Now all that remains is:
18 instances in file_sys code
14 instances in GDB stub code (this can be tossed wholesale)
4 instances in HLE code
2 instances in settings code.
Migrates a remaining common file over to the Common namespace, making it
consistent with the rest of common files.
This also allows for high-traffic FS related code to alias the
filesystem function namespace as
namespace FS = Common::FS;
for more concise typing.
This makes it more inline with its currently unavailable standardized
analogue std::derived_from.
While we're at it, we can also make the template match the requirements
of the standardized variant as well.
Given the std::vector was const, an automatic move out of the function
could not occur.
We can allow automatic return value optimizations to occur by making the
buffer non-const.
Certain newer unity games (Terraria, Pokemon Mystery Dungeon) require
that the argument region be populated. Failure to do so results in
an integer underflow in argument count, and eventually an unmapped
read at 0x800000000. Providing this default fixes this.
Note that the behavior of official software is as yet unverified,
arguments-wise.
This commit ensures that all backing memory allocated for the Guest CPU
is aligned to 256 bytes. This due to how gpu memory works and the heavy
constraints it has in the alignment of physical memory.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
This gives us significantly more control over where in the
initialization process we start execution of the main process.
Previously we were running the main process before the CPU or GPU
threads were initialized (not good). This amends execution to start
after all of our threads are properly set up.
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.
This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
This source file was utilizing its own version of the NSO header.
Instead of keeping this around, we can have the patch manager also use
the version of the header that we have defined in loader/nso.h
The total struct itself is 0x100 (256) bytes in size, so we should be
providing that amount of data.
Without the data, this can result in omitted data from the final loaded
NSO file.
Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
Neither the NRO or NSO loaders actually make use of the functions or
members provided by the Linker interface, so we can just remove the
inheritance altogether.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
* get rid of boost::optional
* Remove optional references
* Use std::reference_wrapper for optional references
* Fix clang format
* Fix clang format part 2
* Adressed feedback
* Fix clang format and MacOS build
When enabled in settings, PatchNSO will dump the unmodified NSO that it was passed to a file named <build id>.nso in the dump root for the current title ID.
The only reason the getter existed was to check whether or not the
program NCA was null. Instead, we can just provide a function to query
for the existence of it, instead of exposing it entirely.
This function doesn't need to care about ownership semantics, so we can
just pass it a reference to the file itself, rather than a
std::shared_ptr alias.
These only exist to ferry data into a Process instance and end up going
out of scope quite early. Because of this, we can just make it a plain
struct for holding things and just std::move it into the relevant
function. There's no need to make this inherit from the kernel's Object
type.
Neither of these functions require the use of shared ownership of the
returned pointer. This makes it more difficult to create reference
cycles with, and makes the interface more generic, as std::shared_ptr
instances can be created from a std::unique_ptr, but the vice-versa
isn't possible. This also alters relevant functions to take NCA
arguments by const reference rather than a const reference to a
std::shared_ptr. These functions don't alter the ownership of the memory
used by the NCA instance, so we can make the interface more generic by
not assuming anything about the type of smart pointer the NCA is
contained within and make it the caller's responsibility to ensure the
supplied NCA is valid.
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
A process should never require being reference counted in this
situation. If the handle to a process is freed before this function is
called, it's definitely a bug with our lifetime management, so we can
put the requirement in place for the API that the process must be a
valid instance.
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.