1
0
Fork 0
forked from suyu/suyu

Query Cache: Fix Prefix Sums

This commit is contained in:
Fernando Sahmkow 2023-08-24 03:58:59 +02:00
parent bf0d6b8806
commit 57d8cd6c40
5 changed files with 174 additions and 131 deletions

View file

@ -34,11 +34,16 @@
#endif #endif
BEGIN_PUSH_CONSTANTS BEGIN_PUSH_CONSTANTS
UNIFORM(0) uint max_accumulation_base; UNIFORM(0) uint min_accumulation_base;
UNIFORM(1) uint accumulation_limit; UNIFORM(1) uint max_accumulation_base;
UNIFORM(2) uint accumulation_limit;
UNIFORM(3) uint buffer_offset;
END_PUSH_CONSTANTS END_PUSH_CONSTANTS
layout(local_size_x = 32) in; #define LOCAL_RESULTS 8
#define QUERIES_PER_INVOC 2048
layout(local_size_x = QUERIES_PER_INVOC / LOCAL_RESULTS) in;
layout(std430, binding = 0) readonly buffer block1 { layout(std430, binding = 0) readonly buffer block1 {
uvec2 input_data[]; uvec2 input_data[];
@ -52,7 +57,7 @@ layout(std430, binding = 2) coherent buffer block3 {
uvec2 accumulated_data; uvec2 accumulated_data;
}; };
shared uvec2 shared_data[2]; shared uvec2 shared_data[128];
// Simple Uint64 add that uses 2 uint variables for GPUs that don't support uint64 // Simple Uint64 add that uses 2 uint variables for GPUs that don't support uint64
uvec2 AddUint64(uvec2 value_1, uvec2 value_2) { uvec2 AddUint64(uvec2 value_1, uvec2 value_2) {
@ -67,8 +72,8 @@ uvec2 AddUint64(uvec2 value_1, uvec2 value_2) {
uvec2 subgroupInclusiveAddUint64(uvec2 value) { uvec2 subgroupInclusiveAddUint64(uvec2 value) {
uvec2 result = value; uvec2 result = value;
for (uint i = 1; i < gl_SubgroupSize; i *= 2) { for (uint i = 1; i < gl_SubgroupSize; i *= 2) {
uvec2 other = subgroupShuffleUp(result, i); // get value from subgroup_inv_id - i;
if (i <= gl_SubgroupInvocationID) { if (i <= gl_SubgroupInvocationID) {
uvec2 other = subgroupShuffleUp(result, i); // get value from subgroup_inv_id - i;
result = AddUint64(result, other); result = AddUint64(result, other);
} }
} }
@ -76,89 +81,93 @@ uvec2 subgroupInclusiveAddUint64(uvec2 value) {
} }
// Writes down the results to the output buffer and to the accumulation buffer // Writes down the results to the output buffer and to the accumulation buffer
void WriteResults(uvec2 result) { void WriteResults(uvec2 results[LOCAL_RESULTS]) {
uint current_global_id = gl_GlobalInvocationID.x; const uint current_id = gl_LocalInvocationID.x;
uvec2 base_data = current_global_id < max_accumulation_base ? accumulated_data : uvec2(0); const uvec2 accum = accumulated_data;
output_data[current_global_id] = result + base_data; for (uint i = 0; i < LOCAL_RESULTS; i++) {
if (max_accumulation_base >= accumulation_limit + 1) { uvec2 base_data = current_id * LOCAL_RESULTS + i < min_accumulation_base ? accum : uvec2(0, 0);
if (current_global_id == accumulation_limit) { AddUint64(results[i], base_data);
accumulated_data = result; }
for (uint i = 0; i < LOCAL_RESULTS; i++) {
output_data[buffer_offset + current_id * LOCAL_RESULTS + i] = results[i];
}
uint index = accumulation_limit % LOCAL_RESULTS;
uint base_id = accumulation_limit / LOCAL_RESULTS;
if (min_accumulation_base >= accumulation_limit + 1) {
if (current_id == base_id) {
accumulated_data = results[index];
} }
return; return;
} }
// We have that ugly case in which the accumulation data is reset in the middle somewhere. // We have that ugly case in which the accumulation data is reset in the middle somewhere.
barrier(); barrier();
groupMemoryBarrier(); groupMemoryBarrier();
if (current_global_id == accumulation_limit) {
uvec2 value_1 = output_data[max_accumulation_base]; if (current_id == base_id) {
accumulated_data = AddUint64(result, -value_1); uvec2 reset_value = output_data[max_accumulation_base - 1];
// Calculate two complement / negate manually
reset_value = AddUint64(uvec2(1,0), ~reset_value);
accumulated_data = AddUint64(results[index], reset_value);
} }
} }
void main() { void main() {
uint subgroup_inv_id = gl_SubgroupInvocationID; const uint subgroup_inv_id = gl_SubgroupInvocationID;
uint subgroup_id = gl_SubgroupID; const uint subgroup_id = gl_SubgroupID + gl_WorkGroupID.x * gl_NumSubgroups;
