1
0
Fork 0
forked from suyu/suyu
suyu/src/video_core/memory_manager.cpp

577 lines
19 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
namespace Tegra {
MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
: rasterizer{rasterizer}, system{system} {
page_table.Resize(address_space_width, page_bits, false);
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = address_space_end;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
MemoryManager::~MemoryManager() = default;
GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
AllocateMemory(gpu_addr, 0, aligned_size);
return gpu_addr;
}
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
AllocateMemory(gpu_addr, 0, aligned_size);
return gpu_addr;
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
const u64 aligned_size{Common::AlignUp(size, page_size)};
const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)};
MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
ASSERT(
system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
return gpu_addr;
}
GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0);
const u64 aligned_size{Common::AlignUp(size, page_size)};
MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr);
ASSERT(
system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
return gpu_addr;
}
GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
ASSERT((gpu_addr & page_mask) == 0);
const u64 aligned_size{Common::AlignUp(size, page_size)};
const auto cpu_addr = GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
system.GPU().FlushAndInvalidateRegion(*cpu_addr, aligned_size);
UnmapRange(gpu_addr, aligned_size);
ASSERT(system.CurrentProcess()
->PageTable()
.UnlockForDeviceAddressSpace(cpu_addr.value(), size)
.IsSuccess());
return gpu_addr;
}
GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) const {
// Find the first Free VMA.
const VMAHandle vma_handle{
std::find_if(vma_map.begin(), vma_map.end(), [region_start, size](const auto& vma) {
if (vma.second.type != VirtualMemoryArea::Type::Unmapped) {
return false;
}
const VAddr vma_end{vma.second.base + vma.second.size};
return vma_end > region_start && vma_end >= region_start + size;
})};
if (vma_handle == vma_map.end()) {
return {};
}
return std::max(region_start, vma_handle->second.base);
}
bool MemoryManager::IsAddressValid(GPUVAddr addr) const {
return (addr >> page_bits) < page_table.pointers.size();
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
return {};
}
const VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]};
if (cpu_addr) {
return cpu_addr + (addr & page_mask);
}
return {};
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
return {};
}
const u8* page_pointer{GetPointer(addr)};
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
return value;
}
UNREACHABLE();
return {};
}
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
if (!IsAddressValid(addr)) {
return;
}
u8* page_pointer{GetPointer(addr)};
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
}
UNREACHABLE();
}
template u8 MemoryManager::Read<u8>(GPUVAddr addr) const;
template u16 MemoryManager::Read<u16>(GPUVAddr addr) const;
template u32 MemoryManager::Read<u32>(GPUVAddr addr) const;
template u64 MemoryManager::Read<u64>(GPUVAddr addr) const;
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr addr) {
if (!IsAddressValid(addr)) {
return {};
}
auto& memory = system.Memory();
2020-04-09 00:09:16 +02:00
const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
if (page_addr != 0) {
return memory.GetPointer(page_addr + (addr & page_mask));
}
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
return {};
}
const u8* MemoryManager::GetPointer(GPUVAddr addr) const {
if (!IsAddressValid(addr)) {
return {};
}
const auto& memory = system.Memory();
2020-04-09 00:09:16 +02:00
const VAddr page_addr{page_table.backing_addr[addr >> page_bits]};
if (page_addr != 0) {
return memory.GetPointer(page_addr + (addr & page_mask));
}
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
return {};
}
bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const {
const std::size_t inner_size = size - 1;
const GPUVAddr end = start + inner_size;
const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start));
const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end));
const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start);
return range == inner_size;
}
void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, const std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{src_addr >> page_bits};
std::size_t page_offset{src_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
// Flush must happen on the rasterizer interface, such that memory is always synchronous
// when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
rasterizer.FlushRegion(src_addr, copy_amount);
memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::ReadBlockUnsafe(GPUVAddr src_addr, void* dest_buffer,
const std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{src_addr >> page_bits};
std::size_t page_offset{src_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const u8* page_pointer = page_table.pointers[page_index];
if (page_pointer) {
const VAddr src_addr{page_table.backing_addr[page_index] + page_offset};
memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::WriteBlock(GPUVAddr dest_addr, const void* src_buffer, const std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{dest_addr >> page_bits};
