8432749db7
This change makes for a clearer (less confusing) path of execution in the scheduler, now the code to execute when a thread awakes is closer to the code that puts the thread to sleep (WaitSynch1, WaitSynchN). It also allows us to implement the special wake up behavior of ReplyAndReceive without hacking up WaitObject::WakeupAllWaitingThreads. If savestates are desired in the future, we can change this implementation to one similar to the CoreTiming event system, where we first register the callback functions at startup and assign their identifiers to the Thread callback variable instead of directly assigning a lambda to the wake up callback variable.
566 lines
20 KiB
C++
566 lines
20 KiB
C++
// Copyright 2014 Citra Emulator Project / PPSSPP Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <vector>
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/math_util.h"
|
|
#include "common/thread_queue_list.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/arm/skyeye_common/armstate.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/handle_table.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/memory.h"
|
|
#include "core/hle/kernel/mutex.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
/// Event type for the thread wake up event
|
|
static int ThreadWakeupEventType;
|
|
|
|
bool Thread::ShouldWait(Thread* thread) const {
|
|
return status != THREADSTATUS_DEAD;
|
|
}
|
|
|
|
void Thread::Acquire(Thread* thread) {
|
|
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
|
|
}
|
|
|
|
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing
|
|
// us to simply use a pool index or similar.
|
|
static Kernel::HandleTable wakeup_callback_handle_table;
|
|
|
|
// Lists all thread ids that aren't deleted/etc.
|
|
static std::vector<SharedPtr<Thread>> thread_list;
|
|
|
|
// Lists only ready thread ids.
|
|
static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST + 1> ready_queue;
|
|
|
|
static SharedPtr<Thread> current_thread;
|
|
|
|
// The first available thread id at startup
|
|
static u32 next_thread_id;
|
|
|
|
/**
|
|
* Creates a new thread ID
|
|
* @return The new thread ID
|
|
*/
|
|
inline static u32 const NewThreadId() {
|
|
return next_thread_id++;
|
|
}
|
|
|
|
Thread::Thread() {}
|
|
Thread::~Thread() {}
|
|
|
|
Thread* GetCurrentThread() {
|
|
return current_thread.get();
|
|
}
|
|
|
|
/**
|
|
* Check if the specified thread is waiting on the specified address to be arbitrated
|
|
* @param thread The thread to test
|
|
* @param wait_address The address to test against
|
|
* @return True if the thread is waiting, false otherwise
|
|
*/
|
|
static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) {
|
|
return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address;
|
|
}
|
|
|
|
void Thread::Stop() {
|
|
// Cancel any outstanding wakeup events for this thread
|
|
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
|
|
wakeup_callback_handle_table.Close(callback_handle);
|
|
callback_handle = 0;
|
|
|
|
// Clean up thread from ready queue
|
|
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
|
|
if (status == THREADSTATUS_READY) {
|
|
ready_queue.remove(current_priority, this);
|
|
}
|
|
|
|
status = THREADSTATUS_DEAD;
|
|
|
|
WakeupAllWaitingThreads();
|
|
|
|
// Clean up any dangling references in objects that this thread was waiting for
|
|
for (auto& wait_object : wait_objects) {
|
|
wait_object->RemoveWaitingThread(this);
|
|
}
|
|
wait_objects.clear();
|
|
|
|
// Release all the mutexes that this thread holds
|
|
ReleaseThreadMutexes(this);
|
|
|
|
// Mark the TLS slot in the thread's page as free.