uint last_subgroup_id = subgroupMax(subgroup_inv_id); const uint last_subgroup_id = subgroupMax(subgroup_inv_id);
uint current_global_id = gl_GlobalInvocationID.x; const uint current_id = gl_LocalInvocationID.x;
uint total_work = gl_NumWorkGroups.x * gl_WorkGroupSize.x; const uint total_work = accumulation_limit;
uvec2 data = input_data[current_global_id]; const uint last_result_id = LOCAL_RESULTS - 1;
uvec2 data[LOCAL_RESULTS];
for (uint i = 0; i < LOCAL_RESULTS; i++) {
data[i] = input_data[buffer_offset + current_id * LOCAL_RESULTS + i];
}
uvec2 results[LOCAL_RESULTS];
results[0] = data[0];
for (uint i = 1; i < LOCAL_RESULTS; i++) {
results[i] = AddUint64(data[i], results[i - 1]);
}
// make sure all input data has been loaded // make sure all input data has been loaded
subgroupBarrier(); subgroupBarrier();
subgroupMemoryBarrier(); subgroupMemoryBarrier();
uvec2 result = subgroupInclusiveAddUint64(data); // on the last local result, do a subgroup inclusive scan sum
results[last_result_id] = subgroupInclusiveAddUint64(results[last_result_id]);
// get the last local result from the subgroup behind the current
uvec2 result_behind = subgroupShuffleUp(results[last_result_id], 1);
if (subgroup_inv_id != 0) {
for (uint i = 1; i < LOCAL_RESULTS; i++) {
results[i - 1] = AddUint64(results[i - 1], result_behind);
}
}
// if we had less queries than our subgroup, just write down the results. // if we had less queries than our subgroup, just write down the results.
if (total_work <= gl_SubgroupSize) { // This condition is constant per dispatch. if (total_work <= gl_SubgroupSize * LOCAL_RESULTS) { // This condition is constant per dispatch.
WriteResults(result); WriteResults(results);
return; return;
} }
// We now have more, so lets write the last result into shared memory. // We now have more, so lets write the last result into shared memory.
// Only pick the last subgroup. // Only pick the last subgroup.
if (subgroup_inv_id == last_subgroup_id) { if (subgroup_inv_id == last_subgroup_id) {
shared_data[subgroup_id] = result; shared_data[subgroup_id] = results[last_result_id];
} }
// wait until everyone loaded their stuffs // wait until everyone loaded their stuffs
barrier(); barrier();
memoryBarrierShared(); memoryBarrierShared();
// Case 1: the total work for the grouped results can be calculated in a single subgroup // only if it's not the first subgroup
// operation (about 1024 queries).
uint total_extra_work = gl_NumSubgroups * gl_NumWorkGroups.x;
if (total_extra_work <= gl_SubgroupSize) { // This condition is constant per dispatch.
if (subgroup_id != 0) {
uvec2 tmp = shared_data[subgroup_inv_id];
subgroupBarrier();
subgroupMemoryBarrierShared();
tmp = subgroupInclusiveAddUint64(tmp);
result = AddUint64(result, subgroupShuffle(tmp, subgroup_id - 1));
}
WriteResults(result);
return;
}
// Case 2: our work amount is huge, so lets do it in O(log n) steps.
const uint extra = (total_extra_work ^ (total_extra_work - 1)) != 0 ? 1 : 0;
const uint steps = 1 << (findMSB(total_extra_work) + extra);
uint step;
// Hillis and Steele's algorithm
for (step = 1; step < steps; step *= 2) {
if (current_global_id < steps && current_global_id >= step) {
uvec2 current = shared_data[current_global_id];
uvec2 other = shared_data[current_global_id - step];
shared_data[current_global_id] = AddUint64(current, other);
}
// steps is constant, so this will always execute in ever workgroup's thread.
barrier();
memoryBarrierShared();
}
// Only add results for groups higher than 0
if (subgroup_id != 0) { if (subgroup_id != 0) {
result = AddUint64(result, shared_data[subgroup_id - 1]); // get the results from some previous invocation
uvec2 tmp = shared_data[subgroup_inv_id];
subgroupBarrier();
subgroupMemoryBarrierShared();
tmp = subgroupInclusiveAddUint64(tmp);
// obtain the result that would be equivalent to the previous result
uvec2 shuffled_result = subgroupShuffle(tmp, subgroup_id - 1);
for (uint i = 0; i < LOCAL_RESULTS; i++) {
results[i] = AddUint64(results[i], shuffled_result);
}
} }
WriteResults(results);
// Just write the final results. We are done
WriteResults(result);
} }

