1
0
Fork 0
forked from suyu/suyu

hle: kernel: TimeManager: Simplify to not rely on previous EmuThreadHandle implementation.

This commit is contained in:
bunnei 2021-01-19 21:05:24 -08:00
parent bb966d3e33
commit c0f5830323
6 changed files with 25 additions and 69 deletions

View file

@ -232,10 +232,9 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) { ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{ {
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout); KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Check that the thread isn't terminating. // Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) { if (cur_thread->IsTerminationRequested()) {
@ -280,10 +279,7 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
} }
// Cancel the timer wait. // Cancel the timer wait.
if (timer != InvalidHandle) { kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter. // Remove from the address arbiter.
{ {
@ -303,10 +299,9 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) { ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{ {
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout); KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Check that the thread isn't terminating. // Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) { if (cur_thread->IsTerminationRequested()) {
@ -344,10 +339,7 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
} }
// Cancel the timer wait. // Cancel the timer wait.
if (timer != InvalidHandle) { kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the address arbiter. // Remove from the address arbiter.
{ {

View file

@ -258,10 +258,9 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) { ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{ {
KScopedSchedulerLockAndSleep slp(kernel, timer, cur_thread, timeout); KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
// Set the synced object. // Set the synced object.
cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut); cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);
@ -322,10 +321,7 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
} }
// Cancel the timer wait. // Cancel the timer wait.
if (timer != InvalidHandle) { kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Remove from the condition variable. // Remove from the condition variable.
{ {

View file

@ -17,19 +17,16 @@ namespace Kernel {
class KScopedSchedulerLockAndSleep { class KScopedSchedulerLockAndSleep {
public: public:
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle, KThread* t, explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, KThread* t, s64 timeout)
s64 timeout) : kernel(kernel), thread(t), timeout_tick(timeout) {
: kernel(kernel), event_handle(event_handle), thread(t), timeout_tick(timeout) {
event_handle = InvalidHandle;
// Lock the scheduler. // Lock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Lock(); kernel.GlobalSchedulerContext().scheduler_lock.Lock();
} }
~KScopedSchedulerLockAndSleep() { ~KScopedSchedulerLockAndSleep() {
// Register the sleep. // Register the sleep.
if (this->timeout_tick > 0) { if (timeout_tick > 0) {
kernel.TimeManager().ScheduleTimeEvent(event_handle, this->thread, this->timeout_tick); kernel.TimeManager().ScheduleTimeEvent(thread, timeout_tick);
} }
// Unlock the scheduler. // Unlock the scheduler.
@ -37,12 +34,11 @@ public:
} }
void CancelSleep() { void CancelSleep() {
this->timeout_tick = 0; timeout_tick = 0;
} }
private: private:
KernelCore& kernel; KernelCore& kernel;
Handle& event_handle;
KThread* thread{}; KThread* thread{};
s64 timeout_tick{}; s64 timeout_tick{};
}; };

View file

@ -21,11 +21,10 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
// Prepare for wait. // Prepare for wait.
KThread* thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* thread = kernel.CurrentScheduler()->GetCurrentThread();
Handle timer = InvalidHandle;
{ {
// Setup the scheduling lock and sleep. // Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp(kernel, timer, thread, timeout); KScopedSchedulerLockAndSleep slp{kernel, thread, timeout};
// Check if any of the objects are already signaled. // Check if any of the objects are already signaled.
for (auto i = 0; i < num_objects; ++i) { for (auto i = 0; i < num_objects; ++i) {
@ -90,10 +89,7 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
thread->SetWaitObjectsForDebugging({}); thread->SetWaitObjectsForDebugging({});
// Cancel the timer as needed. // Cancel the timer as needed.
if (timer != InvalidHandle) { kernel.TimeManager().UnscheduleTimeEvent(thread);
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(timer);
}
// Get the wait result. // Get the wait result.
ResultCode wait_result{RESULT_SUCCESS}; ResultCode wait_result{RESULT_SUCCESS};

View file

@ -21,47 +21,27 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
std::shared_ptr<KThread> thread; std::shared_ptr<KThread> thread;
{ {
std::lock_guard lock{mutex}; std::lock_guard lock{mutex};
const auto proper_handle = static_cast<Handle>(thread_handle); thread = SharedFrom<KThread>(reinterpret_cast<KThread*>(thread_handle));
if (cancelled_events[proper_handle]) {
return;
}
thread = system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
}
if (thread) {
// Thread can be null if process has exited
thread->Wakeup();
} }
thread->Wakeup();
}); });
} }
void TimeManager::ScheduleTimeEvent(Handle& event_handle, KThread* timetask, s64 nanoseconds) { void TimeManager::ScheduleTimeEvent(KThread* thread, s64 nanoseconds) {
std::lock_guard lock{mutex}; std::lock_guard lock{mutex};
event_handle = timetask->GetGlobalHandle();
if (nanoseconds > 0) { if (nanoseconds > 0) {
ASSERT(timetask); ASSERT(thread);
ASSERT(timetask->GetState() != ThreadState::Runnable); ASSERT(thread->GetState() != ThreadState::Runnable);
system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{nanoseconds}, system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{nanoseconds},
time_manager_event_type, event_handle); time_manager_event_type,
} else { reinterpret_cast<uintptr_t>(thread));
event_handle = InvalidHandle;
} }
cancelled_events[event_handle] = false;
} }
void TimeManager::UnscheduleTimeEvent(Handle event_handle) { void TimeManager::UnscheduleTimeEvent(KThread* thread) {
std::lock_guard lock{mutex}; std::lock_guard lock{mutex};
if (event_handle == InvalidHandle) { system.CoreTiming().UnscheduleEvent(time_manager_event_type,
return; reinterpret_cast<uintptr_t>(thread));
}
system.CoreTiming().UnscheduleEvent(time_manager_event_type, event_handle);
cancelled_events[event_handle] = true;
}
void TimeManager::CancelTimeEvent(KThread* time_task) {
std::lock_guard lock{mutex};
const Handle event_handle = time_task->GetGlobalHandle();
UnscheduleTimeEvent(event_handle);
} }
} // namespace Kernel } // namespace Kernel

View file

@ -31,18 +31,14 @@ public:
explicit TimeManager(Core::System& system); explicit TimeManager(Core::System& system);
/// Schedule a time event on `timetask` thread that will expire in 'nanoseconds' /// Schedule a time event on `timetask` thread that will expire in 'nanoseconds'
/// returns a non-invalid handle in `event_handle` if correctly scheduled void ScheduleTimeEvent(KThread* time_task, s64 nanoseconds);
void ScheduleTimeEvent(Handle& event_handle, KThread* timetask, s64 nanoseconds);
/// Unschedule an existing time event /// Unschedule an existing time event
void UnscheduleTimeEvent(Handle event_handle); void UnscheduleTimeEvent(KThread* thread);
void CancelTimeEvent(KThread* time_task);
private: private:
Core::System& system; Core::System& system;
std::shared_ptr<Core::Timing::EventType> time_manager_event_type; std::shared_ptr<Core::Timing::EventType> time_manager_event_type;
std::unordered_map<Handle, bool> cancelled_events;
std::mutex mutex; std::mutex mutex;
}; };