1
0
Fork 0
forked from suyu/suyu

Merge pull request #1441 from MerryMage/dsp-pipes

AudioCore: Implement Pipe 2
This commit is contained in:
bunnei 2016-03-07 20:29:30 -05:00
commit 58c336b671
4 changed files with 346 additions and 78 deletions

View file

@ -66,9 +66,9 @@ static_assert(std::is_trivially_copyable<u32_dsp>::value, "u32_dsp isn't trivial
#endif #endif
// There are 15 structures in each memory region. A table of them in the order they appear in memory // There are 15 structures in each memory region. A table of them in the order they appear in memory
// is presented below // is presented below:
// //
// Pipe 2 # First Region DSP Address Purpose Control // # First Region DSP Address Purpose Control
// 5 0x8400 DSP Status DSP // 5 0x8400 DSP Status DSP
// 9 0x8410 DSP Debug Info DSP // 9 0x8410 DSP Debug Info DSP
// 6 0x8540 Final Mix Samples DSP // 6 0x8540 Final Mix Samples DSP
@ -85,6 +85,9 @@ static_assert(std::is_trivially_copyable<u32_dsp>::value, "u32_dsp isn't trivial
// 14 0xAC5C Surround Sound Related // 14 0xAC5C Surround Sound Related
// 0 0xBFFF Frame Counter Application // 0 0xBFFF Frame Counter Application
// //
// #: This refers to the order in which they appear in the DspPipe::Audio DSP pipe.
// See also: DSP::HLE::PipeRead.
//
// Note that the above addresses do vary slightly between audio firmwares observed; the addresses are // Note that the above addresses do vary slightly between audio firmwares observed; the addresses are
// not fixed in stone. The addresses above are only an examplar; they're what this implementation // not fixed in stone. The addresses above are only an examplar; they're what this implementation
// does and provides to applications. // does and provides to applications.
@ -472,13 +475,47 @@ struct SharedMemory {
AdpcmCoefficients adpcm_coefficients; AdpcmCoefficients adpcm_coefficients;
/// Unknown 10-14 (Surround sound related) struct {
INSERT_PADDING_DSPWORDS(0x16ED); INSERT_PADDING_DSPWORDS(0x100);
} unknown10;
struct {
INSERT_PADDING_DSPWORDS(0xC0);
} unknown11;
struct {
INSERT_PADDING_DSPWORDS(0x180);
} unknown12;
struct {
INSERT_PADDING_DSPWORDS(0xA);
} unknown13;
struct {
INSERT_PADDING_DSPWORDS(0x13A3);
} unknown14;
u16_le frame_counter; u16_le frame_counter;
}; };
ASSERT_DSP_STRUCT(SharedMemory, 0x8000); ASSERT_DSP_STRUCT(SharedMemory, 0x8000);
// Structures must have an offset that is a multiple of two.
static_assert(offsetof(SharedMemory, frame_counter) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, source_configurations) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, source_statuses) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, adpcm_coefficients) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, dsp_configuration) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, dsp_status) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, final_samples) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, intermediate_mix_samples) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, compressor) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, dsp_debug) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, unknown10) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, unknown11) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, unknown12) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, unknown13) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
static_assert(offsetof(SharedMemory, unknown14) % 2 == 0, "Structures in DSP::HLE::SharedMemory must be 2-byte aligned");
#undef INSERT_PADDING_DSPWORDS #undef INSERT_PADDING_DSPWORDS
#undef ASSERT_DSP_STRUCT #undef ASSERT_DSP_STRUCT

View file

@ -5,50 +5,154 @@
#include <array> #include <array>
#include <vector> #include <vector>
#include "audio_core/hle/dsp.h"
#include "audio_core/hle/pipe.h" #include "audio_core/hle/pipe.h"
#include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/logging/log.h" #include "common/logging/log.h"
namespace DSP { namespace DSP {
namespace HLE { namespace HLE {
static size_t pipe2position = 0; static DspState dsp_state = DspState::Off;
static std::array<std::vector<u8>, static_cast<size_t>(DspPipe::DspPipe_MAX)> pipe_data;
void ResetPipes() { void ResetPipes() {
pipe2position = 0; for (auto& data : pipe_data) {
data.clear();
}
dsp_state = DspState::Off;
} }
std::vector<u8> PipeRead(u32 pipe_number, u32 length) { std::vector<u8> PipeRead(DspPipe pipe_number, u32 length) {
if (pipe_number != 2) { if (pipe_number >= DspPipe::DspPipe_MAX) {
LOG_WARNING(Audio_DSP, "pipe_number = %u (!= 2), unimplemented", pipe_number); LOG_ERROR(Audio_DSP, "pipe_number = %u invalid", pipe_number);
return {}; // We currently don't handle anything other than the audio pipe.