View file

@ -32,25 +32,30 @@
#endif #endif
BEGIN_PUSH_CONSTANTS BEGIN_PUSH_CONSTANTS
UNIFORM(0) uint max_accumulation_base; UNIFORM(0) uint min_accumulation_base;
UNIFORM(1) uint accumulation_limit; UNIFORM(1) uint max_accumulation_base;
UNIFORM(2) uint accumulation_limit;
UNIFORM(3) uint buffer_offset;
END_PUSH_CONSTANTS END_PUSH_CONSTANTS
layout(local_size_x = 32) in; #define LOCAL_RESULTS 4
#define QUERIES_PER_INVOC 2048
layout(local_size_x = QUERIES_PER_INVOC / LOCAL_RESULTS) in;
layout(std430, binding = 0) readonly buffer block1 { layout(std430, binding = 0) readonly buffer block1 {
uvec2 input_data[gl_WorkGroupSize.x]; uvec2 input_data[gl_WorkGroupSize.x * LOCAL_RESULTS];
}; };
layout(std430, binding = 1) writeonly coherent buffer block2 { layout(std430, binding = 1) writeonly coherent buffer block2 {
uvec2 output_data[gl_WorkGroupSize.x]; uvec2 output_data[gl_WorkGroupSize.x * LOCAL_RESULTS];
}; };
layout(std430, binding = 2) coherent buffer block3 { layout(std430, binding = 2) coherent buffer block3 {
uvec2 accumulated_data; uvec2 accumulated_data;
}; };
shared uvec2 shared_data[gl_WorkGroupSize.x * 2]; shared uvec2 shared_data[gl_WorkGroupSize.x * LOCAL_RESULTS];
uvec2 AddUint64(uvec2 value_1, uvec2 value_2) { uvec2 AddUint64(uvec2 value_1, uvec2 value_2) {
uint carry = 0; uint carry = 0;
@ -62,23 +67,31 @@ uvec2 AddUint64(uvec2 value_1, uvec2 value_2) {
void main(void) { void main(void) {
uint id = gl_LocalInvocationID.x; uint id = gl_LocalInvocationID.x;
uvec2 base_value_1 = (id * 2) < max_accumulation_base ? accumulated_data : uvec2(0); uvec2 base_value[LOCAL_RESULTS];
uvec2 base_value_2 = (id * 2 + 1) < max_accumulation_base ? accumulated_data : uvec2(0); const uvec2 accum = accumulated_data;
for (uint i = 0; i < LOCAL_RESULTS; i++) {
base_value[i] = (buffer_offset + id * LOCAL_RESULTS + i) < min_accumulation_base
? accumulated_data
: uvec2(0);
}
uint work_size = gl_WorkGroupSize.x; uint work_size = gl_WorkGroupSize.x;
uint rd_id; uint rd_id;
uint wr_id; uint wr_id;
uint mask; uint mask;
uvec2 input_1 = input_data[id * 2]; uvec2 inputs[LOCAL_RESULTS];
uvec2 input_2 = input_data[id * 2 + 1]; for (uint i = 0; i < LOCAL_RESULTS; i++) {
inputs[i] = input_data[buffer_offset + id * LOCAL_RESULTS + i];
}
// The number of steps is the log base 2 of the // The number of steps is the log base 2 of the
