1
0
Fork 0
forked from suyu/suyu
suyu/src/core/hle/kernel/svc.cpp
2018-11-16 10:35:56 -05:00

1498 lines
55 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <iterator>
#include <mutex>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
#include "core/settings.h"
namespace Kernel {
namespace {
// Checks if address + size is greater than the given address
// This can return false if the size causes an overflow of a 64-bit type
// or if the given size is zero.
constexpr bool IsValidAddressRange(VAddr address, u64 size) {
return address + size > address;
}
// Checks if a given address range lies within a larger address range.
constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin,
VAddr address_range_end) {
const VAddr end_address = address + size - 1;
return address_range_begin <= address && end_address <= address_range_end - 1;
}
bool IsInsideAddressSpace(const VMManager& vm, VAddr address, u64 size) {
return IsInsideAddressRange(address, size, vm.GetAddressSpaceBaseAddress(),
vm.GetAddressSpaceEndAddress());
}
bool IsInsideNewMapRegion(const VMManager& vm, VAddr address, u64 size) {
return IsInsideAddressRange(address, size, vm.GetNewMapRegionBaseAddress(),
vm.GetNewMapRegionEndAddress());
}
// Helper function that performs the common sanity checks for svcMapMemory
// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
// in the same order.
ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_addr, VAddr src_addr,
u64 size) {
if (!Common::Is4KBAligned(dst_addr) || !Common::Is4KBAligned(src_addr)) {
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(dst_addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsValidAddressRange(src_addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsInsideAddressSpace(vm_manager, src_addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsInsideNewMapRegion(vm_manager, dst_addr, size)) {
return ERR_INVALID_MEMORY_RANGE;
}
const VAddr dst_end_address = dst_addr + size;
if (dst_end_address > vm_manager.GetHeapRegionBaseAddress() &&
vm_manager.GetHeapRegionEndAddress() > dst_addr) {
return ERR_INVALID_MEMORY_RANGE;
}
if (dst_end_address > vm_manager.GetMapRegionBaseAddress() &&
vm_manager.GetMapRegionEndAddress() > dst_addr) {
return ERR_INVALID_MEMORY_RANGE;
}
return RESULT_SUCCESS;
}
} // Anonymous namespace
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size);
// Size must be a multiple of 0x200000 (2MB) and be equal to or less than 4GB.
if ((heap_size & 0xFFFFFFFE001FFFFF) != 0) {
return ERR_INVALID_SIZE;
}
auto& process = *Core::CurrentProcess();
const VAddr heap_base = process.VMManager().GetHeapRegionBaseAddress();
CASCADE_RESULT(*heap_addr,
process.HeapAllocate(heap_base, heap_size, VMAPermission::ReadWrite));
return RESULT_SUCCESS;
}
static ResultCode SetMemoryPermission(VAddr addr, u64 size, u32 prot) {
LOG_TRACE(Kernel_SVC, "called, addr=0x{:X}, size=0x{:X}, prot=0x{:X}", addr, size, prot);
if (!Common::Is4KBAligned(addr)) {
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
const auto permission = static_cast<MemoryPermission>(prot);
if (permission != MemoryPermission::None && permission != MemoryPermission::Read &&
permission != MemoryPermission::ReadWrite) {
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto* const current_process = Core::CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (!IsInsideAddressSpace(vm_manager, addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
const VMManager::VMAHandle iter = vm_manager.FindVMA(addr);
if (iter == vm_manager.vma_map.end()) {
return ERR_INVALID_ADDRESS_STATE;
}
LOG_WARNING(Kernel_SVC, "Uniformity check on protected memory is not implemented.");
// TODO: Performs a uniformity check to make sure only protected memory is changed (it doesn't
// make sense to allow changing permissions on kernel memory itself, etc).
const auto converted_permissions = SharedMemory::ConvertPermissions(permission);
return vm_manager.ReprotectRange(addr, size, converted_permissions);
}
static ResultCode SetMemoryAttribute(VAddr addr, u64 size, u32 state0, u32 state1) {
LOG_WARNING(Kernel_SVC,
"(STUBBED) called, addr=0x{:X}, size=0x{:X}, state0=0x{:X}, state1=0x{:X}", addr,
size, state0, state1);
return RESULT_SUCCESS;
}
/// Maps a memory range into a different range.