}
// Canned DSP responses that games expect. These were taken from HW by 3dmoo team.
// TODO: Our implementation will actually use a slightly different response than this one.
// TODO: Use offsetof on DSP structures instead for a proper response.
static const std::array<u8, 32> canned_response {{
0x0F, 0x00, 0xFF, 0xBF, 0x8E, 0x9E, 0x80, 0x86, 0x8E, 0xA7, 0x30, 0x94, 0x00, 0x84, 0x40, 0x85,
0x8E, 0x94, 0x10, 0x87, 0x10, 0x84, 0x0E, 0xA9, 0x0E, 0xAA, 0xCE, 0xAA, 0x4E, 0xAC, 0x58, 0xAC
}};
// TODO: Move this into dsp::DSP service since it happens on the service side.
// Hardware observation: No data is returned if requested length reads beyond the end of the data in-pipe.
if (pipe2position + length > canned_response.size()) {
return {}; return {};
} }
std::vector<u8> ret; std::vector<u8>& data = pipe_data[static_cast<size_t>(pipe_number)];
for (size_t i = 0; i < length; i++, pipe2position++) {
ret.emplace_back(canned_response[pipe2position]); if (length > data.size()) {
LOG_WARNING(Audio_DSP, "pipe_number = %u is out of data, application requested read of %u but %zu remain",
pipe_number, length, data.size());
length = data.size();
} }
if (length == 0)
return {};
std::vector<u8> ret(data.begin(), data.begin() + length);
data.erase(data.begin(), data.begin() + length);
return ret; return ret;
} }
void PipeWrite(u32 pipe_number, const std::vector<u8>& buffer) { size_t GetPipeReadableSize(DspPipe pipe_number) {
// TODO: proper pipe behaviour if (pipe_number >= DspPipe::DspPipe_MAX) {
LOG_ERROR(Audio_DSP, "pipe_number = %u invalid", pipe_number);
return 0;
}
return pipe_data[static_cast<size_t>(pipe_number)].size();
}
static void WriteU16(DspPipe pipe_number, u16 value) {
std::vector<u8>& data = pipe_data[static_cast<size_t>(pipe_number)];
// Little endian
data.emplace_back(value & 0xFF);
data.emplace_back(value >> 8);
}
static void AudioPipeWriteStructAddresses() {
// These struct addresses are DSP dram addresses.
// See also: DSP_DSP::ConvertProcessAddressFromDspDram
static const std::array<u16, 15> struct_addresses = {
0x8000 + offsetof(SharedMemory, frame_counter) / 2,
0x8000 + offsetof(SharedMemory, source_configurations) / 2,
0x8000 + offsetof(SharedMemory, source_statuses) / 2,
0x8000 + offsetof(SharedMemory, adpcm_coefficients) / 2,
0x8000 + offsetof(SharedMemory, dsp_configuration) / 2,
0x8000 + offsetof(SharedMemory, dsp_status) / 2,
0x8000 + offsetof(SharedMemory, final_samples) / 2,
0x8000 + offsetof(SharedMemory, intermediate_mix_samples) / 2,
0x8000 + offsetof(SharedMemory, compressor) / 2,
0x8000 + offsetof(SharedMemory, dsp_debug) / 2,
0x8000 + offsetof(SharedMemory, unknown10) / 2,
0x8000 + offsetof(SharedMemory, unknown11) / 2,
0x8000 + offsetof(SharedMemory, unknown12) / 2,
0x8000 + offsetof(SharedMemory, unknown13) / 2,
0x8000 + offsetof(SharedMemory, unknown14) / 2
};
// Begin with a u16 denoting the number of structs.
