1
0
Fork 0
forked from suyu/suyu

NVDRV: Further improvements.

This commit is contained in:
Fernando Sahmkow 2022-02-07 07:52:04 +01:00
parent b59ca4df0c
commit a9ca39f859
16 changed files with 280 additions and 161 deletions

View file

@ -1,7 +1,7 @@
// Copyright 2021 yuzu emulator team // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// Copyright 2021 Skyline Team and Contributors (https://github.com/skyline-emu/) // (https://github.com/skyline-emu/)
// Licensed under GPLv2 or any later version // SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// Refer to the license.txt file included. // or any later version Refer to the license.txt file included.
#include "core/hle/service/nvdrv/core/container.h" #include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h" #include "core/hle/service/nvdrv/core/nvmap.h"

View file

@ -1,7 +1,7 @@
// Copyright 2021 yuzu emulator team // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// Copyright 2021 Skyline Team and Contributors (https://github.com/skyline-emu/) // (https://github.com/skyline-emu/)
// Licensed under GPLv2 or any later version // SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// Refer to the license.txt file included. // or any later version Refer to the license.txt file included.
#pragma once #pragma once

View file

@ -1,6 +1,7 @@
// Copyright 2021 Skyline Team and Contributors (https://github.com/skyline-emu/) // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// Licensed under GPLv2 or any later version // (https://github.com/skyline-emu/)
// Refer to the license.txt file included. // SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// or any later version Refer to the license.txt file included.
#include "common/alignment.h" #include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"

View file

@ -1,6 +1,7 @@
// Copyright 2021 Skyline Team and Contributors (https://github.com/skyline-emu/) // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// Licensed under GPLv2 or any later version // (https://github.com/skyline-emu/)
// Refer to the license.txt file included. // SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// or any later version Refer to the license.txt file included.
#pragma once #pragma once

View file

@ -1,5 +1,7 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// SPDX-License-Identifier: GPL-2.0-or-later // (https://github.com/skyline-emu/)
// SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// or any later version Refer to the license.txt file included.
#include "common/assert.h" #include "common/assert.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h" #include "core/hle/service/nvdrv/core/syncpoint_manager.h"
@ -7,32 +9,108 @@
namespace Service::Nvidia::NvCore { namespace Service::Nvidia::NvCore {
SyncpointManager::SyncpointManager(Tegra::Host1x::Host1x& host1x_) : host1x{host1x_} {} SyncpointManager::SyncpointManager(Tegra::Host1x::Host1x& host1x_) : host1x{host1x_} {
constexpr u32 VBlank0SyncpointId{26};
constexpr u32 VBlank1SyncpointId{27};
// Reserve both vblank syncpoints as client managed as they use Continuous Mode
// Refer to section 14.3.5.3 of the TRM for more information on Continuous Mode
