEvent())));
// We succeeded.
handle_guard.Cancel();
return ResultSuccess;
R_RETURN(handle_table.Add(out_read, std::addressof(event->GetReadableEvent())));
}
Result SignalEvent64(Core::System& system, Handle event_handle) {

View file

@ -38,126 +38,110 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
case InfoType::UsedNonSystemMemorySize:
case InfoType::IsApplication:
case InfoType::FreeThreadCount: {
if (info_sub_id != 0) {
LOG_ERROR(Kernel_SVC, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id,
info_sub_id);
return ResultInvalidEnumValue;
}
R_UNLESS(info_sub_id == 0, ResultInvalidEnumValue);
const auto& handle_table = GetCurrentProcess(system.Kernel()).GetHandleTable();
KScopedAutoObject process = handle_table.GetObject<KProcess>(handle);
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Process is not valid! info_id={}, info_sub_id={}, handle={:08X}",
info_id, info_sub_id, handle);
return ResultInvalidHandle;
}
R_UNLESS(process.IsNotNull(), ResultInvalidHandle);
switch (info_id_type) {
case InfoType::CoreMask:
*result = process->GetCoreMask();
return ResultSuccess;
R_SUCCEED();
case InfoType::PriorityMask:
*result = process->GetPriorityMask();
return ResultSuccess;
R_SUCCEED();
case InfoType::AliasRegionAddress:
*result = process->PageTable().GetAliasRegionStart();
return ResultSuccess;
R_SUCCEED();
case InfoType::AliasRegionSize:
*result = process->PageTable().GetAliasRegionSize();
return ResultSuccess;
R_SUCCEED();
case InfoType::HeapRegionAddress:
*result = process->PageTable().GetHeapRegionStart();
return ResultSuccess;
R_SUCCEED();
case InfoType::HeapRegionSize:
*result = process->PageTable().GetHeapRegionSize();
return ResultSuccess;
R_SUCCEED();
case InfoType::AslrRegionAddress:
*result = process->PageTable().GetAliasCodeRegionStart();
return ResultSuccess;
R_SUCCEED();
case InfoType::AslrRegionSize:
*result = process->PageTable().GetAliasCodeRegionSize();
return ResultSuccess;
R_SUCCEED();
case InfoType::StackRegionAddress:
*result = process->PageTable().GetStackRegionStart();
return ResultSuccess;
R_SUCCEED();
case InfoType::StackRegionSize:
*result = process->PageTable().GetStackRegionSize();
return ResultSuccess;
R_SUCCEED();
case InfoType::TotalMemorySize:
*result = process->GetTotalPhysicalMemoryAvailable();
return ResultSuccess;
R_SUCCEED();
case InfoType::UsedMemorySize:
*result = process->GetTotalPhysicalMemoryUsed();
return ResultSuccess;
R_SUCCEED();
case InfoType::SystemResourceSizeTotal:
*result = process->GetSystemResourceSize();
return ResultSuccess;
R_SUCCEED();
case InfoType::SystemResourceSizeUsed:
LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage");
*result = process->GetSystemResourceUsage();
return ResultSuccess;
R_SUCCEED();
case InfoType::ProgramId:
*result = process->GetProgramID();
return ResultSuccess;
*result = process->GetProgramId();
R_SUCCEED();
case InfoType::UserExceptionContextAddress:
*result = process->GetProcessLocalRegionAddress();
return ResultSuccess;
R_SUCCEED();
case InfoType::TotalNonSystemMemorySize:
*result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource();
return ResultSuccess;
R_SUCCEED();
case InfoType::UsedNonSystemMemorySize:
*result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource();
return ResultSuccess;
R_SUCCEED();
case InfoType::IsApplication:
LOG_WARNING(Kernel_SVC, "(STUBBED) Assuming process is application");
*result = true;
return ResultSuccess;
R_SUCCEED();
case InfoType::FreeThreadCount:
*result = process->GetFreeThreadCount();
return ResultSuccess;