static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto* const current_process = Core::CurrentProcess();
const auto& vm_manager = current_process->VMManager();
const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
if (result != RESULT_SUCCESS) {
return result;
}
return current_process->MirrorMemory(dst_addr, src_addr, size);
}
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto* const current_process = Core::CurrentProcess();
const auto& vm_manager = current_process->VMManager();
const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
if (result != RESULT_SUCCESS) {
return result;
}
return current_process->UnmapMemory(dst_addr, src_addr, size);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToNamedPort(Handle* out_handle, VAddr port_name_address) {
if (!Memory::IsValidVirtualAddress(port_name_address)) {
return ERR_NOT_FOUND;
}
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength) {
return ERR_PORT_NAME_TOO_LONG;
}
LOG_TRACE(Kernel_SVC, "called port_name={}", port_name);
auto& kernel = Core::System::GetInstance().Kernel();
auto it = kernel.FindNamedPort(port_name);
if (!kernel.IsValidNamedPort(it)) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
return ERR_NOT_FOUND;
}
auto client_port = it->second;
SharedPtr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
auto& handle_table = Core::CurrentProcess()->GetHandleTable();
CASCADE_RESULT(*out_handle, handle_table.Create(client_session));
return RESULT_SUCCESS;
}
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Handle handle) {
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
SharedPtr<ClientSession> session = handle_table.Get<ClientSession>(handle);
if (!session) {
LOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
Core::System::GetInstance().PrepareReschedule();
// TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server
// responds and cause a reschedule.
return session->SendSyncRequest(GetCurrentThread());
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
*thread_id = thread->GetThreadID();
return RESULT_SUCCESS;
}
/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Process> process = handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
*process_id = process->GetProcessID();
return RESULT_SUCCESS;
}
/// Default thread wakeup callback for WaitSynchronization
static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, std::size_t index) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return true;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
thread->SetWaitSynchronizationOutput(static_cast<u32>(index));
return true;
};
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Handle* index, VAddr handles_address, u64 handle_count,
s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
handles_address, handle_count, nano_seconds);
if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER;
static constexpr u64 MaxHandles = 0x40;
if (handle_count > MaxHandles)
return ResultCode(ErrorModule::Kernel, ErrCodes::TooLarge);
auto* const thread = GetCurrentThread();
using ObjectPtr = Thread::ThreadWaitObjects::value_type;
Thread::ThreadWaitObjects objects(handle_count);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
for (u64 i = 0; i < handle_count; ++i) {
const Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
const auto object = handle_table.Get<WaitObject>(handle);
if (object == nullptr) {
return ERR_INVALID_HANDLE;
}
objects[i] = object;
}
// Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread);
});
if (itr != objects.end()) {
// We found a ready object, acquire it and set the result value
WaitObject* object = itr->get();
object->Acquire(thread);
*index = static_cast<s32>(std::distance(objects.begin(), itr));
return RESULT_SUCCESS;
}
// No objects were ready to be acquired, prepare to suspend the thread.
// If a timeout value of 0 was provided, just return the Timeout error code instead of
// suspending the thread.
if (nano_seconds == 0)
return RESULT_TIMEOUT;
for (auto& object : objects)
object->AddWaitingThread(thread);
thread->SetWaitObjects(std::move(objects));
thread->SetStatus(ThreadStatus::WaitSynchAny);
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->SetWakeupCallback(DefaultThreadWakeupCallback);
Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
return RESULT_TIMEOUT;
}
/// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny);
thread->SetWaitSynchronizationResult(
ResultCode(ErrorModule::Kernel, ErrCodes::SynchronizationCanceled));
thread->ResumeFromWait();
return RESULT_SUCCESS;
}
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Handle holding_thread_handle, VAddr mutex_addr,
Handle requesting_thread_handle) {
LOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
"requesting_current_thread_handle=0x{:08X}",
holding_thread_handle, mutex_addr, requesting_thread_handle);
if (Memory::IsKernelVirtualAddress(mutex_addr)) {
return ERR_INVALID_ADDRESS_STATE;
}
if (!Common::IsWordAligned(mutex_addr)) {
return ERR_INVALID_ADDRESS;
}
auto& handle_table = Core::CurrentProcess()->GetHandleTable();
return Mutex::TryAcquire(handle_table, mutex_addr, holding_thread_handle,
requesting_thread_handle);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
if (Memory::IsKernelVirtualAddress(mutex_addr)) {
return ERR_INVALID_ADDRESS_STATE;
}
if (!Common::IsWordAligned(mutex_addr)) {
return ERR_INVALID_ADDRESS;
}
return Mutex::Release(mutex_addr);
}
enum class BreakType : u32 {
Panic = 0,
AssertionFailed = 1,
PreNROLoad = 3,
PostNROLoad = 4,
PreNROUnload = 5,
PostNROUnload = 6,
};
struct BreakReason {
union {
u32 raw;
BitField<0, 30, BreakType> break_type;
BitField<31, 1, u32> signal_debugger;
};
};
/// Break program execution
static void Break(u32 reason, u64 info1, u64 info2) {
BreakReason break_reason{reason};
bool has_dumped_buffer{};
const auto handle_debug_buffer = [&](VAddr addr, u64 sz) {
if (sz == 0 || addr == 0 || has_dumped_buffer) {
return;
}
// This typically is an error code so we're going to assume this is the case
if (sz == sizeof(u32)) {
LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", Memory::Read32(addr));
} else {
// We don't know what's in here so we'll hexdump it
std::vector<u8> debug_buffer(sz);
Memory::ReadBlock(addr, debug_buffer.data(), sz);
std::string hexdump;