|
|
u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE;
|
|
u32 tls_slot =
|
|
((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
|
|
Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot);
|
|
}
|
|
|
|
Thread* ArbitrateHighestPriorityThread(u32 address) {
|
|
Thread* highest_priority_thread = nullptr;
|
|
s32 priority = THREADPRIO_LOWEST;
|
|
|
|
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
|
|
for (auto& thread : thread_list) {
|
|
if (!CheckWait_AddressArbiter(thread.get(), address))
|
|
continue;
|
|
|
|
if (thread == nullptr)
|
|
continue;
|
|
|
|
if (thread->current_priority <= priority) {
|
|
highest_priority_thread = thread.get();
|
|
priority = thread->current_priority;
|
|
}
|
|
}
|
|
|
|
// If a thread was arbitrated, resume it
|
|
if (nullptr != highest_priority_thread) {
|
|
highest_priority_thread->ResumeFromWait();
|
|
}
|
|
|
|
return highest_priority_thread;
|
|
}
|
|
|
|
void ArbitrateAllThreads(u32 address) {
|
|
// Resume all threads found to be waiting on the address
|
|
for (auto& thread : thread_list) {
|
|
if (CheckWait_AddressArbiter(thread.get(), address))
|
|
thread->ResumeFromWait();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Switches the CPU's active thread context to that of the specified thread
|
|
* @param new_thread The thread to switch to
|
|
*/
|
|
static void SwitchContext(Thread* new_thread) {
|
|
Thread* previous_thread = GetCurrentThread();
|
|
|
|
// Save context for previous thread
|
|
if (previous_thread) {
|
|
previous_thread->last_running_ticks = CoreTiming::GetTicks();
|
|
Core::CPU().SaveContext(previous_thread->context);
|
|
|
|
if (previous_thread->status == THREADSTATUS_RUNNING) {
|
|
// This is only the case when a reschedule is triggered without the current thread
|
|
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
|
|
ready_queue.push_front(previous_thread->current_priority, previous_thread);
|
|
previous_thread->status = THREADSTATUS_READY;
|
|
}
|
|
}
|
|
|
|
// Load context of new thread
|
|
if (new_thread) {
|
|
ASSERT_MSG(new_thread->status == THREADSTATUS_READY,
|
|
"Thread must be ready to become running.");
|
|
|
|
// Cancel any outstanding wakeup events for this thread
|
|
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, new_thread->callback_handle);
|
|
|
|
auto previous_process = Kernel::g_current_process;
|
|
|
|
current_thread = new_thread;
|
|
|
|
ready_queue.remove(new_thread->current_priority, new_thread);
|
|
new_thread->status = THREADSTATUS_RUNNING;
|
|
|
|
if (previous_process != current_thread->owner_process) {
|
|
Kernel::g_current_process = current_thread->owner_process;
|
|
SetCurrentPageTable(&Kernel::g_current_process->vm_manager.page_table);
|
|
}
|
|
|
|
Core::CPU().LoadContext(new_thread->context);
|
|
Core::CPU().SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
|
|
} else {
|
|
current_thread = nullptr;
|
|
// Note: We do not reset the current process and current page table when idling because
|
|
// technically we haven't changed processes, our threads are just paused.
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Pops and returns the next thread from the thread queue
|
|
* @return A pointer to the next ready thread
|
|
*/
|
|
static Thread* PopNextReadyThread() {
|
|
Thread* next;
|
|
Thread* thread = GetCurrentThread();
|
|
|
|
if (thread && thread->status == THREADSTATUS_RUNNING) {
|
|
// We have to do better than the current thread.
|
|
// This call returns null when that's not possible.
