1
0
Fork 0
forked from suyu/suyu
suyu/src/core/hle/service/dsp_dsp.cpp

472 lines
17 KiB
C++
Raw Normal View History

2014-10-30 02:38:33 +01:00
// Copyright 2014 Citra Emulator Project
2014-12-17 06:38:14 +01:00
// Licensed under GPLv2 or any later version
2014-10-30 02:38:33 +01:00
// Refer to the license.txt file included.
2016-03-05 23:48:13 +01:00
#include <cinttypes>
#include "audio_core/hle/pipe.h"
2016-03-05 23:48:13 +01:00
#include "common/hash.h"
2015-05-06 09:06:12 +02:00
#include "common/logging/log.h"
#include "core/hle/kernel/event.h"
2014-10-30 02:38:33 +01:00
#include "core/hle/service/dsp_dsp.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace DSP_DSP
namespace DSP_DSP {
static u32 read_pipe_count;
static Kernel::SharedPtr<Kernel::Event> semaphore_event;
struct PairHash {
template <typename T, typename U>
std::size_t operator()(const std::pair<T, U> &x) const {
// TODO(yuriks): Replace with better hash combining function.
return std::hash<T>()(x.first) ^ std::hash<U>()(x.second);
}
};
/// Map of (audio interrupt number, channel number) to Kernel::Events. See: RegisterInterruptEvents
static std::unordered_map<std::pair<u32, u32>, Kernel::SharedPtr<Kernel::Event>, PairHash> interrupt_events;
// DSP Interrupts:
// Interrupt #2 occurs every frame tick. Userland programs normally have a thread that's waiting
// for an interrupt event. Immediately after this interrupt event, userland normally updates the
// state in the next region and increments the relevant frame counter by two.
void SignalAllInterrupts() {
// HACK: The other interrupts have currently unknown purpose, we trigger them each tick in any case.
for (auto& interrupt_event : interrupt_events)
interrupt_event.second->Signal();
}
void SignalInterrupt(u32 interrupt, u32 channel) {
interrupt_events[std::make_pair(interrupt, channel)]->Signal();
}
/**
* DSP_DSP::ConvertProcessAddressFromDspDram service function
* Inputs:
* 1 : Address
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : (inaddr << 1) + 0x1FF40000 (where 0x1FF00000 is the DSP RAM address)
*/
2015-02-13 16:40:07 +01:00
static void ConvertProcessAddressFromDspDram(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 addr = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = (addr << 1) + (Memory::DSP_RAM_VADDR + 0x40000);
LOG_DEBUG(Service_DSP, "addr=0x%08X", addr);
}
/**
* DSP_DSP::LoadComponent service function
* Inputs:
* 1 : Size
2016-03-05 23:48:13 +01:00
* 2 : Program mask (observed only half word used)
* 3 : Data mask (observed only half word used)
* 4 : (size << 4) | 0xA
* 5 : Buffer address
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Component loaded, 0 on not loaded, 1 on loaded
*/
2015-02-13 16:40:07 +01:00
static void LoadComponent(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 size = cmd_buff[1];
2016-03-05 23:48:13 +01:00
u32 prog_mask = cmd_buff[2];
u32 data_mask = cmd_buff[3];
u32 desc = cmd_buff[4];
u32 buffer = cmd_buff[5];
2016-03-05 23:48:13 +01:00
cmd_buff[0] = IPC::MakeHeader(0x11, 2, 2);
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 1; // Pretend that we actually loaded the DSP firmware
2016-03-05 23:48:13 +01:00
cmd_buff[3] = desc;
cmd_buff[4] = buffer;
// TODO(bunnei): Implement real DSP firmware loading
2016-03-05 23:48:13 +01:00
ASSERT(Memory::GetPointer(buffer) != nullptr);
ASSERT(size > 0x37C);
LOG_INFO(Service_DSP, "Firmware hash: %#" PRIx64, Common::ComputeHash64(Memory::GetPointer(buffer), size));
// Some versions of the firmware have the location of DSP structures listed here.