R_SUCCEED();
default:
break;
}
LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ResultInvalidEnumValue;
R_THROW(ResultInvalidEnumValue);
}
case InfoType::DebuggerAttached:
*result = 0;
return ResultSuccess;
R_SUCCEED();
case InfoType::ResourceLimit: {
if (handle != 0) {
LOG_ERROR(Kernel, "Handle is non zero! handle={:08X}", handle);
return ResultInvalidHandle;
}
if (info_sub_id != 0) {
LOG_ERROR(Kernel, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id,
info_sub_id);
return ResultInvalidCombination;
}
R_UNLESS(handle == 0, ResultInvalidHandle);
R_UNLESS(info_sub_id == 0, ResultInvalidCombination);
KProcess* const current_process = GetCurrentProcessPointer(system.Kernel());
KHandleTable& handle_table = current_process->GetHandleTable();
@ -165,44 +149,35 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
if (!resource_limit) {
*result = Svc::InvalidHandle;
// Yes, the kernel considers this a successful operation.
return ResultSuccess;
R_SUCCEED();
}
Handle resource_handle{};
R_TRY(handle_table.Add(&resource_handle, resource_limit));
R_TRY(handle_table.Add(std::addressof(resource_handle), resource_limit));
*result = resource_handle;
return ResultSuccess;
R_SUCCEED();
}
case InfoType::RandomEntropy:
if (handle != 0) {
LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}",
handle);
return ResultInvalidHandle;
}
if (info_sub_id >= KProcess::RANDOM_ENTROPY_SIZE) {
LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}",
KProcess::RANDOM_ENTROPY_SIZE, info_sub_id);
return ResultInvalidCombination;
}
R_UNLESS(handle == 0, ResultInvalidHandle);
R_UNLESS(info_sub_id < KProcess::RANDOM_ENTROPY_SIZE, ResultInvalidCombination);
*result = GetCurrentProcess(system.Kernel()).GetRandomEntropy(info_sub_id);
return ResultSuccess;
R_SUCCEED();
case InfoType::InitialProcessIdRange:
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query privileged process id bounds, returned 0");
*result = 0;
return ResultSuccess;
R_SUCCEED();
case InfoType::ThreadTickCount: {
constexpr u64 num_cpus = 4;
if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) {
LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus,
info_sub_id);
return ResultInvalidCombination;
R_THROW(ResultInvalidCombination);
}
KScopedAutoObject thread = GetCurrentProcess(system.Kernel())
@ -211,7 +186,7 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
if (thread.IsNull()) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
static_cast<Handle>(handle));
return ResultInvalidHandle;
R_THROW(ResultInvalidHandle);
}
const auto& core_timing = system.CoreTiming();
@ -230,7 +205,7 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
}
*result = out_ticks;
return ResultSuccess;
R_SUCCEED();
}
case InfoType::IdleTickCount: {
// Verify the input handle is invalid.
@ -244,7 +219,7 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
// Get the idle tick count.
*result = system.Kernel().CurrentScheduler()->GetIdleThread()->GetCpuTime();
return ResultSuccess;
R_SUCCEED();
}
case InfoType::MesosphereCurrentProcess: {
// Verify the input handle is invalid.
@ -259,17 +234,17 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
// Get a new handle for the current process.
Handle tmp;
R_TRY(handle_table.Add(&tmp, current_process));
R_TRY(handle_table.Add(std::addressof(tmp), current_process));
// Set the output.
*result = tmp;
// We succeeded.
return ResultSuccess;
R_SUCCEED();
}
default:
LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ResultInvalidEnumValue;
R_THROW(ResultInvalidEnumValue);
}
}