// work group size, which should be a power of 2 // work group size, which should be a power of 2
const uint steps = uint(log2(work_size)) + 1; const uint steps = uint(log2(work_size)) + uint(log2(LOCAL_RESULTS));
uint step = 0; uint step = 0;
// Each invocation is responsible for the content of // Each invocation is responsible for the content of
// two elements of the output array // two elements of the output array
shared_data[id * 2] = input_1; for (uint i = 0; i < LOCAL_RESULTS; i++) {
shared_data[id * 2 + 1] = input_2; shared_data[id * LOCAL_RESULTS + i] = inputs[i];
}
// Synchronize to make sure that everyone has initialized // Synchronize to make sure that everyone has initialized
// their elements of shared_data[] with data loaded from // their elements of shared_data[] with data loaded from
// the input arrays // the input arrays
@ -100,21 +113,26 @@ void main(void) {
memoryBarrierShared(); memoryBarrierShared();
} }
// Add the accumulation // Add the accumulation
shared_data[id * 2] = AddUint64(shared_data[id * 2], base_value_1); for (uint i = 0; i < LOCAL_RESULTS; i++) {
shared_data[id * 2 + 1] = AddUint64(shared_data[id * 2 + 1], base_value_2); shared_data[id * LOCAL_RESULTS + i] =
AddUint64(shared_data[id * LOCAL_RESULTS + i], base_value[i]);
}
barrier(); barrier();
memoryBarrierShared(); memoryBarrierShared();
// Finally write our data back to the output buffer // Finally write our data back to the output buffer
output_data[id * 2] = shared_data[id * 2]; for (uint i = 0; i < LOCAL_RESULTS; i++) {
output_data[id * 2 + 1] = shared_data[id * 2 + 1]; output_data[buffer_offset + id * LOCAL_RESULTS + i] = shared_data[id * LOCAL_RESULTS + i];
}
if (id == 0) { if (id == 0) {
if (max_accumulation_base >= accumulation_limit + 1) { if (min_accumulation_base >= accumulation_limit + 1) {
accumulated_data = shared_data[accumulation_limit]; accumulated_data = shared_data[accumulation_limit];
return; return;
} }
uvec2 value_1 = shared_data[max_accumulation_base]; uvec2 reset_value = shared_data[max_accumulation_base - 1];
uvec2 value_2 = shared_data[accumulation_limit]; uvec2 final_value = shared_data[accumulation_limit];
accumulated_data = AddUint64(value_1, -value_2); // Two complements
reset_value = AddUint64(uvec2(1, 0), ~reset_value);
accumulated_data = AddUint64(final_value, reset_value);
} }
} }