for (std::size_t i = 0; i < debug_buffer.size(); i++) {
hexdump += fmt::format("{:02X} ", debug_buffer[i]);
if (i != 0 && i % 16 == 0) {
hexdump += '\n';
}
}
LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump);
}
has_dumped_buffer = true;
};
switch (break_reason.break_type) {
case BreakType::Panic:
LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::AssertionFailed:
LOG_CRITICAL(Debug_Emulated,
"Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::PreNROLoad:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROLoad:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
case BreakType::PreNROUnload:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROUnload:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
default:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}",
static_cast<u32>(break_reason.break_type.Value()), info1, info2);
handle_debug_buffer(info1, info2);
break;
}
if (!break_reason.signal_debugger) {
LOG_CRITICAL(
Debug_Emulated,
"Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}",
reason, info1, info2);
handle_debug_buffer(info1, info2);
ASSERT(false);
Core::CurrentProcess()->PrepareForTermination();
// Kill the current thread
GetCurrentThread()->Stop();
Core::System::GetInstance().PrepareReschedule();
}
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(VAddr address, u64 len) {
if (len == 0) {
return;
}
std::string str(len, '\0');
Memory::ReadBlock(address, str.data(), str.size());
LOG_DEBUG(Debug_Emulated, "{}", str);
}
/// Gets system/memory information for the current process
static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id) {
LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id,
info_sub_id, handle);
enum class GetInfoType : u64 {
// 1.0.0+
AllowedCpuIdBitmask = 0,
AllowedThreadPrioBitmask = 1,
MapRegionBaseAddr = 2,
MapRegionSize = 3,
HeapRegionBaseAddr = 4,
HeapRegionSize = 5,
TotalMemoryUsage = 6,
TotalHeapUsage = 7,
IsCurrentProcessBeingDebugged = 8,
ResourceHandleLimit = 9,
IdleTickCount = 10,
RandomEntropy = 11,
PerformanceCounter = 0xF0000002,
// 2.0.0+
ASLRRegionBaseAddr = 12,
ASLRRegionSize = 13,
NewMapRegionBaseAddr = 14,
NewMapRegionSize = 15,
// 3.0.0+
IsVirtualAddressMemoryEnabled = 16,
PersonalMmHeapUsage = 17,
TitleId = 18,
// 4.0.0+
PrivilegedProcessId = 19,
// 5.0.0+
UserExceptionContextAddr = 20,
ThreadTickCount = 0xF0000002,
};
const auto* current_process = Core::CurrentProcess();
const auto& vm_manager = current_process->VMManager();
switch (static_cast<GetInfoType>(info_id)) {
case GetInfoType::AllowedCpuIdBitmask:
*result = current_process->GetAllowedProcessorMask();
break;
case GetInfoType::AllowedThreadPrioBitmask:
*result = current_process->GetAllowedThreadPriorityMask();
break;
case GetInfoType::MapRegionBaseAddr:
*result = vm_manager.GetMapRegionBaseAddress();
break;
case GetInfoType::MapRegionSize:
*result = vm_manager.GetMapRegionSize();
break;
case GetInfoType::HeapRegionBaseAddr:
*result = vm_manager.GetHeapRegionBaseAddress();
break;
case GetInfoType::HeapRegionSize:
*result = vm_manager.GetHeapRegionSize();
break;
case GetInfoType::TotalMemoryUsage:
*result = vm_manager.GetTotalMemoryUsage();
break;
case GetInfoType::TotalHeapUsage:
*result = vm_manager.GetTotalHeapUsage();
break;
case GetInfoType::IsCurrentProcessBeingDebugged:
*result = 0;
break;
case GetInfoType::RandomEntropy:
if (handle != 0) {
return ERR_INVALID_HANDLE;
}
if (info_sub_id >= Process::RANDOM_ENTROPY_SIZE) {
return ERR_INVALID_COMBINATION_KERNEL;
}
*result = current_process->GetRandomEntropy(info_sub_id);
return RESULT_SUCCESS;
break;
case GetInfoType::ASLRRegionBaseAddr:
*result = vm_manager.GetASLRRegionBaseAddress();
break;
case GetInfoType::ASLRRegionSize:
*result = vm_manager.GetASLRRegionSize();
break;
case GetInfoType::NewMapRegionBaseAddr:
*result = vm_manager.GetNewMapRegionBaseAddress();
break;
case GetInfoType::NewMapRegionSize:
*result = vm_manager.GetNewMapRegionSize();
break;
case GetInfoType::IsVirtualAddressMemoryEnabled:
*result = current_process->IsVirtualMemoryEnabled();
break;
case GetInfoType::TitleId:
*result = current_process->GetTitleID();
break;
case GetInfoType::PrivilegedProcessId:
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query privileged process id bounds, returned 0");
*result = 0;
break;
case GetInfoType::UserExceptionContextAddr:
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query user exception context address, returned 0");
*result = 0;
break;
case GetInfoType::ThreadTickCount: {
constexpr u64 num_cpus = 4;
if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) {
return ERR_INVALID_COMBINATION_KERNEL;
}
const auto thread =
current_process->GetHandleTable().Get<Thread>(static_cast<Handle>(handle));
if (!thread) {
return ERR_INVALID_HANDLE;
}
const auto& system = Core::System::GetInstance();
const auto& scheduler = system.CurrentScheduler();
const auto* const current_thread = scheduler.GetCurrentThread();
const bool same_thread = current_thread == thread;
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
u64 out_ticks = 0;
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();
out_ticks = thread_ticks + (CoreTiming::GetTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
out_ticks = CoreTiming::GetTicks() - prev_ctx_ticks;
}
*result = out_ticks;
break;
}
default:
UNIMPLEMENTED();
}
return RESULT_SUCCESS;
}
/// Sets the thread activity
static ResultCode SetThreadActivity(Handle handle, u32 unknown) {
LOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, unknown=0x{:08X}", handle, unknown);
return RESULT_SUCCESS;
}
/// Gets the thread context
static ResultCode GetThreadContext(VAddr thread_context, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called, context=0x{:08X}, thread=0x{:X}", thread_context, handle);
const auto* current_process = Core::CurrentProcess();
const SharedPtr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
if (thread->GetOwnerProcess() != current_process) {
return ERR_INVALID_HANDLE;
}
if (thread == GetCurrentThread()) {
return ERR_ALREADY_REGISTERED;
}
Core::ARM_Interface::ThreadContext ctx = thread->GetContext();
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
ctx.pstate &= 0xFF0FFE20;
// If 64-bit, we can just write the context registers directly and we're good.