WriteU16(DspPipe::Audio, struct_addresses.size());
// Then write the struct addresses.
for (u16 addr : struct_addresses) {
WriteU16(DspPipe::Audio, addr);
}
}
void PipeWrite(DspPipe pipe_number, const std::vector<u8>& buffer) {
switch (pipe_number) {
case DspPipe::Audio: {
if (buffer.size() != 4) {
LOG_ERROR(Audio_DSP, "DspPipe::Audio: Unexpected buffer length %zu was written", buffer.size());
return;
}
enum class StateChange {
Initalize = 0,
Shutdown = 1,
Wakeup = 2,
Sleep = 3
};
// The difference between Initialize and Wakeup is that Input state is maintained
// when sleeping but isn't when turning it off and on again. (TODO: Implement this.)
// Waking up from sleep garbles some of the structs in the memory region. (TODO:
// Implement this.) Applications store away the state of these structs before
// sleeping and reset it back after wakeup on behalf of the DSP.
switch (static_cast<StateChange>(buffer[0])) {
case StateChange::Initalize:
LOG_INFO(Audio_DSP, "Application has requested initialization of DSP hardware");
ResetPipes();
AudioPipeWriteStructAddresses();
dsp_state = DspState::On;
break;
case StateChange::Shutdown:
LOG_INFO(Audio_DSP, "Application has requested shutdown of DSP hardware");
dsp_state = DspState::Off;
break;
case StateChange::Wakeup:
LOG_INFO(Audio_DSP, "Application has requested wakeup of DSP hardware");
ResetPipes();
AudioPipeWriteStructAddresses();
dsp_state = DspState::On;
break;
case StateChange::Sleep:
LOG_INFO(Audio_DSP, "Application has requested sleep of DSP hardware");
UNIMPLEMENTED();
dsp_state = DspState::Sleeping;
break;
default:
LOG_ERROR(Audio_DSP, "Application has requested unknown state transition of DSP hardware %hhu", buffer[0]);
dsp_state = DspState::Off;
break;
}
return;
}
default:
LOG_CRITICAL(Audio_DSP, "pipe_number = %u unimplemented", pipe_number);
UNIMPLEMENTED();
return;
}
}
DspState GetDspState() {
return dsp_state;
} }
} // namespace HLE } // namespace HLE

View file

@ -4,6 +4,7 @@
#pragma once #pragma once
#include <cstddef>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
@ -14,25 +15,43 @@ namespace HLE {
/// Reset the pipes by setting pipe positions back to the beginning. /// Reset the pipes by setting pipe positions back to the beginning.
void ResetPipes(); void ResetPipes();
enum class DspPipe {
Debug = 0,
Dma = 1,
Audio = 2,
Binary = 3,
DspPipe_MAX
};
/** /**
* Read a DSP pipe. * Read a DSP pipe.
* Pipe IDs:
* pipe_number = 0: Debug
* pipe_number = 1: P-DMA
* pipe_number = 2: Audio
* pipe_number = 3: Binary
* @param pipe_number The Pipe ID * @param pipe_number The Pipe ID
* @param length How much data to request. * @param length How much data to request.
* @return The data read from the pipe. The size of this vector can be less than the length requested. * @return The data read from the pipe. The size of this vector can be less than the length requested.
*/ */
std::vector<u8> PipeRead(u32 pipe_number, u32 length); std::vector<u8> PipeRead(DspPipe pipe_number, u32 length);
/**
* How much data is left in pipe
* @param pipe_number The Pipe ID
* @return The amount of data remaning in the pipe. This is the maximum length PipeRead will return.