LOG_INFO(Service_DSP, "Structures hash: %#" PRIx64, Common::ComputeHash64(Memory::GetPointer(buffer) + 0x340, 60));
LOG_WARNING(Service_DSP, "(STUBBED) called size=0x%X, prog_mask=0x%08X, data_mask=0x%08X, buffer=0x%08X",
size, prog_mask, data_mask, buffer);
}
/**
* DSP_DSP::GetSemaphoreEventHandle service function
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 3 : Semaphore event handle
*/
2015-02-13 16:40:07 +01:00
static void GetSemaphoreEventHandle(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[3] = Kernel::g_handle_table.Create(semaphore_event).MoveFrom(); // Event handle
LOG_WARNING(Service_DSP, "(STUBBED) called");
}
2015-03-08 02:54:16 +01:00
/**
* DSP_DSP::FlushDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void FlushDataCache(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
// TODO(purpasmart96): Verify return header on HW
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_TRACE(Service_DSP, "called address=0x%08X, size=0x%X, process=0x%08X", address, size, process);
2015-03-08 02:54:16 +01:00
}
/**
* DSP_DSP::RegisterInterruptEvents service function
* Inputs:
* 1 : Interrupt Number
* 2 : Channel Number
* 4 : Interrupt event handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
2015-02-13 16:40:07 +01:00
static void RegisterInterruptEvents(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 interrupt = cmd_buff[1];
u32 channel = cmd_buff[2];
u32 event_handle = cmd_buff[4];
if (event_handle) {
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[4]);
if (evt) {
interrupt_events[std::make_pair(interrupt, channel)] = evt;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_INFO(Service_DSP, "Registered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
} else {
LOG_CRITICAL(Service_DSP, "Invalid event handle! interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
ASSERT(false); // This should really be handled at a IPC translation layer.
}
} else {
interrupt_events.erase(std::make_pair(interrupt, channel));
LOG_INFO(Service_DSP, "Unregistered interrupt=%u, channel=%u, event_handle=0x%08X", interrupt, channel, event_handle);
}
}
/**
2015-12-30 15:30:57 +01:00
* DSP_DSP::SetSemaphore service function
* Inputs:
* 1 : Unknown (observed only half word used)
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
2015-12-30 15:30:57 +01:00
static void SetSemaphore(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called");
}
2015-02-01 00:11:51 +01:00
/**
* DSP_DSP::WriteProcessPipe service function
* Inputs:
* 1 : Channel
2015-02-01 00:11:51 +01:00
* 2 : Size
* 3 : (size << 14) | 0x402
2015-02-01 00:11:51 +01:00
* 4 : Buffer
* Outputs:
* 0 : Return header
* 1 : Result of function, 0 on success, otherwise error code
*/
2015-02-13 16:40:07 +01:00
static void WriteProcessPipe(Service::Interface* self) {
2015-02-01 00:11:51 +01:00
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 size = cmd_buff[2];
u32 buffer = cmd_buff[4];
2015-02-01 00:11:51 +01:00
ASSERT_MSG(IPC::StaticBufferDesc(size, 1) == cmd_buff[3], "IPC static buffer descriptor failed validation (0x%X). pipe=%u, size=0x%X, buffer=0x%08X", cmd_buff[3], pipe, size, buffer);
ASSERT_MSG(Memory::GetPointer(buffer) != nullptr, "Invalid Buffer: pipe=%u, size=0x%X, buffer=0x%08X", pipe, size, buffer);
std::vector<u8> message(size);
for (size_t i = 0; i < size; i++) {
message[i] = Memory::Read8(buffer + i);
}
DSP::HLE::PipeWrite(pipe, message);
2015-02-01 00:11:51 +01:00
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_DSP, "pipe=%u, size=0x%X, buffer=0x%08X", pipe, size, buffer);
2015-02-01 00:11:51 +01:00
}
/**
* DSP_DSP::ReadPipeIfPossible service function
* A pipe is a means of communication between the ARM11 and DSP that occurs on
* hardware by writing to/reading from the DSP registers at 0x10203000.