|
|
next = ready_queue.pop_first_better(thread->current_priority);
|
|
if (!next) {
|
|
// Otherwise just keep going with the current thread
|
|
next = thread;
|
|
}
|
|
} else {
|
|
next = ready_queue.pop_first();
|
|
}
|
|
|
|
return next;
|
|
}
|
|
|
|
void WaitCurrentThread_Sleep() {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->status = THREADSTATUS_WAIT_SLEEP;
|
|
}
|
|
|
|
void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->wait_address = wait_address;
|
|
thread->status = THREADSTATUS_WAIT_ARB;
|
|
}
|
|
|
|
void ExitCurrentThread() {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->Stop();
|
|
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
|
|
thread_list.end());
|
|
}
|
|
|
|
/**
|
|
* Callback that will wake up the thread it was scheduled for
|
|
* @param thread_handle The handle of the thread that's been awoken
|
|
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
|
|
*/
|
|
static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) {
|
|
SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle);
|
|
if (thread == nullptr) {
|
|
LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle);
|
|
return;
|
|
}
|
|
|
|
if (thread->status == THREADSTATUS_WAIT_SYNCH_ANY ||
|
|
thread->status == THREADSTATUS_WAIT_SYNCH_ALL || thread->status == THREADSTATUS_WAIT_ARB) {
|
|
|
|
// Invoke the wakeup callback before clearing the wait objects
|
|
if (thread->wakeup_callback)
|
|
thread->wakeup_callback(ThreadWakeupReason::Timeout, thread, nullptr);
|
|
|
|
// Remove the thread from each of its waiting objects' waitlists
|
|
for (auto& object : thread->wait_objects)
|
|
object->RemoveWaitingThread(thread.get());
|
|
thread->wait_objects.clear();
|
|
}
|
|
|
|
thread->ResumeFromWait();
|
|
}
|
|
|
|
void Thread::WakeAfterDelay(s64 nanoseconds) {
|
|
// Don't schedule a wakeup if the thread wants to wait forever
|
|
if (nanoseconds == -1)
|
|
return;
|
|
|
|
u64 microseconds = nanoseconds / 1000;
|
|
CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle);
|
|
}
|
|
|
|
void Thread::ResumeFromWait() {
|
|
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
|
|
|
|
switch (status) {
|
|
case THREADSTATUS_WAIT_SYNCH_ALL:
|
|
case THREADSTATUS_WAIT_SYNCH_ANY:
|
|
case THREADSTATUS_WAIT_ARB:
|
|
case THREADSTATUS_WAIT_SLEEP:
|
|
break;
|
|
|
|
case THREADSTATUS_READY:
|
|
// The thread's wakeup callback must have already been cleared when the thread was first
|
|
// awoken.
|
|
ASSERT(wakeup_callback == nullptr);
|
|
// If the thread is waiting on multiple wait objects, it might be awoken more than once
|
|
// before actually resuming. We can ignore subsequent wakeups if the thread status has
|
|
// already been set to THREADSTATUS_READY.
|
|
return;
|
|
|
|
case THREADSTATUS_RUNNING:
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId());
|
|
return;
|
|
case THREADSTATUS_DEAD:
|
|
// This should never happen, as threads must complete before being stopped.
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.",
|
|
GetObjectId());
|
|
return;
|
|
}
|
|
|
|
wakeup_callback = nullptr;
|
|
|
|
ready_queue.push_back(current_priority, this);
|
|
status = THREADSTATUS_READY;
|
|
Core::System::GetInstance().PrepareReschedule();
|
|
}
|
|
|
|
/**
|
|
* Prints the thread queue for debugging purposes
|
|
*/
|
|
static void DebugThreadQueue() {
|
|
Thread* thread = GetCurrentThread();
|
|
if (!thread) {
|
|
LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
|
|
} else {
|
|
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority,
|
|
GetCurrentThread()->GetObjectId());
|
|
}
|
|
|
|
for (auto& t : thread_list) {
|
|
s32 priority = ready_queue.contains(t.get());
|
|
if (priority != -1) {
|
|
LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId());
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds a free location for the TLS section of a thread.
|
|
* @param tls_slots The TLS page array of the thread's owner process.
|
|
* Returns a tuple of (page, slot, alloc_needed) where:
|
|
* page: The index of the first allocated TLS page that has free slots.
|
|
* slot: The index of the first free slot in the indicated page.
|
|
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
|
|
*/
|
|
std::tuple<u32, u32, bool> GetFreeThreadLocalSlot(std::vector<std::bitset<8>>& tls_slots) {
|
|
// Iterate over all the allocated pages, and try to find one where not all slots are used.
|
|
for (unsigned page = 0; page < tls_slots.size(); ++page) {
|
|
const auto& page_tls_slots = tls_slots[page];
|
|
if (!page_tls_slots.all()) {
|
|
// We found a page with at least one free slot, find which slot it is
|
|
for (unsigned slot = 0; slot < page_tls_slots.size(); ++slot) {
|
|
if (!page_tls_slots.test(slot)) {
|
|
return std::make_tuple(page, slot, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(0, 0, true);
|
|
}
|
|
|
|
/**
|
|
* Resets a thread context, making it ready to be scheduled and run by the CPU
|
|
* @param context Thread context to reset
|
|
* @param stack_top Address of the top of the stack
|
|
* @param entry_point Address of entry point for execution
|
|
* @param arg User argument for thread
|
|
*/
|
|
static void ResetThreadContext(ARM_Interface::ThreadContext& context, u32 stack_top,
|
|
u32 entry_point, u32 arg) {
|
|
memset(&context, 0, sizeof(ARM_Interface::ThreadContext));
|
|
|
|
context.cpu_registers[0] = arg;
|
|
context.pc = entry_point;
|
|
context.sp = stack_top;
|
|
context.cpsr = USER32MODE | ((entry_point & 1) << 5); // Usermode and THUMB mode
|
|
}
|
|
|
|
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, u32 priority,
|
|
u32 arg, s32 processor_id, VAddr stack_top) {
|
|
// Check if priority is in ranged. Lowest priority -> highest priority id.