*/
size_t GetPipeReadableSize(DspPipe pipe_number);
/** /**
* Write to a DSP pipe. * Write to a DSP pipe.
* @param pipe_number The Pipe ID * @param pipe_number The Pipe ID
* @param buffer The data to write to the pipe. * @param buffer The data to write to the pipe.
*/ */
void PipeWrite(u32 pipe_number, const std::vector<u8>& buffer); void PipeWrite(DspPipe pipe_number, const std::vector<u8>& buffer);
enum class DspState {
Off,
On,
Sleeping
};
/// Get the state of the DSP
DspState GetDspState();
} // namespace HLE } // namespace HLE
} // namespace DSP } // namespace DSP

View file

@ -58,10 +58,10 @@ static void ConvertProcessAddressFromDspDram(Service::Interface* self) {
u32 addr = cmd_buff[1]; u32 addr = cmd_buff[1];
cmd_buff[1] = 0; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = (addr << 1) + (Memory::DSP_RAM_VADDR + 0x40000); cmd_buff[2] = (addr << 1) + (Memory::DSP_RAM_VADDR + 0x40000);
LOG_TRACE(Service_DSP, "addr=0x%08X", addr); LOG_DEBUG(Service_DSP, "addr=0x%08X", addr);
} }
/** /**
@ -142,8 +142,7 @@ static void FlushDataCache(Service::Interface* self) {
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_DSP, "(STUBBED) called address=0x%08X, size=0x%X, process=0x%08X", LOG_TRACE(Service_DSP, "called address=0x%08X, size=0x%X, process=0x%08X", address, size, process);
address, size, process);
} }
/** /**
@ -167,14 +166,14 @@ static void RegisterInterruptEvents(Service::Interface* self) {
if (evt) { if (evt) {
interrupt_events[std::make_pair(interrupt, channel)] = evt; interrupt_events[std::make_pair(interrupt, channel)] = evt;
cmd_buff[1] = RESULT_SUCCESS.raw; cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_WARNING(Service_DSP, "Registered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle); LOG_INFO(Service_DSP, "Registered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
} else { } else {
cmd_buff[1] = -1; LOG_CRITICAL(Service_DSP, "Invalid event handle! interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
LOG_ERROR(Service_DSP, "Invalid event handle! interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle); ASSERT(false); // This should really be handled at a IPC translation layer.
} }
} else { } else {
interrupt_events.erase(std::make_pair(interrupt, channel)); interrupt_events.erase(std::make_pair(interrupt, channel));
LOG_WARNING(Service_DSP, "Unregistered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle); LOG_INFO(Service_DSP, "Unregistered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
} }
} }
@ -188,7 +187,7 @@ static void RegisterInterruptEvents(Service::Interface* self) {
static void SetSemaphore(Service::Interface* self) { static void SetSemaphore(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = 0; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called"); LOG_WARNING(Service_DSP, "(STUBBED) called");
} }
@ -207,21 +206,12 @@ static void SetSemaphore(Service::Interface* self) {
static void WriteProcessPipe(Service::Interface* self) { static void WriteProcessPipe(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
u32 channel = cmd_buff[1]; DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 size = cmd_buff[2]; u32 size = cmd_buff[2];
u32 buffer = cmd_buff[4]; u32 buffer = cmd_buff[4];
if (IPC::StaticBufferDesc(size, 1) != cmd_buff[3]) { ASSERT_MSG(IPC::StaticBufferDesc(size, 1) == cmd_buff[3], "IPC static buffer descriptor failed validation (0x%X). pipe=%u, size=0x%X, buffer=0x%08X", cmd_buff[3], pipe, size, buffer);
LOG_ERROR(Service_DSP, "IPC static buffer descriptor failed validation (0x%X). channel=%u, size=0x%X, buffer=0x%08X", cmd_buff[3], channel, size, buffer); ASSERT_MSG(Memory::GetPointer(buffer) != nullptr, "Invalid Buffer: pipe=%u, size=0x%X, buffer=0x%08X", pipe, size, buffer);