View file

@ -19,7 +19,7 @@ Result SendSyncRequest(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
return session->SendSyncRequest();
R_RETURN(session->SendSyncRequest());
}
Result SendSyncRequestWithUserBuffer(Core::System& system, uint64_t message_buffer,
@ -79,10 +79,10 @@ Result ReplyAndReceive(Core::System& system, s32* out_index, uint64_t handles_ad
while (true) {
// Wait for an object.
s32 index;
Result result = KSynchronizationObject::Wait(kernel, &index, objs.data(),
Result result = KSynchronizationObject::Wait(kernel, std::addressof(index), objs.data(),
static_cast<s32>(objs.size()), timeout_ns);
if (result == ResultTimedOut) {
return result;
R_RETURN(result);
}
// Receive the request.
@ -97,7 +97,7 @@ Result ReplyAndReceive(Core::System& system, s32* out_index, uint64_t handles_ad
}
*out_index = index;
return result;
R_RETURN(result);
}
}

View file

@ -14,17 +14,10 @@ Result ArbitrateLock(Core::System& system, Handle thread_handle, VAddr address,
thread_handle, address, tag);
// Validate the input address.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC, "Attempting to arbitrate a lock on a kernel address (address={:08X})",
address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(u32))) {
LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address);
return ResultInvalidAddress;
}
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress);
return GetCurrentProcess(system.Kernel()).WaitForAddress(thread_handle, address, tag);
R_RETURN(GetCurrentProcess(system.Kernel()).WaitForAddress(thread_handle, address, tag));
}
/// Unlock a mutex
@ -32,18 +25,10 @@ Result ArbitrateUnlock(Core::System& system, VAddr address) {
LOG_TRACE(Kernel_SVC, "called address=0x{:X}", address);
// Validate the input address.
if (IsKernelAddress(address)) {
LOG_ERROR(Kernel_SVC,
"Attempting to arbitrate an unlock on a kernel address (address={:08X})",
address);
return ResultInvalidCurrentMemory;
}
if (!Common::IsAligned(address, sizeof(u32))) {
LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address);
return ResultInvalidAddress;
}
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress);
return GetCurrentProcess(system.Kernel()).SignalToAddress(address);
R_RETURN(GetCurrentProcess(system.Kernel()).SignalToAddress(address));
}
Result ArbitrateLock64(Core::System& system, Handle thread_handle, uint64_t address, uint32_t tag) {

View file

@ -33,49 +33,49 @@ Result MapUnmapMemorySanityChecks(const KPageTable& manager, VAddr dst_addr, VAd
u64 size) {
if (!Common::Is4KBAligned(dst_addr)) {
LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (!Common::Is4KBAligned(src_addr)) {
LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!IsValidAddressRange(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!IsValidAddressRange(src_addr, size)) {
LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!manager.IsInsideAddressSpace(src_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Source is not within the address space, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (manager.IsOutsideStackRegion(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
if (manager.IsInsideHeapRegion(dst_addr, size)) {
@ -83,7 +83,7 @@ Result MapUnmapMemorySanityChecks(const KPageTable& manager, VAddr dst_addr, VAd
"Destination does not fit within the heap region, addr=0x{:016X}, "
"size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
if (manager.IsInsideAliasRegion(dst_addr, size)) {
@ -91,10 +91,10 @@ Result MapUnmapMemorySanityChecks(const KPageTable& manager, VAddr dst_addr, VAd
"Destination does not fit within the map region, addr=0x{:016X}, "
"size=0x{:016X}",
dst_addr, size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
return ResultSuccess;
R_SUCCEED();
}
} // namespace
@ -117,7 +117,7 @@ Result SetMemoryPermission(Core::System& system, VAddr address, u64 size, Memory
R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory);
// Set the memory attribute.
return page_table.SetMemoryPermission(address, size, perm);
R_RETURN(page_table.SetMemoryPermission(address, size, perm));
}
Result SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask, u32 attr) {
@ -141,7 +141,7 @@ Result SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mas
R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory);
// Set the memory attribute.
return page_table.SetMemoryAttribute(address, size, mask, attr);
R_RETURN(page_table.SetMemoryAttribute(address, size, mask, attr));
}
/// Maps a memory range into a different range.
@ -156,7 +156,7 @@ Result MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size)
return result;
}
return page_table.MapMemory(dst_addr, src_addr, size);
R_RETURN(page_table.MapMemory(dst_addr, src_addr, size));
}
/// Unmaps a region that was previously mapped with svcMapMemory
@ -171,7 +171,7 @@ Result UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 siz
return result;
}
return page_table.UnmapMemory(dst_addr, src_addr, size);
R_RETURN(page_table.UnmapMemory(dst_addr, src_addr, size));
}
Result SetMemoryPermission64(Core::System& system, uint64_t address, uint64_t size,