|
|
if (priority > THREADPRIO_LOWEST) {
|
|
LOG_ERROR(Kernel_SVC, "Invalid thread priority: %d", priority);
|
|
return ERR_OUT_OF_RANGE;
|
|
}
|
|
|
|
if (processor_id > THREADPROCESSORID_MAX) {
|
|
LOG_ERROR(Kernel_SVC, "Invalid processor id: %d", processor_id);
|
|
return ERR_OUT_OF_RANGE_KERNEL;
|
|
}
|
|
|
|
// TODO(yuriks): Other checks, returning 0xD9001BEA
|
|
|
|
if (!Memory::IsValidVirtualAddress(entry_point)) {
|
|
LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point);
|
|
// TODO: Verify error
|
|
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
|
|
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
|
|
}
|
|
|
|
SharedPtr<Thread> thread(new Thread);
|
|
|
|
thread_list.push_back(thread);
|
|
ready_queue.prepare(priority);
|
|
|
|
thread->thread_id = NewThreadId();
|
|
thread->status = THREADSTATUS_DORMANT;
|
|
thread->entry_point = entry_point;
|
|
thread->stack_top = stack_top;
|
|
thread->nominal_priority = thread->current_priority = priority;
|
|
thread->last_running_ticks = CoreTiming::GetTicks();
|
|
thread->processor_id = processor_id;
|
|
thread->wait_objects.clear();
|
|
thread->wait_address = 0;
|
|
thread->name = std::move(name);
|
|
thread->callback_handle = wakeup_callback_handle_table.Create(thread).Unwrap();
|
|
thread->owner_process = g_current_process;
|
|
|
|
// Find the next available TLS index, and mark it as used
|
|
auto& tls_slots = Kernel::g_current_process->tls_slots;
|
|
bool needs_allocation = true;
|
|
u32 available_page; // Which allocated page has free space
|
|
u32 available_slot; // Which slot within the page is free
|
|
|
|
std::tie(available_page, available_slot, needs_allocation) = GetFreeThreadLocalSlot(tls_slots);
|
|
|
|
if (needs_allocation) {
|
|
// There are no already-allocated pages with free slots, lets allocate a new one.
|
|
// TLS pages are allocated from the BASE region in the linear heap.
|
|
MemoryRegionInfo* memory_region = GetMemoryRegion(MemoryRegion::BASE);
|
|
auto& linheap_memory = memory_region->linear_heap_memory;
|
|
|
|
if (linheap_memory->size() + Memory::PAGE_SIZE > memory_region->size) {
|
|
LOG_ERROR(Kernel_SVC,
|
|
"Not enough space in region to allocate a new TLS page for thread");
|
|
return ERR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
u32 offset = linheap_memory->size();
|
|
|
|
// Allocate some memory from the end of the linear heap for this region.
|
|
linheap_memory->insert(linheap_memory->end(), Memory::PAGE_SIZE, 0);
|
|
memory_region->used += Memory::PAGE_SIZE;
|
|
Kernel::g_current_process->linear_heap_used += Memory::PAGE_SIZE;
|
|
|
|
tls_slots.emplace_back(0); // The page is completely available at the start
|
|
available_page = tls_slots.size() - 1;
|
|
available_slot = 0; // Use the first slot in the new page
|
|
|
|
auto& vm_manager = Kernel::g_current_process->vm_manager;
|
|
vm_manager.RefreshMemoryBlockMappings(linheap_memory.get());
|
|
|
|
// Map the page to the current process' address space.