cmd_buff[1] = -1; // TODO
return;
}
if (!Memory::GetPointer(buffer)) {
LOG_ERROR(Service_DSP, "Invalid Buffer: channel=%u, size=0x%X, buffer=0x%08X", channel, size, buffer);
cmd_buff[1] = -1; // TODO
return;
}
std::vector<u8> message(size); std::vector<u8> message(size);
@ -229,11 +219,11 @@ static void WriteProcessPipe(Service::Interface* self) {
message[i] = Memory::Read8(buffer + i); message[i] = Memory::Read8(buffer + i);
} }
DSP::HLE::PipeWrite(channel, message); DSP::HLE::PipeWrite(pipe, message);
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_TRACE(Service_DSP, "channel=%u, size=0x%X, buffer=0x%08X", channel, size, buffer); LOG_DEBUG(Service_DSP, "pipe=%u, size=0x%X, buffer=0x%08X", pipe, size, buffer);
} }
/** /**
@ -245,7 +235,7 @@ static void WriteProcessPipe(Service::Interface* self) {
* 1 : Pipe Number * 1 : Pipe Number
* 2 : Unknown * 2 : Unknown
* 3 : Size in bytes of read (observed only lower half word used) * 3 : Size in bytes of read (observed only lower half word used)
* 0x41 : Virtual address to read from DSP pipe to in memory * 0x41 : Virtual address of memory buffer to write pipe contents to
* Outputs: * Outputs:
* 1 : Result of function, 0 on success, otherwise error code * 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes read from pipe * 2 : Number of bytes read from pipe
@ -253,25 +243,82 @@ static void WriteProcessPipe(Service::Interface* self) {
static void ReadPipeIfPossible(Service::Interface* self) { static void ReadPipeIfPossible(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
u32 pipe = cmd_buff[1]; DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unk2 = cmd_buff[2]; u32 unknown = cmd_buff[2];
u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size
VAddr addr = cmd_buff[0x41]; VAddr addr = cmd_buff[0x41];
if (!Memory::GetPointer(addr)) { ASSERT_MSG(Memory::GetPointer(addr) != nullptr, "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr);
LOG_ERROR(Service_DSP, "Invalid addr: pipe=0x%08X, unk2=0x%08X, size=0x%X, buffer=0x%08X", pipe, unk2, size, addr);
cmd_buff[1] = -1; // TODO
return;
}
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
if (DSP::HLE::GetPipeReadableSize(pipe) >= size) {
std::vector<u8> response = DSP::HLE::PipeRead(pipe, size); std::vector<u8> response = DSP::HLE::PipeRead(pipe, size);
Memory::WriteBlock(addr, response.data(), response.size()); Memory::WriteBlock(addr, response.data(), response.size());
cmd_buff[1] = 0; // No error cmd_buff[2] = static_cast<u32>(response.size());
cmd_buff[2] = (u32)response.size(); } else {
cmd_buff[2] = 0; // Return no data
}
LOG_TRACE(Service_DSP, "pipe=0x%08X, unk2=0x%08X, size=0x%X, buffer=0x%08X", pipe, unk2, size, addr); LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, size, addr, cmd_buff[2]);
}
/**
* DSP_DSP::ReadPipe service function
* Inputs:
* 1 : Pipe Number
* 2 : Unknown
* 3 : Size in bytes of read (observed only lower half word used)
* 0x41 : Virtual address of memory buffer to write pipe contents to
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes read from pipe
*/
static void ReadPipe(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unknown = cmd_buff[2];
u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size
VAddr addr = cmd_buff[0x41];
ASSERT_MSG(Memory::GetPointer(addr) != nullptr, "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr);
if (DSP::HLE::GetPipeReadableSize(pipe) >= size) {
std::vector<u8> response = DSP::HLE::PipeRead(pipe, size);
Memory::WriteBlock(addr, response.data(), response.size());
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = static_cast<u32>(response.size());
} else {
// No more data is in pipe. Hardware hangs in this case; this should never happen.