* Pipes are used for initialisation. See also DSP::HLE::PipeRead.
* Inputs:
* 1 : Pipe Number
* 2 : Unknown
* 3 : Size in bytes of read (observed only lower half word used)
* 0x41 : Virtual address of memory buffer to write pipe contents to
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes read from pipe
*/
2015-02-13 16:40:07 +01:00
static void ReadPipeIfPossible(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unknown = cmd_buff[2];
u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size
VAddr addr = cmd_buff[0x41];
ASSERT_MSG(Memory::GetPointer(addr) != nullptr, "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr);
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
if (DSP::HLE::GetPipeReadableSize(pipe) >= size) {
std::vector<u8> response = DSP::HLE::PipeRead(pipe, size);
Memory::WriteBlock(addr, response.data(), response.size());
cmd_buff[2] = static_cast<u32>(response.size());
} else {
cmd_buff[2] = 0; // Return no data
}
LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, size, addr, cmd_buff[2]);
}
/**
* DSP_DSP::ReadPipe service function
* Inputs:
* 1 : Pipe Number
* 2 : Unknown
* 3 : Size in bytes of read (observed only lower half word used)
* 0x41 : Virtual address of memory buffer to write pipe contents to
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes read from pipe
*/
static void ReadPipe(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unknown = cmd_buff[2];
u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size
VAddr addr = cmd_buff[0x41];
ASSERT_MSG(Memory::GetPointer(addr) != nullptr, "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr);
if (DSP::HLE::GetPipeReadableSize(pipe) >= size) {
std::vector<u8> response = DSP::HLE::PipeRead(pipe, size);
Memory::WriteBlock(addr, response.data(), response.size());
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = static_cast<u32>(response.size());
} else {
// No more data is in pipe. Hardware hangs in this case; this should never happen.
UNREACHABLE();
}
LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, size, addr, cmd_buff[2]);
}
/**
* DSP_DSP::GetPipeReadableSize service function
* Inputs:
* 1 : Pipe Number
* 2 : Unknown
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes readable from pipe
*/
static void GetPipeReadableSize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
DSP::HLE::DspPipe pipe = static_cast<DSP::HLE::DspPipe>(cmd_buff[1]);
u32 unknown = cmd_buff[2];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = DSP::HLE::GetPipeReadableSize(pipe);
LOG_DEBUG(Service_DSP, "pipe=0x%08X, unknown=0x%08X, return cmd_buff[2]=0x%08X", pipe, unknown, cmd_buff[2]);
}
2015-02-01 00:11:51 +01:00
/**
* DSP_DSP::SetSemaphoreMask service function
* Inputs:
* 1 : Mask
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
2015-02-13 16:40:07 +01:00
static void SetSemaphoreMask(Service::Interface* self) {
2015-02-01 00:11:51 +01:00
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 mask = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called mask=0x%08X", mask);
}
/**
* DSP_DSP::GetHeadphoneStatus service function
* Inputs:
* 1 : None
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : The headphone status response, 0 = Not using headphones?,
* 1 = using headphones?
*/
2015-02-13 16:40:07 +01:00
static void GetHeadphoneStatus(Service::Interface* self) {
2015-02-01 00:11:51 +01:00
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 0; // Not using headphones?
LOG_WARNING(Service_DSP, "(STUBBED) called");
}
/**
* DSP_DSP::RecvData service function
* This function reads a value out of a DSP register.
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Value in the register
* Notes:
* This function has only been observed being called with a register number of 0.
*/
static void RecvData(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 register_number = cmd_buff[1];
ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number);
// Application reads this after requesting DSP shutdown, to verify the DSP has indeed shutdown or slept.
cmd_buff[1] = RESULT_SUCCESS.raw;
switch (DSP::HLE::GetDspState()) {
case DSP::HLE::DspState::On:
cmd_buff[2] = 0;
break;
case DSP::HLE::DspState::Off:
case DSP::HLE::DspState::Sleeping:
cmd_buff[2] = 1;
break;
default:
UNREACHABLE();
break;
}
LOG_DEBUG(Service_DSP, "register_number=%u", register_number);
}
/**
* DSP_DSP::RecvDataIsReady service function
* This function checks whether a DSP register is ready to be read.