// However, if 32-bit, we have to ensure some registers are zeroed out.
if (!current_process->Is64BitProcess()) {
std::fill(ctx.cpu_registers.begin() + 15, ctx.cpu_registers.end(), 0);
std::fill(ctx.vector_registers.begin() + 16, ctx.vector_registers.end(), u128{});
}
Memory::WriteBlock(thread_context, &ctx, sizeof(ctx));
return RESULT_SUCCESS;
}
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(u32* priority, Handle handle) {
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, u32 priority) {
if (priority > THREADPRIO_LOWEST) {
return ERR_INVALID_THREAD_PRIORITY;
}
const auto* const current_process = Core::CurrentProcess();
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
const ResourceLimit& resource_limit = current_process->GetResourceLimit();
if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_INVALID_THREAD_PRIORITY;
}
SharedPtr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
thread->SetPriority(priority);
Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
return RESULT_SUCCESS;
}
/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber() {
LOG_TRACE(Kernel_SVC, "called");
return GetCurrentThread()->GetProcessorID();
}
static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size,
u32 permissions) {
LOG_TRACE(Kernel_SVC,
"called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
shared_memory_handle, addr, size, permissions);
if (!Common::Is4KBAligned(addr)) {
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
const auto permissions_type = static_cast<MemoryPermission>(permissions);
if (permissions_type != MemoryPermission::Read &&
permissions_type != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC, "Invalid permissions=0x{:08X}", permissions);
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto* const current_process = Core::CurrentProcess();
auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
if (!shared_memory) {
return ERR_INVALID_HANDLE;
}
const auto& vm_manager = current_process->VMManager();
if (!vm_manager.IsWithinASLRRegion(addr, size)) {
return ERR_INVALID_MEMORY_RANGE;
}
return shared_memory->Map(current_process, addr, permissions_type, MemoryPermission::DontCare);
}
static ResultCode UnmapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size) {
LOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}",
shared_memory_handle, addr, size);
if (!Common::Is4KBAligned(addr)) {
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
return ERR_INVALID_ADDRESS_STATE;
}
auto* const current_process = Core::CurrentProcess();
auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
if (!shared_memory) {
return ERR_INVALID_HANDLE;
}
const auto& vm_manager = current_process->VMManager();
if (!vm_manager.IsWithinASLRRegion(addr, size)) {
return ERR_INVALID_MEMORY_RANGE;
}
return shared_memory->Unmap(current_process, addr);
}
/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_info*/,
Handle process_handle, u64 addr) {
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
SharedPtr<Process> process = handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
auto vma = process->VMManager().FindVMA(addr);
memory_info->attributes = 0;
if (vma == process->VMManager().vma_map.end()) {
memory_info->base_address = 0;
memory_info->permission = static_cast<u32>(VMAPermission::None);
memory_info->size = 0;
memory_info->type = static_cast<u32>(MemoryState::Unmapped);
} else {
memory_info->base_address = vma->second.base;
memory_info->permission = static_cast<u32>(vma->second.permissions);
memory_info->size = vma->second.size;
memory_info->type = static_cast<u32>(vma->second.meminfo_state);
}
LOG_TRACE(Kernel_SVC, "called process=0x{:08X} addr={:X}", process_handle, addr);
return RESULT_SUCCESS;
}
/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, VAddr addr) {
LOG_TRACE(Kernel_SVC, "called, addr={:X}", addr);
return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr);
}
/// Exits the current process
static void ExitProcess() {
auto* current_process = Core::CurrentProcess();
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID());
ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running,
"Process has already exited");
current_process->PrepareForTermination();
// Kill the current thread
GetCurrentThread()->Stop();
Core::System::GetInstance().PrepareReschedule();
}
/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top,
u32 priority, s32 processor_id) {
if (priority > THREADPRIO_LOWEST) {
return ERR_INVALID_THREAD_PRIORITY;
}
auto* const current_process = Core::CurrentProcess();
const ResourceLimit& resource_limit = current_process->GetResourceLimit();
if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_INVALID_THREAD_PRIORITY;
}
if (processor_id == THREADPROCESSORID_DEFAULT) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = current_process->GetDefaultProcessorID();
ASSERT(processor_id != THREADPROCESSORID_DEFAULT);