|
|
// TODO(Subv): Find the correct MemoryState for this region.
|
|
vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
|
|
linheap_memory, offset, Memory::PAGE_SIZE, MemoryState::Private);
|
|
}
|
|
|
|
// Mark the slot as used
|
|
tls_slots[available_page].set(available_slot);
|
|
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
|
|
available_slot * Memory::TLS_ENTRY_SIZE;
|
|
|
|
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
|
|
// to initialize the context
|
|
ResetThreadContext(thread->context, stack_top, entry_point, arg);
|
|
|
|
ready_queue.push_back(thread->current_priority, thread.get());
|
|
thread->status = THREADSTATUS_READY;
|
|
|
|
return MakeResult<SharedPtr<Thread>>(std::move(thread));
|
|
}
|
|
|
|
void Thread::SetPriority(s32 priority) {
|
|
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
|
|
"Invalid priority value.");
|
|
// If thread was ready, adjust queues
|
|
if (status == THREADSTATUS_READY)
|
|
ready_queue.move(this, current_priority, priority);
|
|
else
|
|
ready_queue.prepare(priority);
|
|
|
|
nominal_priority = current_priority = priority;
|
|
}
|
|
|
|
void Thread::UpdatePriority() {
|
|
s32 best_priority = nominal_priority;
|
|
for (auto& mutex : held_mutexes) {
|
|
if (mutex->priority < best_priority)
|
|
best_priority = mutex->priority;
|
|
}
|
|
BoostPriority(best_priority);
|
|
}
|
|
|
|
void Thread::BoostPriority(s32 priority) {
|
|
// If thread was ready, adjust queues
|
|
if (status == THREADSTATUS_READY)
|
|
ready_queue.move(this, current_priority, priority);
|
|
else
|
|
ready_queue.prepare(priority);
|
|
current_priority = priority;
|
|
}
|
|
|
|
SharedPtr<Thread> SetupMainThread(u32 entry_point, s32 priority) {
|
|
// Initialize new "main" thread
|
|
auto thread_res = Thread::Create("main", entry_point, priority, 0, THREADPROCESSORID_0,
|
|
Memory::HEAP_VADDR_END);
|
|
|
|
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
|
|
|
|
thread->context.fpscr =
|
|
FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC; // 0x03C00010
|
|
|
|
// Note: The newly created thread will be run when the scheduler fires.
|
|
return thread;
|
|
}
|
|
|
|
bool HaveReadyThreads() {
|
|
return ready_queue.get_first() != nullptr;
|
|
}
|
|
|
|
void Reschedule() {
|
|
Thread* cur = GetCurrentThread();
|
|
Thread* next = PopNextReadyThread();
|
|
|
|
if (cur && next) {
|
|
LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId());
|
|
} else if (cur) {
|
|
LOG_TRACE(Kernel, "context switch %u -> idle", cur->GetObjectId());
|
|
} else if (next) {
|
|
LOG_TRACE(Kernel, "context switch idle -> %u", next->GetObjectId());
|
|
}
|
|
|
|
SwitchContext(next);
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationResult(ResultCode result) {
|
|
context.cpu_registers[0] = result.raw;
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationOutput(s32 output) {
|
|
context.cpu_registers[1] = output;
|
|
}
|
|
|
|
s32 Thread::GetWaitObjectIndex(WaitObject* object) const {
|
|
ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
|
|
auto match = std::find(wait_objects.rbegin(), wait_objects.rend(), object);
|
|
return std::distance(match, wait_objects.rend()) - 1;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ThreadingInit() {
|
|
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
|
|
|
|
current_thread = nullptr;
|
|
next_thread_id = 1;
|
|
}
|
|
|
|
void ThreadingShutdown() {
|
|
current_thread = nullptr;
|
|
|
|
for (auto& t : thread_list) {
|
|
t->Stop();
|
|
}
|
|
thread_list.clear();
|
|
ready_queue.clear();
|
|
}
|
|
|
|
const std::vector<SharedPtr<Thread>>& GetThreadList() {
|
|
return thread_list;
|
|
}
|
|
|
|
} // namespace
|