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : non-zero == ready
* Note:
* This function has only been observed being called with a register number of 0.
*/
static void RecvDataIsReady(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 register_number = cmd_buff[1];
ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number);
cmd_buff[1] = RESULT_SUCCESS.raw;
cmd_buff[2] = 1; // Ready to read
LOG_DEBUG(Service_DSP, "register_number=%u", register_number);
2015-02-01 00:11:51 +01:00
}
2014-10-30 02:38:33 +01:00
const Interface::FunctionInfo FunctionTable[] = {
{0x00010040, RecvData, "RecvData"},
{0x00020040, RecvDataIsReady, "RecvDataIsReady"},
{0x00030080, nullptr, "SendData"},
{0x00040040, nullptr, "SendDataIsEmpty"},
2015-12-30 15:30:57 +01:00
{0x000500C2, nullptr, "SendFifoEx"},
{0x000600C0, nullptr, "RecvFifoEx"},
{0x00070040, SetSemaphore, "SetSemaphore"},
{0x00080000, nullptr, "GetSemaphore"},
{0x00090040, nullptr, "ClearSemaphore"},
2015-12-30 15:30:57 +01:00
{0x000A0040, nullptr, "MaskSemaphore"},
{0x000B0000, nullptr, "CheckSemaphoreRequest"},
{0x000C0040, ConvertProcessAddressFromDspDram, "ConvertProcessAddressFromDspDram"},
2015-02-01 00:11:51 +01:00
{0x000D0082, WriteProcessPipe, "WriteProcessPipe"},
{0x000E00C0, ReadPipe, "ReadPipe"},
{0x000F0080, GetPipeReadableSize, "GetPipeReadableSize"},
{0x001000C0, ReadPipeIfPossible, "ReadPipeIfPossible"},
{0x001100C2, LoadComponent, "LoadComponent"},
{0x00120000, nullptr, "UnloadComponent"},
2015-03-08 02:54:16 +01:00
{0x00130082, FlushDataCache, "FlushDataCache"},
{0x00140082, nullptr, "InvalidateDCache"},
{0x00150082, RegisterInterruptEvents, "RegisterInterruptEvents"},
{0x00160000, GetSemaphoreEventHandle, "GetSemaphoreEventHandle"},
2015-02-01 00:11:51 +01:00
{0x00170040, SetSemaphoreMask, "SetSemaphoreMask"},
{0x00180040, nullptr, "GetPhysicalAddress"},
{0x00190040, nullptr, "GetVirtualAddress"},
{0x001A0042, nullptr, "SetIirFilterI2S1_cmd1"},
{0x001B0042, nullptr, "SetIirFilterI2S1_cmd2"},
{0x001C0082, nullptr, "SetIirFilterEQ"},
2015-12-30 15:30:57 +01:00
{0x001D00C0, nullptr, "ReadMultiEx_SPI2"},
{0x001E00C2, nullptr, "WriteMultiEx_SPI2"},
2015-02-01 00:11:51 +01:00
{0x001F0000, GetHeadphoneStatus, "GetHeadphoneStatus"},
2015-12-30 15:30:57 +01:00
{0x00200040, nullptr, "ForceHeadphoneOut"},
{0x00210000, nullptr, "GetIsDspOccupied"},
2014-10-30 02:38:33 +01:00
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Interface class
Interface::Interface() {
2016-03-12 21:06:31 +01:00
semaphore_event = Kernel::Event::Create(ResetType::OneShot, "DSP_DSP::semaphore_event");
read_pipe_count = 0;
2015-01-30 19:56:49 +01:00
Register(FunctionTable);
2014-10-30 02:38:33 +01:00
}
Interface::~Interface() {
semaphore_event = nullptr;
interrupt_events.clear();
}
2014-10-30 02:38:33 +01:00
} // namespace