// https://github.com/Jetson-TX1-AndroidTV/android_kernel_jetson_tx1_hdmi_primary/blob/8f74a72394efb871cb3f886a3de2998cd7ff2990/drivers/gpu/host1x/drm/dc.c#L660
ReserveSyncpoint(VBlank0SyncpointId, true);
ReserveSyncpoint(VBlank1SyncpointId, true);
for (u32 syncpointId : channel_syncpoints) {
if (syncpointId) {
ReserveSyncpoint(syncpointId, false);
}
}
}
SyncpointManager::~SyncpointManager() = default; SyncpointManager::~SyncpointManager() = default;
u32 SyncpointManager::RefreshSyncpoint(u32 syncpoint_id) { u32 SyncpointManager::ReserveSyncpoint(u32 id, bool clientManaged) {
syncpoints[syncpoint_id].min = host1x.GetSyncpointManager().GetHostSyncpointValue(syncpoint_id); if (syncpoints.at(id).reserved) {
return GetSyncpointMin(syncpoint_id); UNREACHABLE_MSG("Requested syncpoint is in use");
return 0;
}
syncpoints.at(id).reserved = true;
syncpoints.at(id).interfaceManaged = clientManaged;
return id;
} }
u32 SyncpointManager::AllocateSyncpoint() { u32 SyncpointManager::FindFreeSyncpoint() {
for (u32 syncpoint_id = 1; syncpoint_id < MaxSyncPoints; syncpoint_id++) { for (u32 i{1}; i < syncpoints.size(); i++) {
if (!syncpoints[syncpoint_id].is_allocated) { if (!syncpoints[i].reserved) {
syncpoints[syncpoint_id].is_allocated = true; return i;
return syncpoint_id;
} }
} }
ASSERT_MSG(false, "No more available syncpoints!"); UNREACHABLE_MSG("Failed to find a free syncpoint!");
return {}; return 0;
} }
u32 SyncpointManager::IncreaseSyncpoint(u32 syncpoint_id, u32 value) { u32 SyncpointManager::AllocateSyncpoint(bool clientManaged) {
for (u32 index = 0; index < value; ++index) { std::lock_guard lock(reservation_lock);
syncpoints[syncpoint_id].max.fetch_add(1, std::memory_order_relaxed); return ReserveSyncpoint(FindFreeSyncpoint(), clientManaged);
}
bool SyncpointManager::IsSyncpointAllocated(u32 id) {
return (id <= SyncpointCount) && syncpoints[id].reserved;
}
bool SyncpointManager::HasSyncpointExpired(u32 id, u32 threshold) {
const SyncpointInfo& syncpoint{syncpoints.at(id)};
if (!syncpoint.reserved) {
UNREACHABLE();
return 0;
} }
return GetSyncpointMax(syncpoint_id); // If the interface manages counters then we don't keep track of the maximum value as it handles
// sanity checking the values then
if (syncpoint.interfaceManaged) {
return static_cast<s32>(syncpoint.counterMin - threshold) >= 0;
} else {
return (syncpoint.counterMax - threshold) >= (syncpoint.counterMin - threshold);
}
}
u32 SyncpointManager::IncrementSyncpointMaxExt(u32 id, u32 amount) {
if (!syncpoints.at(id).reserved) {
UNREACHABLE();
return 0;
}
return syncpoints.at(id).counterMax += amount;
}
u32 SyncpointManager::ReadSyncpointMinValue(u32 id) {
if (!syncpoints.at(id).reserved) {
UNREACHABLE();
return 0;
}
return syncpoints.at(id).counterMin;
}
u32 SyncpointManager::UpdateMin(u32 id) {
if (!syncpoints.at(id).reserved) {
UNREACHABLE();
return 0;
}
syncpoints.at(id).counterMin = host1x.GetSyncpointManager().GetHostSyncpointValue(id);
return syncpoints.at(id).counterMin;
}
NvFence SyncpointManager::GetSyncpointFence(u32 id) {
if (!syncpoints.at(id).reserved) {
UNREACHABLE();
return NvFence{};
}
return {.id = static_cast<s32>(id), .value = syncpoints.at(id).counterMax};
} }
} // namespace Service::Nvidia::NvCore } // namespace Service::Nvidia::NvCore

