1
0
Fork 0
forked from suyu/suyu
suyu/src/core/hle/kernel/k_scheduler.h

298 lines
8.9 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// This file references various implementation details from Atmosphere, an open-source firmware for
// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
#pragma once
#include <atomic>
#include <memory>
2020-02-14 16:44:31 +01:00
#include <mutex>
#include <vector>
#include "common/common_types.h"
#include "common/multi_level_queue.h"
#include "common/scope_exit.h"
#include "common/spin_lock.h"
#include "core/core_timing.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_priority_queue.h"
#include "core/hle/kernel/k_scheduler_lock.h"
#include "core/hle/kernel/thread.h"
namespace Common {
class Fiber;
}
namespace Core {
class ARM_Interface;
class System;
} // namespace Core
namespace Kernel {
class KernelCore;
class Process;
2020-02-14 16:44:31 +01:00
class SchedulerLock;
using KSchedulerPriorityQueue =
KPriorityQueue<Thread, Core::Hardware::NUM_CPU_CORES, THREADPRIO_LOWEST, THREADPRIO_HIGHEST>;
static constexpr s32 HighestCoreMigrationAllowedPriority = 2;
class GlobalSchedulerContext final {
friend class KScheduler;
public:
explicit GlobalSchedulerContext(KernelCore& kernel);
~GlobalSchedulerContext();
/// Adds a new thread to the scheduler
void AddThread(std::shared_ptr<Thread> thread);
/// Removes a thread from the scheduler
void RemoveThread(std::shared_ptr<Thread> thread);
2019-03-29 22:01:17 +01:00
/// Returns a list of all threads managed by the scheduler
const std::vector<std::shared_ptr<Thread>>& GetThreadList() const {
2019-03-29 22:01:17 +01:00
return thread_list;
}
/**
* Rotates the scheduling queues of threads at a preemption priority and then does
* some core rebalancing. Preemption priorities can be found in the array
* 'preemption_priorities'.
*
* @note This operation happens every 10ms.
2019-10-12 16:13:25 +02:00
*/
void PreemptThreads();
2019-03-29 22:01:17 +01:00
u32 CpuCoresCount() const {
return Core::Hardware::NUM_CPU_CORES;
2019-03-29 22:01:17 +01:00
}
bool IsLocked() const;
private:
2020-02-14 16:44:31 +01:00
friend class SchedulerLock;
/// Lock the scheduler to the current thread.
void Lock();
/// Unlocks the scheduler, reselects threads, interrupts cores for rescheduling
/// and reschedules current core if needed.
void Unlock();
using LockType = KAbstractSchedulerLock<KScheduler>;
KernelCore& kernel;
2020-02-14 16:44:31 +01:00
std::atomic_bool scheduler_update_needed{};
KSchedulerPriorityQueue priority_queue;
LockType scheduler_lock;
2019-03-29 22:01:17 +01:00
/// Lists all thread ids that aren't deleted/etc.
std::vector<std::shared_ptr<Thread>> thread_list;
Common::SpinLock global_list_guard{};
2019-03-29 22:01:17 +01:00
};
class KScheduler final {
2019-03-29 22:01:17 +01:00
public:
explicit KScheduler(Core::System& system, std::size_t core_id);
~KScheduler();
2019-03-29 22:01:17 +01:00
/// Reschedules to the next available thread (call after current thread is suspended)
void RescheduleCurrentCore();
/// Reschedules cores pending reschedule, to be called on EnableScheduling.
static void RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule,
Core::EmuThreadHandle global_thread);
2019-03-29 22:01:17 +01:00
/// The next two are for SingleCore Only.
/// Unload current thread before preempting core.
void Unload(Thread* thread);
/// Reload current thread after core preemption.
void Reload(Thread* thread);
2019-03-29 22:01:17 +01:00
/// Gets the current running thread
Thread* GetCurrentThread() const;
/// Gets the timestamp for the last context switch in ticks.
u64 GetLastContextSwitchTicks() const;
bool ContextSwitchPending() const {
return this->state.needs_scheduling;
2019-03-29 22:01:17 +01:00
}
void Initialize();
void OnThreadStart();
std::shared_ptr<Common::Fiber>& ControlContext() {
return switch_fiber;
}
2020-06-28 00:20:06 +02:00
const std::shared_ptr<Common::Fiber>& ControlContext() const {
return switch_fiber;
}
std::size_t CurrentCoreId() const {
return core_id;
}
u64 UpdateHighestPriorityThread(Thread* highest_thread);
/**
* Takes a thread and moves it to the back of the it's priority list.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
void YieldWithoutCoreMigration();
/**
* Takes a thread and moves it to the back of the it's priority list.
* Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
* a better priority than the next thread in the core.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
void YieldWithCoreMigration();
/**
* Takes a thread and moves it out of the scheduling queue.
* and into the suggested queue. If no thread can be scheduled afterwards in that core,
* a suggested thread is obtained instead.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
void YieldToAnyThread();
/// Notify the scheduler a thread's status has changed.
static void OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 old_state);
/// Notify the scheduler a thread's priority has changed.
static void OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, Thread* current_thread,
u32 old_priority);
/// Notify the scheduler a thread's core and/or affinity mask has changed.
static void OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,
const KAffinityMask& old_affinity, s32 old_core);
private:
/**
* Takes care of selecting the new scheduled threads in three steps:
*
* 1. First a thread is selected from the top of the priority queue. If no thread
* is obtained then we move to step two, else we are done.
*
* 2. Second we try to get a suggested thread that's not assigned to any core or
* that is not the top thread in that core.
*
* 3. Third is no suggested thread is found, we do a second pass and pick a running
* thread in another core and swap it with its current thread.
*
* returns the cores needing scheduling.
*/
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
void RotateScheduledQueue(s32 core_id, s32 priority);
public:
static bool CanSchedule(KernelCore& kernel);
static bool IsSchedulerUpdateNeeded(const KernelCore& kernel);
static void SetSchedulerUpdateNeeded(KernelCore& kernel);
static void ClearSchedulerUpdateNeeded(KernelCore& kernel);
static void DisableScheduling(KernelCore& kernel);
static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling,
Core::EmuThreadHandle global_thread);
static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
2019-03-29 22:01:17 +01:00
private:
friend class GlobalSchedulerContext;
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel);
void Schedule() {
ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);
this->ScheduleImpl();
}
/// Switches the CPU's active thread context to that of the specified thread
void ScheduleImpl();
void SwitchThread(Thread* next_thread);
/// When a thread wakes up, it must run this through it's new scheduler
void SwitchContextStep2();
/**
* Called on every context switch to update the internal timestamp
* This also updates the running time ticks for the given thread and
* process using the following difference:
*
* ticks += most_recent_ticks - last_context_switch_ticks
*
* The internal tick timestamp for the scheduler is simply the
* most recent tick count retrieved. No special arithmetic is
* applied to it.
*/
void UpdateLastContextSwitchTime(Thread* thread, Process* process);
static void OnSwitch(void* this_scheduler);
void SwitchToCurrent();
private:
Thread* current_thread{};
Thread* idle_thread{};
std::shared_ptr<Common::Fiber> switch_fiber{};
struct SchedulingState {
std::atomic<bool> needs_scheduling;
bool interrupt_task_thread_runnable{};
bool should_count_idle{};
u64 idle_count{};
Thread* highest_priority_thread{};
void* idle_thread_stack{};
};
SchedulingState state;
2019-03-29 22:01:17 +01:00
Core::System& system;
u64 last_context_switch_time{};
const std::size_t core_id;
Common::SpinLock guard{};
};
2020-02-14 16:44:31 +01:00
class SchedulerLock {
public:
[[nodiscard]] explicit SchedulerLock(KernelCore& kernel);
2020-02-14 16:44:31 +01:00
~SchedulerLock();
protected:
KernelCore& kernel;
};
class SchedulerLockAndSleep : public SchedulerLock {
public:
2020-02-22 15:27:40 +01:00
explicit SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle, Thread* time_task,
s64 nanoseconds);
2020-02-14 16:44:31 +01:00
~SchedulerLockAndSleep();
void CancelSleep() {
sleep_cancelled = true;
}
2020-02-26 00:43:28 +01:00
void Release();
2020-02-14 16:44:31 +01:00
private:
Handle& event_handle;
Thread* time_task;
s64 nanoseconds;
bool sleep_cancelled{};
};
} // namespace Kernel