View file

@ -179,8 +179,10 @@ struct AstcPushConstants {
}; };
struct QueriesPrefixScanPushConstants { struct QueriesPrefixScanPushConstants {
u32 min_accumulation_base;
u32 max_accumulation_base; u32 max_accumulation_base;
u32 accumulation_limit; u32 accumulation_limit;
u32 buffer_offset;
}; };
} // Anonymous namespace } // Anonymous namespace
@ -416,56 +418,65 @@ QueriesPrefixScanPass::QueriesPrefixScanPass(
device_.IsSubgroupFeatureSupported(VK_SUBGROUP_FEATURE_SHUFFLE_BIT) && device_.IsSubgroupFeatureSupported(VK_SUBGROUP_FEATURE_SHUFFLE_BIT) &&
device_.IsSubgroupFeatureSupported(VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) device_.IsSubgroupFeatureSupported(VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT)
? std::span<const u32>(QUERIES_PREFIX_SCAN_SUM_COMP_SPV) ? std::span<const u32>(QUERIES_PREFIX_SCAN_SUM_COMP_SPV)
: std::span<const u32>(QUERIES_PREFIX_SCAN_SUM_NOSUBGROUPS_COMP_SPV), : std::span<const u32>(QUERIES_PREFIX_SCAN_SUM_NOSUBGROUPS_COMP_SPV)),
{32}),
scheduler{scheduler_}, compute_pass_descriptor_queue{compute_pass_descriptor_queue_} {} scheduler{scheduler_}, compute_pass_descriptor_queue{compute_pass_descriptor_queue_} {}
void QueriesPrefixScanPass::Run(VkBuffer accumulation_buffer, VkBuffer dst_buffer, void QueriesPrefixScanPass::Run(VkBuffer accumulation_buffer, VkBuffer dst_buffer,
VkBuffer src_buffer, size_t number_of_sums, VkBuffer src_buffer, size_t number_of_sums,
size_t max_accumulation_limit) { size_t min_accumulation_limit, size_t max_accumulation_limit) {
size_t aligned_runs = Common::AlignUp(number_of_sums, 32); size_t current_runs = number_of_sums;
size_t offset = 0;
while (current_runs != 0) {
static constexpr size_t DISPATCH_SIZE = 2048U;
size_t runs_to_do = std::min<size_t>(current_runs, DISPATCH_SIZE);
current_runs -= runs_to_do;
compute_pass_descriptor_queue.Acquire();
compute_pass_descriptor_queue.AddBuffer(src_buffer, 0, number_of_sums * sizeof(u64));
compute_pass_descriptor_queue.AddBuffer(dst_buffer, 0, number_of_sums * sizeof(u64));
compute_pass_descriptor_queue.AddBuffer(accumulation_buffer, 0, sizeof(u64));
const void* const descriptor_data{compute_pass_descriptor_queue.UpdateData()};
size_t used_offset = offset;
offset += runs_to_do;
compute_pass_descriptor_queue.Acquire(); scheduler.RequestOutsideRenderPassOperationContext();
compute_pass_descriptor_queue.AddBuffer(src_buffer, 0, aligned_runs * sizeof(u64)); scheduler.Record([this, descriptor_data, min_accumulation_limit, max_accumulation_limit,
compute_pass_descriptor_queue.AddBuffer(dst_buffer, 0, aligned_runs * sizeof(u64)); runs_to_do, used_offset](vk::CommandBuffer cmdbuf) {
compute_pass_descriptor_queue.AddBuffer(accumulation_buffer, 0, sizeof(u64)); static constexpr VkMemoryBarrier read_barrier{
const void* const descriptor_data{compute_pass_descriptor_queue.UpdateData()}; .sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
};
static constexpr VkMemoryBarrier write_barrier{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT,
};
const QueriesPrefixScanPushConstants uniforms{
.min_accumulation_base = static_cast<u32>(min_accumulation_limit),
.max_accumulation_base = static_cast<u32>(max_accumulation_limit),
.accumulation_limit = static_cast<u32>(runs_to_do - 1),
.buffer_offset = static_cast<u32>(used_offset),
};
const VkDescriptorSet set = descriptor_allocator.Commit();
device.GetLogical().UpdateDescriptorSet(set, *descriptor_template, descriptor_data);
scheduler.RequestOutsideRenderPassOperationContext(); cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
scheduler.Record([this, descriptor_data, max_accumulation_limit, number_of_sums, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, read_barrier);
aligned_runs](vk::CommandBuffer cmdbuf) { cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
static constexpr VkMemoryBarrier read_barrier{ cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *layout, 0, set, {});
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER, cmdbuf.PushConstants(*layout, VK_SHADER_STAGE_COMPUTE_BIT, uniforms);
.pNext = nullptr, cmdbuf.Dispatch(1, 1, 1);
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT, 0,
}; write_barrier);
static constexpr VkMemoryBarrier write_barrier{ });
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER, }
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT,
};
const QueriesPrefixScanPushConstants uniforms{
.max_accumulation_base = static_cast<u32>(max_accumulation_limit),
.accumulation_limit = static_cast<u32>(number_of_sums - 1),
};
const VkDescriptorSet set = descriptor_allocator.Commit();
device.GetLogical().UpdateDescriptorSet(set, *descriptor_template, descriptor_data);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, read_barrier);
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, *layout, 0, set, {});
cmdbuf.PushConstants(*layout, VK_SHADER_STAGE_COMPUTE_BIT, uniforms);
cmdbuf.Dispatch(static_cast<u32>(aligned_runs / 32U), 1, 1);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT, 0, write_barrier);
});
} }
ASTCDecoderPass::ASTCDecoderPass(const Device& device_, Scheduler& scheduler_, ASTCDecoderPass::ASTCDecoderPass(const Device& device_, Scheduler& scheduler_,