}
switch (processor_id) {
case THREADPROCESSORID_0:
case THREADPROCESSORID_1:
case THREADPROCESSORID_2:
case THREADPROCESSORID_3:
break;
default:
LOG_ERROR(Kernel_SVC, "Invalid thread processor ID: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
const std::string name = fmt::format("thread-{:X}", entry_point);
auto& kernel = Core::System::GetInstance().Kernel();
CASCADE_RESULT(SharedPtr<Thread> thread,
Thread::Create(kernel, name, entry_point, priority, arg, processor_id, stack_top,
*current_process));
const auto new_guest_handle = current_process->GetHandleTable().Create(thread);
if (new_guest_handle.Failed()) {
return new_guest_handle.Code();
}
thread->SetGuestHandle(*new_guest_handle);
*out_handle = *new_guest_handle;
Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
LOG_TRACE(Kernel_SVC,
"called entrypoint=0x{:08X} ({}), arg=0x{:08X}, stacktop=0x{:08X}, "
"threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}",
entry_point, name, arg, stack_top, priority, processor_id, *out_handle);
return RESULT_SUCCESS;
}
/// Starts the thread for the provided handle
static ResultCode StartThread(Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
ASSERT(thread->GetStatus() == ThreadStatus::Dormant);
thread->ResumeFromWait();
Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
return RESULT_SUCCESS;
}
/// Called when a thread exits
static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CurrentArmInterface().GetPC());
ExitCurrentThread();
Core::System::GetInstance().PrepareReschedule();
}
/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !Core::System::GetInstance().CurrentScheduler().HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule
WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
GetCurrentThread()->WakeAfterDelay(nanoseconds);
Core::System::GetInstance().PrepareReschedule();
}
/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr condition_variable_addr,
Handle thread_handle, s64 nano_seconds) {
LOG_TRACE(
Kernel_SVC,
"called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
CASCADE_CODE(Mutex::Release(mutex_addr));
SharedPtr<Thread> current_thread = GetCurrentThread();
current_thread->SetCondVarWaitAddress(condition_variable_addr);
current_thread->SetMutexWaitAddress(mutex_addr);
current_thread->SetWaitHandle(thread_handle);
current_thread->SetStatus(ThreadStatus::WaitMutex);
current_thread->InvalidateWakeupCallback();
current_thread->WakeAfterDelay(nano_seconds);
// Note: Deliberately don't attempt to inherit the lock owner's priority.
Core::System::GetInstance().CpuCore(current_thread->GetProcessorID()).PrepareReschedule();
return RESULT_SUCCESS;
}
/// Signal process wide key
static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target) {
LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
const auto RetrieveWaitingThreads = [](std::size_t core_index,
std::vector<SharedPtr<Thread>>& waiting_threads,
VAddr condvar_addr) {
const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
const auto& thread_list = scheduler.GetThreadList();
for (const auto& thread : thread_list) {
if (thread->GetCondVarWaitAddress() == condvar_addr)
waiting_threads.push_back(thread);
}
};
// Retrieve a list of all threads that are waiting for this condition variable.
std::vector<SharedPtr<Thread>> waiting_threads;
RetrieveWaitingThreads(0, waiting_threads, condition_variable_addr);
RetrieveWaitingThreads(1, waiting_threads, condition_variable_addr);
RetrieveWaitingThreads(2, waiting_threads, condition_variable_addr);
RetrieveWaitingThreads(3, waiting_threads, condition_variable_addr);
// Sort them by priority, such that the highest priority ones come first.
std::sort(waiting_threads.begin(), waiting_threads.end(),
[](const SharedPtr<Thread>& lhs, const SharedPtr<Thread>& rhs) {
return lhs->GetPriority() < rhs->GetPriority();
});
// Only process up to 'target' threads, unless 'target' is -1, in which case process
// them all.
std::size_t last = waiting_threads.size();
if (target != -1)
last = target;
// If there are no threads waiting on this condition variable, just exit
if (last > waiting_threads.size())
return RESULT_SUCCESS;
for (std::size_t index = 0; index < last; ++index) {
auto& thread = waiting_threads[index];
ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr);
std::size_t current_core = Core::System::GetInstance().CurrentCoreIndex();
auto& monitor = Core::System::GetInstance().Monitor();
// Atomically read the value of the mutex.
u32 mutex_val = 0;
do {
monitor.SetExclusive(current_core, thread->GetMutexWaitAddress());
// If the mutex is not yet acquired, acquire it.
mutex_val = Memory::Read32(thread->GetMutexWaitAddress());
if (mutex_val != 0) {
monitor.ClearExclusive();
break;
}
} while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(),
thread->GetWaitHandle()));
if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread.
ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
thread->ResumeFromWait();
auto* const lock_owner = thread->GetLockOwner();
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
thread->SetLockOwner(nullptr);
thread->SetMutexWaitAddress(0);
thread->SetCondVarWaitAddress(0);
thread->SetWaitHandle(0);
} else {
// Atomically signal that the mutex now has a waiting thread.
do {
monitor.SetExclusive(current_core, thread->GetMutexWaitAddress());
// Ensure that the mutex value is still what we expect.
u32 value = Memory::Read32(thread->GetMutexWaitAddress());
// TODO(Subv): When this happens, the kernel just clears the exclusive state and
// retries the initial read for this thread.
ASSERT_MSG(mutex_val == value, "Unhandled synchronization primitive case");
} while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(),
mutex_val | Mutex::MutexHasWaitersFlag));
// The mutex is already owned by some other thread, make this thread wait on it.
const Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
auto owner = handle_table.Get<Thread>(owner_handle);
ASSERT(owner);
ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
thread->InvalidateWakeupCallback();
owner->AddMutexWaiter(thread);
Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule();
}
}
return RESULT_SUCCESS;
}
// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(VAddr address, u32 type, s32 value, s64 timeout) {
LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}",
address, type, value, timeout);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Memory::IsKernelVirtualAddress(address)) {
return ERR_INVALID_ADDRESS_STATE;
}
// If the address is not properly aligned to 4 bytes, return invalid address.
if (address % sizeof(u32) != 0) {
return ERR_INVALID_ADDRESS;
}
switch (static_cast<AddressArbiter::ArbitrationType>(type)) {
case AddressArbiter::ArbitrationType::WaitIfLessThan:
return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, false);
case AddressArbiter::ArbitrationType::DecrementAndWaitIfLessThan:
return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, true);
case AddressArbiter::ArbitrationType::WaitIfEqual:
return AddressArbiter::WaitForAddressIfEqual(address, value, timeout);
default:
return ERR_INVALID_ENUM_VALUE;
}
}
// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(VAddr address, u32 type, s32 value, s32 num_to_wake) {
LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
address, type, value, num_to_wake);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Memory::IsKernelVirtualAddress(address)) {
return ERR_INVALID_ADDRESS_STATE;
}
// If the address is not properly aligned to 4 bytes, return invalid address.
if (address % sizeof(u32) != 0) {
return ERR_INVALID_ADDRESS;
}
switch (static_cast<AddressArbiter::SignalType>(type)) {
case AddressArbiter::SignalType::Signal:
return AddressArbiter::SignalToAddress(address, num_to_wake);
case AddressArbiter::SignalType::IncrementAndSignalIfEqual:
return AddressArbiter::IncrementAndSignalToAddressIfEqual(address, value, num_to_wake);
case AddressArbiter::SignalType::ModifyByWaitingCountAndSignalIfEqual:
return AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(address, value,
num_to_wake);
default:
return ERR_INVALID_ENUM_VALUE;
}
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static u64 GetSystemTick() {
const u64 result{CoreTiming::GetTicks()};
// Advance time to defeat dumb games that busy-wait for the frame to end.
CoreTiming::AddTicks(400);
return result;
}
/// Close a handle
static ResultCode CloseHandle(Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
auto& handle_table = Core::CurrentProcess()->GetHandleTable();
return handle_table.Close(handle);
}
/// Reset an event
static ResultCode ResetSignal(Handle handle) {
LOG_WARNING(Kernel_SVC, "(STUBBED) called handle 0x{:08X}", handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
auto event = handle_table.Get<Event>(handle);
ASSERT(event != nullptr);
event->Clear();
return RESULT_SUCCESS;
}
/// Creates a TransferMemory object
static ResultCode CreateTransferMemory(Handle* handle, VAddr addr, u64 size, u32 permissions) {
LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr, size,
permissions);
*handle = 0;
return RESULT_SUCCESS;
}
static ResultCode GetThreadCoreMask(Handle thread_handle, u32* core, u64* mask) {
LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
*core = thread->GetIdealCore();
*mask = thread->GetAffinityMask();
return RESULT_SUCCESS;
}
static ResultCode SetThreadCoreMask(Handle thread_handle, u32 core, u64 mask) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, mask=0x{:16X}, core=0x{:X}", thread_handle,
mask, core);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const SharedPtr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
if (core == static_cast<u32>(THREADPROCESSORID_DEFAULT)) {
const u8 default_processor_id = thread->GetOwnerProcess()->GetDefaultProcessorID();
ASSERT(default_processor_id != static_cast<u8>(THREADPROCESSORID_DEFAULT));
// Set the target CPU to the one specified in the process' exheader.
core = default_processor_id;
mask = 1ULL << core;
}
if (mask == 0) {
return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidCombination);
}
/// This value is used to only change the affinity mask without changing the current ideal core.