std::size_t page_offset{dest_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer.InvalidateRegion(dest_addr, copy_amount);
memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr dest_addr, const void* src_buffer,
const std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{dest_addr >> page_bits};
std::size_t page_offset{dest_addr & page_mask};
auto& memory = system.Memory();
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
u8* page_pointer = page_table.pointers[page_index];
if (page_pointer) {
const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset};
memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, const std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlock(src_addr, tmp_buffer.data(), size);
WriteBlock(dest_addr, tmp_buffer.data(), size);
}
void MemoryManager::CopyBlockUnsafe(GPUVAddr dest_addr, GPUVAddr src_addr, const std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlockUnsafe(src_addr, tmp_buffer.data(), size);
WriteBlockUnsafe(dest_addr, tmp_buffer.data(), size);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) {
const VAddr addr = page_table.backing_addr[gpu_addr >> page_bits];
const std::size_t page = (addr & Core::Memory::PAGE_MASK) + size;
return page <= Core::Memory::PAGE_SIZE;
}
void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
VAddr backing_addr) {
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
(base + size) * page_size);
const VAddr end{base + size};
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
if (memory == nullptr) {
while (base != end) {
page_table.pointers[base] = nullptr;
page_table.backing_addr[base] = 0;
base += 1;
}
} else {
while (base != end) {
page_table.pointers[base] = memory;
page_table.backing_addr[base] = backing_addr;
base += 1;
memory += page_size;
backing_addr += page_size;
}
}
}
void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
}
void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
}
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (type != next.type) {
return {};
}
if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
return {};
}
if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
return {};
}
return true;
}
MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
if (target >= address_space_end) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
VirtualMemoryArea& vma{vma_handle->second};
vma.type = VirtualMemoryArea::Type::Allocated;
vma.backing_addr = 0;
vma.backing_memory = {};
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
u64 size) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& vma{vma_handle->second};
ASSERT(vma.size == size);
vma.offset = offset;
return Allocate(vma_handle);
}
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
VAddr backing_addr) {
// This is the appropriately sized VMA that will turn into our allocation.
VMAIter vma_handle{CarveVMA(target, size)};
VirtualMemoryArea& vma{vma_handle->second};
ASSERT(vma.size == size);
vma.type = VirtualMemoryArea::Type::Mapped;
vma.backing_memory = memory;
vma.backing_addr = backing_addr;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
VMAIter vma{CarveVMARange(target, size)};
const VAddr target_end{target + size};
const VMAIter end{vma_map.end()};
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
// Unmapped ranges return to allocated state and can be reused
// This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
vma = std::next(Allocate(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
}
MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
VMAIter vma_handle{StripIterConstness(FindVMA(base))};
if (vma_handle == vma_map.end()) {
// Target address is outside the managed range
return {};
}
const VirtualMemoryArea& vma{vma_handle->second};
if (vma.type == VirtualMemoryArea::Type::Mapped) {
// Region is already allocated
return vma_handle;
}
const VAddr start_in_vma{base - vma.base};
const VAddr end_in_vma{start_in_vma + size};
ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
vma.size, end_in_vma);
if (end_in_vma < vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return vma_handle;
}
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
const VAddr target_end{target + size};
ASSERT(target_end >= target);
ASSERT(size > 0);
VMAIter begin_vma{StripIterConstness(FindVMA(target))};
const VMAIter i_end{vma_map.lower_bound(target_end)};
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
})) {
return {};
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return begin_vma;
}
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma{vma_handle->second};
VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VirtualMemoryArea::Type::Unmapped:
break;
case VirtualMemoryArea::Type::Allocated:
new_vma.offset += offset_in_vma;
break;
case VirtualMemoryArea::Type::Mapped:
new_vma.backing_memory += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma{std::next(iter)};
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma{std::prev(iter)};
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VirtualMemoryArea::Type::Unmapped:
UnmapRegion(vma.base, vma.size);
break;
case VirtualMemoryArea::Type::Allocated:
MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
break;
case VirtualMemoryArea::Type::Mapped:
MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
break;
}
}
} // namespace Tegra