View file

@ -16,9 +16,7 @@ Result SetHeapSize(Core::System& system, VAddr* out_address, u64 size) {
R_UNLESS(size < MainMemorySizeMax, ResultInvalidSize);
// Set the heap size.
R_TRY(GetCurrentProcess(system.Kernel()).PageTable().SetHeapSize(out_address, size));
return ResultSuccess;
R_RETURN(GetCurrentProcess(system.Kernel()).PageTable().SetHeapSize(out_address, size));
}
/// Maps memory at a desired address
@ -27,22 +25,22 @@ Result MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())};
@ -50,24 +48,24 @@ Result MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
if (!page_table.IsInsideAddressSpace(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
if (page_table.IsOutsideAliasRegion(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
return page_table.MapPhysicalMemory(addr, size);
R_RETURN(page_table.MapPhysicalMemory(addr, size));
}
/// Unmaps memory previously mapped via MapPhysicalMemory
@ -76,22 +74,22 @@ Result UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())};
@ -99,24 +97,24 @@ Result UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
if (!page_table.IsInsideAddressSpace(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
if (page_table.IsOutsideAliasRegion(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
return page_table.UnmapPhysicalMemory(addr, size);
R_RETURN(page_table.UnmapPhysicalMemory(addr, size));
}
Result MapPhysicalMemoryUnsafe(Core::System& system, uint64_t address, uint64_t size) {

View file

@ -81,7 +81,7 @@ Result ManageNamedPort(Core::System& system, Handle* out_server_handle, uint64_t
R_UNLESS(port != nullptr, ResultOutOfResource);
// Initialize the new port.
port->Initialize(max_sessions, false, "");
port->Initialize(max_sessions, false, 0);
// Register the port.
KPort::Register(system.Kernel(), port);

View file

@ -11,7 +11,7 @@ namespace Kernel::Svc {
void ExitProcess(Core::System& system) {
auto* current_process = GetCurrentProcessPointer(system.Kernel());
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID());
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessId());
ASSERT_MSG(current_process->GetState() == KProcess::State::Running,
"Process has already exited");
@ -47,7 +47,7 @@ Result GetProcessId(Core::System& system, u64* out_process_id, Handle handle) {
// Get the process id.
*out_process_id = process->GetId();
return ResultSuccess;
R_SUCCEED();
}
Result GetProcessList(Core::System& system, s32* out_num_processes, VAddr out_process_ids,
@ -60,7 +60,7 @@ Result GetProcessList(Core::System& system, s32* out_num_processes, VAddr out_pr
LOG_ERROR(Kernel_SVC,
"Supplied size outside [0, 0x0FFFFFFF] range. out_process_ids_size={}",
out_process_ids_size);
return ResultOutOfRange;
R_THROW(ResultOutOfRange);
}
auto& kernel = system.Kernel();
@ -70,7 +70,7 @@ Result GetProcessList(Core::System& system, s32* out_num_processes, VAddr out_pr
out_process_ids, total_copy_size)) {
LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
out_process_ids, out_process_ids + total_copy_size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
auto& memory = system.Memory();
@ -80,12 +80,12 @@ Result GetProcessList(Core::System& system, s32* out_num_processes, VAddr out_pr
std::min(static_cast<std::size_t>(out_process_ids_size), num_processes);
for (std::size_t i = 0; i < copy_amount; ++i) {
memory.Write64(out_process_ids, process_list[i]->GetProcessID());
memory.Write64(out_process_ids, process_list[i]->GetProcessId());
out_process_ids += sizeof(u64);
}
*out_num_processes = static_cast<u32>(num_processes);
return ResultSuccess;
R_SUCCEED();
}
Result GetProcessInfo(Core::System& system, s64* out, Handle process_handle,
@ -97,17 +97,17 @@ Result GetProcessInfo(Core::System& system, s64* out, Handle process_handle,
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
process_handle);
return ResultInvalidHandle;
R_THROW(ResultInvalidHandle);
}
if (info_type != ProcessInfoType::ProcessState) {
LOG_ERROR(Kernel_SVC, "Expected info_type to be ProcessState but got {} instead",
info_type);
return ResultInvalidEnumValue;
R_THROW(ResultInvalidEnumValue);
}
*out = static_cast<s64>(process->GetState());
return ResultSuccess;
R_SUCCEED();
}
Result CreateProcess(Core::System& system, Handle* out_handle, uint64_t parameters, uint64_t caps,