static constexpr u32 OnlyChangeMask = static_cast<u32>(-3);
if (core == OnlyChangeMask) {
core = thread->GetIdealCore();
} else if (core >= Core::NUM_CPU_CORES && core != static_cast<u32>(-1)) {
return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidProcessorId);
}
// Error out if the input core isn't enabled in the input mask.
if (core < Core::NUM_CPU_CORES && (mask & (1ull << core)) == 0) {
return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidCombination);
}
thread->ChangeCore(core, mask);
return RESULT_SUCCESS;
}
static ResultCode CreateSharedMemory(Handle* handle, u64 size, u32 local_permissions,
u32 remote_permissions) {
LOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size,
local_permissions, remote_permissions);
// Size must be a multiple of 4KB and be less than or equal to
// approx. 8 GB (actually (1GB - 512B) * 8)
if (size == 0 || (size & 0xFFFFFFFE00000FFF) != 0) {
return ERR_INVALID_SIZE;
}
const auto local_perms = static_cast<MemoryPermission>(local_permissions);
if (local_perms != MemoryPermission::Read && local_perms != MemoryPermission::ReadWrite) {
return ERR_INVALID_MEMORY_PERMISSIONS;
}
const auto remote_perms = static_cast<MemoryPermission>(remote_permissions);
if (remote_perms != MemoryPermission::Read && remote_perms != MemoryPermission::ReadWrite &&
remote_perms != MemoryPermission::DontCare) {
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto& kernel = Core::System::GetInstance().Kernel();
auto& handle_table = Core::CurrentProcess()->GetHandleTable();
auto shared_mem_handle =
SharedMemory::Create(kernel, handle_table.Get<Process>(KernelHandle::CurrentProcess), size,
local_perms, remote_perms);
CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle));
return RESULT_SUCCESS;
}
static ResultCode ClearEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle);
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
SharedPtr<Event> evt = handle_table.Get<Event>(handle);
if (evt == nullptr) {
return ERR_INVALID_HANDLE;
}
evt->Clear();
return RESULT_SUCCESS;
}
static ResultCode GetProcessInfo(u64* out, Handle process_handle, u32 type) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type);
// This function currently only allows retrieving a process' status.
enum class InfoType {
Status,
};
const auto& handle_table = Core::CurrentProcess()->GetHandleTable();
const auto process = handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
const auto info_type = static_cast<InfoType>(type);
if (info_type != InfoType::Status) {
return ERR_INVALID_ENUM_VALUE;
}
*out = static_cast<u64>(process->GetStatus());
return RESULT_SUCCESS;
}
namespace {
struct FunctionDef {
using Func = void();
u32 id;
Func* func;
const char* name;
};
} // namespace
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap<SetHeapSize>, "SetHeapSize"},
{0x02, SvcWrap<SetMemoryPermission>, "SetMemoryPermission"},
{0x03, SvcWrap<SetMemoryAttribute>, "SetMemoryAttribute"},
{0x04, SvcWrap<MapMemory>, "MapMemory"},
{0x05, SvcWrap<UnmapMemory>, "UnmapMemory"},
{0x06, SvcWrap<QueryMemory>, "QueryMemory"},
{0x07, SvcWrap<ExitProcess>, "ExitProcess"},
{0x08, SvcWrap<CreateThread>, "CreateThread"},
{0x09, SvcWrap<StartThread>, "StartThread"},
{0x0A, SvcWrap<ExitThread>, "ExitThread"},
{0x0B, SvcWrap<SleepThread>, "SleepThread"},
{0x0C, SvcWrap<GetThreadPriority>, "GetThreadPriority"},
{0x0D, SvcWrap<SetThreadPriority>, "SetThreadPriority"},
{0x0E, SvcWrap<GetThreadCoreMask>, "GetThreadCoreMask"},
{0x0F, SvcWrap<SetThreadCoreMask>, "SetThreadCoreMask"},
{0x10, SvcWrap<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
{0x11, nullptr, "SignalEvent"},
{0x12, SvcWrap<ClearEvent>, "ClearEvent"},
{0x13, SvcWrap<MapSharedMemory>, "MapSharedMemory"},
{0x14, SvcWrap<UnmapSharedMemory>, "UnmapSharedMemory"},
{0x15, SvcWrap<CreateTransferMemory>, "CreateTransferMemory"},
{0x16, SvcWrap<CloseHandle>, "CloseHandle"},
{0x17, SvcWrap<ResetSignal>, "ResetSignal"},
{0x18, SvcWrap<WaitSynchronization>, "WaitSynchronization"},
{0x19, SvcWrap<CancelSynchronization>, "CancelSynchronization"},
{0x1A, SvcWrap<ArbitrateLock>, "ArbitrateLock"},
{0x1B, SvcWrap<ArbitrateUnlock>, "ArbitrateUnlock"},