View file

@ -104,7 +104,7 @@ public:
ComputePassDescriptorQueue& compute_pass_descriptor_queue_); ComputePassDescriptorQueue& compute_pass_descriptor_queue_);
void Run(VkBuffer accumulation_buffer, VkBuffer dst_buffer, VkBuffer src_buffer, void Run(VkBuffer accumulation_buffer, VkBuffer dst_buffer, VkBuffer src_buffer,
size_t number_of_sums, size_t max_accumulation_limit); size_t number_of_sums, size_t min_accumulation_limit, size_t max_accumulation_limit);
private: private:
Scheduler& scheduler; Scheduler& scheduler;

View file

@ -181,7 +181,8 @@ public:
}); });
rasterizer->SyncOperation(std::move(func)); rasterizer->SyncOperation(std::move(func));
accumulation_since_last_sync = false; accumulation_since_last_sync = false;
last_accumulation_checkpoint = std::min(last_accumulation_checkpoint, num_slots_used); first_accumulation_checkpoint = std::min(first_accumulation_checkpoint, num_slots_used);
last_accumulation_checkpoint = std::max(last_accumulation_checkpoint, num_slots_used);
} }
void CloseCounter() override { void CloseCounter() override {
@ -285,7 +286,9 @@ public:
resolve_buffers.push_back(intermediary_buffer_index); resolve_buffers.push_back(intermediary_buffer_index);
queries_prefix_scan_pass->Run(*accumulation_buffer, *buffers[intermediary_buffer_index], queries_prefix_scan_pass->Run(*accumulation_buffer, *buffers[intermediary_buffer_index],
*buffers[resolve_buffer_index], num_slots_used, *buffers[resolve_buffer_index], num_slots_used,
std::min(last_accumulation_checkpoint, num_slots_used)); std::min(first_accumulation_checkpoint, num_slots_used),
last_accumulation_checkpoint);
} else { } else {
scheduler.RequestOutsideRenderPassOperationContext(); scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([buffer = *accumulation_buffer](vk::CommandBuffer cmdbuf) { scheduler.Record([buffer = *accumulation_buffer](vk::CommandBuffer cmdbuf) {
@ -298,7 +301,8 @@ public:
rasterizer->SyncOperation(std::move(func)); rasterizer->SyncOperation(std::move(func));
AbandonCurrentQuery(); AbandonCurrentQuery();
num_slots_used = 0; num_slots_used = 0;
last_accumulation_checkpoint = std::numeric_limits<size_t>::max(); first_accumulation_checkpoint = std::numeric_limits<size_t>::max();
last_accumulation_checkpoint = 0;
accumulation_since_last_sync = has_multi_queries; accumulation_since_last_sync = has_multi_queries;
pending_sync.clear(); pending_sync.clear();
} }
@ -506,7 +510,7 @@ private:
template <bool is_resolve> template <bool is_resolve>
size_t ObtainBuffer(size_t num_needed) { size_t ObtainBuffer(size_t num_needed) {
const size_t log_2 = std::max<size_t>(6U, Common::Log2Ceil64(num_needed)); const size_t log_2 = std::max<size_t>(11U, Common::Log2Ceil64(num_needed));
if constexpr (is_resolve) { if constexpr (is_resolve) {
if (resolve_table[log_2] != 0) { if (resolve_table[log_2] != 0) {
return resolve_table[log_2] - 1; return resolve_table[log_2] - 1;
@ -563,6 +567,7 @@ private:
VkQueryPool current_query_pool; VkQueryPool current_query_pool;
size_t current_query_id; size_t current_query_id;
size_t num_slots_used{}; size_t num_slots_used{};
size_t first_accumulation_checkpoint{};
size_t last_accumulation_checkpoint{}; size_t last_accumulation_checkpoint{};
bool accumulation_since_last_sync{}; bool accumulation_since_last_sync{};
VideoCommon::HostQueryBase* current_query; VideoCommon::HostQueryBase* current_query;