UNREACHABLE();
}
LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, size, addr, cmd_buff[2]);
}
/**
* DSP_DSP::GetPipeReadableSize service function
* Inputs:
* 1 : Pipe Number
* 2 : Unknown
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes readable from pipe
*/
static void GetPipeReadableSize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unknown = cmd_buff[2];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = DSP::HLE::GetPipeReadableSize(pipe);
LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, cmd_buff[2]);
} }
/** /**
@ -306,12 +353,73 @@ static void GetHeadphoneStatus(Service::Interface* self) {
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 0; // Not using headphones? cmd_buff[2] = 0; // Not using headphones?
LOG_DEBUG(Service_DSP, "(STUBBED) called"); LOG_WARNING(Service_DSP, "(STUBBED) called");
}
/**
* DSP_DSP::RecvData service function
* This function reads a value out of a DSP register.
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Value in the register
* Notes:
* This function has only been observed being called with a register number of 0.
*/
static void RecvData(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 register_number = cmd_buff[1];
ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number);
// Application reads this after requesting DSP shutdown, to verify the DSP has indeed shutdown or slept.
cmd_buff[1] = RESULT_SUCCESS.raw;
switch (DSP::HLE::GetDspState()) {
case DSP::HLE::DspState::On:
cmd_buff[2] = 0;
break;
case DSP::HLE::DspState::Off:
case DSP::HLE::DspState::Sleeping:
cmd_buff[2] = 1;
break;
default:
UNREACHABLE();
break;
}
LOG_DEBUG(Service_DSP, "register_number=%u", register_number);
}
/**
* DSP_DSP::RecvDataIsReady service function
* This function checks whether a DSP register is ready to be read.
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : non-zero == ready
* Note:
* This function has only been observed being called with a register number of 0.
*/
static void RecvDataIsReady(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 register_number = cmd_buff[1];
ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number);
cmd_buff[1] = RESULT_SUCCESS.raw;
cmd_buff[2] = 1; // Ready to read
LOG_DEBUG(Service_DSP, "register_number=%u", register_number);
} }
const Interface::FunctionInfo FunctionTable[] = { const Interface::FunctionInfo FunctionTable[] = {
{0x00010040, nullptr, "RecvData"}, {0x00010040, RecvData, "RecvData"},
{0x00020040, nullptr, "RecvDataIsReady"}, {0x00020040, RecvDataIsReady, "RecvDataIsReady"},
{0x00030080, nullptr, "SendData"}, {0x00030080, nullptr, "SendData"},
{0x00040040, nullptr, "SendDataIsEmpty"}, {0x00040040, nullptr, "SendDataIsEmpty"},
{0x000500C2, nullptr, "SendFifoEx"}, {0x000500C2, nullptr, "SendFifoEx"},
@ -323,8 +431,8 @@ const Interface::FunctionInfo FunctionTable[] = {
{0x000B0000, nullptr, "CheckSemaphoreRequest"}, {0x000B0000, nullptr, "CheckSemaphoreRequest"},
{0x000C0040, ConvertProcessAddressFromDspDram, "ConvertProcessAddressFromDspDram"}, {0x000C0040, ConvertProcessAddressFromDspDram, "ConvertProcessAddressFromDspDram"},
{0x000D0082, WriteProcessPipe, "WriteProcessPipe"}, {0x000D0082, WriteProcessPipe, "WriteProcessPipe"},
{0x000E00C0, nullptr, "ReadPipe"}, {0x000E00C0, ReadPipe, "ReadPipe"},
{0x000F0080, nullptr, "GetPipeReadableSize"}, {0x000F0080, GetPipeReadableSize, "GetPipeReadableSize"},
{0x001000C0, ReadPipeIfPossible, "ReadPipeIfPossible"}, {0x001000C0, ReadPipeIfPossible, "ReadPipeIfPossible"},
{0x001100C2, LoadComponent, "LoadComponent"}, {0x001100C2, LoadComponent, "LoadComponent"},
{0x00120000, nullptr, "UnloadComponent"}, {0x00120000, nullptr, "UnloadComponent"},