{0x1C, SvcWrap<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
{0x1D, SvcWrap<SignalProcessWideKey>, "SignalProcessWideKey"},
{0x1E, SvcWrap<GetSystemTick>, "GetSystemTick"},
{0x1F, SvcWrap<ConnectToNamedPort>, "ConnectToNamedPort"},
{0x20, nullptr, "SendSyncRequestLight"},
{0x21, SvcWrap<SendSyncRequest>, "SendSyncRequest"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer"},
{0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
{0x24, SvcWrap<GetProcessId>, "GetProcessId"},
{0x25, SvcWrap<GetThreadId>, "GetThreadId"},
{0x26, SvcWrap<Break>, "Break"},
{0x27, SvcWrap<OutputDebugString>, "OutputDebugString"},
{0x28, nullptr, "ReturnFromException"},
{0x29, SvcWrap<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"},
{0x2C, nullptr, "MapPhysicalMemory"},
{0x2D, nullptr, "UnmapPhysicalMemory"},
{0x2E, nullptr, "GetFutureThreadInfo"},
{0x2F, nullptr, "GetLastThreadInfo"},
{0x30, nullptr, "GetResourceLimitLimitValue"},
{0x31, nullptr, "GetResourceLimitCurrentValue"},
{0x32, SvcWrap<SetThreadActivity>, "SetThreadActivity"},
{0x33, SvcWrap<GetThreadContext>, "GetThreadContext"},
{0x34, SvcWrap<WaitForAddress>, "WaitForAddress"},
{0x35, SvcWrap<SignalToAddress>, "SignalToAddress"},
{0x36, nullptr, "Unknown"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3A, nullptr, "Unknown"},
{0x3B, nullptr, "Unknown"},
{0x3C, nullptr, "DumpInfo"},
{0x3D, nullptr, "DumpInfoNew"},
{0x3E, nullptr, "Unknown"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession"},
{0x41, nullptr, "AcceptSession"},
{0x42, nullptr, "ReplyAndReceiveLight"},
{0x43, nullptr, "ReplyAndReceive"},
{0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
{0x45, nullptr, "CreateEvent"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "MapPhysicalMemoryUnsafe"},
{0x49, nullptr, "UnmapPhysicalMemoryUnsafe"},
{0x4A, nullptr, "SetUnsafeLimit"},
{0x4B, nullptr, "CreateCodeMemory"},
{0x4C, nullptr, "ControlCodeMemory"},
{0x4D, nullptr, "SleepSystem"},
{0x4E, nullptr, "ReadWriteRegister"},
{0x4F, nullptr, "SetProcessActivity"},
{0x50, SvcWrap<CreateSharedMemory>, "CreateSharedMemory"},
{0x51, nullptr, "MapTransferMemory"},
{0x52, nullptr, "UnmapTransferMemory"},
{0x53, nullptr, "CreateInterruptEvent"},
{0x54, nullptr, "QueryPhysicalAddress"},
{0x55, nullptr, "QueryIoMapping"},
{0x56, nullptr, "CreateDeviceAddressSpace"},
{0x57, nullptr, "AttachDeviceAddressSpace"},
{0x58, nullptr, "DetachDeviceAddressSpace"},
{0x59, nullptr, "MapDeviceAddressSpaceByForce"},
{0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
{0x5B, nullptr, "MapDeviceAddressSpace"},
{0x5C, nullptr, "UnmapDeviceAddressSpace"},
{0x5D, nullptr, "InvalidateProcessDataCache"},
{0x5E, nullptr, "StoreProcessDataCache"},
{0x5F, nullptr, "FlushProcessDataCache"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, nullptr, "GetProcessList"},
{0x66, nullptr, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadDebugProcessMemory"},
{0x6B, nullptr, "WriteDebugProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "GetSystemInfo"},
{0x70, nullptr, "CreatePort"},
{0x71, nullptr, "ManageNamedPort"},
{0x72, nullptr, "ConnectToPort"},
{0x73, nullptr, "SetProcessMemoryPermission"},
{0x74, nullptr, "MapProcessMemory"},
{0x75, nullptr, "UnmapProcessMemory"},
{0x76, nullptr, "QueryProcessMemory"},
{0x77, nullptr, "MapProcessCodeMemory"},
{0x78, nullptr, "UnmapProcessCodeMemory"},
{0x79, nullptr, "CreateProcess"},
{0x7A, nullptr, "StartProcess"},
{0x7B, nullptr, "TerminateProcess"},
{0x7C, SvcWrap<GetProcessInfo>, "GetProcessInfo"},
{0x7D, nullptr, "CreateResourceLimit"},
{0x7E, nullptr, "SetResourceLimitLimitValue"},
{0x7F, nullptr, "CallSecureMonitor"},
};
static const FunctionDef* GetSVCInfo(u32 func_num) {
if (func_num >= std::size(SVC_Table)) {
LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void CallSVC(u32 immediate) {
MICROPROFILE_SCOPE(Kernel_SVC);
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
const FunctionDef* info = GetSVCInfo(immediate);
if (info) {
if (info->func) {
info->func();
} else {
LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name);
}
} else {
LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate);
}
}
} // namespace Kernel