View file

@ -53,7 +53,7 @@ Result SetProcessMemoryPermission(Core::System& system, Handle process_handle, V
R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory);
// Set the memory permission.
return page_table.SetProcessMemoryPermission(address, size, perm);
R_RETURN(page_table.SetProcessMemoryPermission(address, size, perm));
}
Result MapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle,
@ -93,10 +93,8 @@ Result MapProcessMemory(Core::System& system, VAddr dst_address, Handle process_
KMemoryAttribute::All, KMemoryAttribute::None));
// Map the group.
R_TRY(dst_pt.MapPageGroup(dst_address, pg, KMemoryState::SharedCode,
KMemoryPermission::UserReadWrite));
return ResultSuccess;
R_RETURN(dst_pt.MapPageGroup(dst_address, pg, KMemoryState::SharedCode,
KMemoryPermission::UserReadWrite));
}
Result UnmapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle,
@ -129,9 +127,7 @@ Result UnmapProcessMemory(Core::System& system, VAddr dst_address, Handle proces
ResultInvalidMemoryRegion);
// Unmap the memory.
R_TRY(dst_pt.UnmapProcessMemory(dst_address, size, src_pt, src_address));
return ResultSuccess;
R_RETURN(dst_pt.UnmapProcessMemory(dst_address, size, src_pt, src_address));
}
Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address,
@ -144,18 +140,18 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!IsValidAddressRange(dst_address, size)) {
@ -163,7 +159,7 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!IsValidAddressRange(src_address, size)) {
@ -171,7 +167,7 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
const auto& handle_table = GetCurrentProcess(system.Kernel()).GetHandleTable();
@ -179,7 +175,7 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ResultInvalidHandle;
R_THROW(ResultInvalidHandle);
}
auto& page_table = process->PageTable();
@ -188,7 +184,7 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!page_table.IsInsideASLRRegion(dst_address, size)) {
@ -196,10 +192,10 @@ Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
return page_table.MapCodeMemory(dst_address, src_address, size);
R_RETURN(page_table.MapCodeMemory(dst_address, src_address, size));
}
Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address,
@ -212,18 +208,18 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ResultInvalidAddress;
R_THROW(ResultInvalidAddress);
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size);
return ResultInvalidSize;
R_THROW(ResultInvalidSize);
}
if (!IsValidAddressRange(dst_address, size)) {
@ -231,7 +227,7 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!IsValidAddressRange(src_address, size)) {
@ -239,7 +235,7 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
const auto& handle_table = GetCurrentProcess(system.Kernel()).GetHandleTable();
@ -247,7 +243,7 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
if (process.IsNull()) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ResultInvalidHandle;
R_THROW(ResultInvalidHandle);
}
auto& page_table = process->PageTable();
@ -256,7 +252,7 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
if (!page_table.IsInsideASLRRegion(dst_address, size)) {
@ -264,11 +260,11 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ResultInvalidMemoryRegion;
R_THROW(ResultInvalidMemoryRegion);
}
return page_table.UnmapCodeMemory(dst_address, src_address, size,
KPageTable::ICacheInvalidationStrategy::InvalidateAll);
R_RETURN(page_table.UnmapCodeMemory(dst_address, src_address, size,
KPageTable::ICacheInvalidationStrategy::InvalidateAll));
}
Result SetProcessMemoryPermission64(Core::System& system, Handle process_handle, uint64_t address,

Some files were not shown because too many files have changed in this diff Show more