View file

@ -1,10 +1,13 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project // SPDX-FileCopyrightText: 2022 yuzu emulator team and Skyline Team and Contributors
// SPDX-License-Identifier: GPL-2.0-or-later // (https://github.com/skyline-emu/)
// SPDX-License-Identifier: GPL-3.0-or-later Licensed under GPLv3
// or any later version Refer to the license.txt file included.
#pragma once #pragma once
#include <array> #include <array>
#include <atomic> #include <atomic>
#include <mutex>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/service/nvdrv/nvdata.h" #include "core/hle/service/nvdrv/nvdata.h"
@ -19,68 +22,111 @@ class Host1x;
namespace Service::Nvidia::NvCore { namespace Service::Nvidia::NvCore {
enum class ChannelType : u32 {
MsEnc = 0,
VIC = 1,
GPU = 2,
NvDec = 3,
Display = 4,
NvJpg = 5,
TSec = 6,
Max = 7
};
/**
* @brief SyncpointManager handles allocating and accessing host1x syncpoints, these are cached
* versions of the HW syncpoints which are intermittently synced
* @note Refer to Chapter 14 of the Tegra X1 TRM for an exhaustive overview of them
* @url https://http.download.nvidia.com/tegra-public-appnotes/host1x.html
* @url
* https://github.com/Jetson-TX1-AndroidTV/android_kernel_jetson_tx1_hdmi_primary/blob/jetson-tx1/drivers/video/tegra/host/nvhost_syncpt.c
*/
class SyncpointManager final { class SyncpointManager final {
public: public:
explicit SyncpointManager(Tegra::Host1x::Host1x& host1x); explicit SyncpointManager(Tegra::Host1x::Host1x& host1x);
~SyncpointManager(); ~SyncpointManager();
/** /**
* Returns true if the specified syncpoint is expired for the given value. * @brief Checks if the given syncpoint is both allocated and below the number of HW syncpoints
* @param syncpoint_id Syncpoint ID to check.
* @param value Value to check against the specified syncpoint.
* @returns True if the specified syncpoint is expired for the given value, otherwise False.
*/ */
bool IsSyncpointExpired(u32 syncpoint_id, u32 value) const { bool IsSyncpointAllocated(u32 id);
return (GetSyncpointMax(syncpoint_id) - value) >= (GetSyncpointMin(syncpoint_id) - value);
/**
* @brief Finds a free syncpoint and reserves it
* @return The ID of the reserved syncpoint
*/
u32 AllocateSyncpoint(bool clientManaged);
/**
* @url
* https://github.com/Jetson-TX1-AndroidTV/android_kernel_jetson_tx1_hdmi_primary/blob/8f74a72394efb871cb3f886a3de2998cd7ff2990/drivers/gpu/host1x/syncpt.c#L259
*/
bool HasSyncpointExpired(u32 id, u32 threshold);
bool IsFenceSignalled(NvFence fence) {
return HasSyncpointExpired(fence.id, fence.value);
} }
/** /**
* Gets the lower bound for the specified syncpoint. * @brief Atomically increments the maximum value of a syncpoint by the given amount
* @param syncpoint_id Syncpoint ID to get the lower bound for. * @return The new max value of the syncpoint
* @returns The lower bound for the specified syncpoint.
*/ */
u32 GetSyncpointMin(u32 syncpoint_id) const { u32 IncrementSyncpointMaxExt(u32 id, u32 amount);
return syncpoints.at(syncpoint_id).min.load(std::memory_order_relaxed);
}
/** /**
* Gets the uper bound for the specified syncpoint. * @return The minimum value of the syncpoint
* @param syncpoint_id Syncpoint ID to get the upper bound for.
* @returns The upper bound for the specified syncpoint.
*/ */
u32 GetSyncpointMax(u32 syncpoint_id) const { u32 ReadSyncpointMinValue(u32 id);
return syncpoints.at(syncpoint_id).max.load(std::memory_order_relaxed);
}
/** /**
* Refreshes the minimum value for the specified syncpoint. * @brief Synchronises the minimum value of the syncpoint to with the GPU
* @param syncpoint_id Syncpoint ID to be refreshed. * @return The new minimum value of the syncpoint
* @returns The new syncpoint minimum value.
*/ */
u32 RefreshSyncpoint(u32 syncpoint_id); u32 UpdateMin(u32 id);
/** /**
* Allocates a new syncoint. * @return A fence that will be signalled once this syncpoint hits its maximum value
* @returns The syncpoint ID for the newly allocated syncpoint.
*/ */
u32 AllocateSyncpoint(); NvFence GetSyncpointFence(u32 id);
/** static constexpr std::array<u32, static_cast<u32>(ChannelType::Max)> channel_syncpoints{
* Increases the maximum value for the specified syncpoint. 0x0, // `MsEnc` is unimplemented
* @param syncpoint_id Syncpoint ID to be increased. 0xC, // `VIC`
* @param value Value to increase the specified syncpoint by. 0x0, // `GPU` syncpoints are allocated per-channel instead
* @returns The new syncpoint maximum value. 0x36, // `NvDec`
*/ 0x0, // `Display` is unimplemented
u32 IncreaseSyncpoint(u32 syncpoint_id, u32 value); 0x37, // `NvJpg`
0x0, // `TSec` is unimplemented
}; //!< Maps each channel ID to a constant syncpoint
private: private:
struct Syncpoint { /**
std::atomic<u32> min; * @note reservation_lock should be locked when calling this
std::atomic<u32> max; */
std::atomic<bool> is_allocated; u32 ReserveSyncpoint(u32 id, bool clientManaged);
/**
* @return The ID of the first free syncpoint
*/
u32 FindFreeSyncpoint();
struct SyncpointInfo {
std::atomic<u32> counterMin; //!< The least value the syncpoint can be (The value it was
//!< when it was last synchronized with host1x)
std::atomic<u32> counterMax; //!< The maximum value the syncpoint can reach according to the
//!< current usage
bool interfaceManaged; //!< If the syncpoint is managed by a host1x client interface, a
//!< client interface is a HW block that can handle host1x
//!< transactions on behalf of a host1x client (Which would otherwise
//!< need to be manually synced using PIO which is synchronous and
//!< requires direct cooperation of the CPU)
bool reserved; //!< If the syncpoint is reserved or not, not to be confused with a reserved
//!< value
}; };
std::array<Syncpoint, MaxSyncPoints> syncpoints{}; constexpr static std::size_t SyncpointCount{192};
std::array<SyncpointInfo, SyncpointCount> syncpoints{};
std::mutex reservation_lock;
Tegra::Host1x::Host1x& host1x; Tegra::Host1x::Host1x& host1x;
}; };

View file

@ -112,17 +112,23 @@ NvResult nvhost_ctrl::IocCtrlEventWait(const std::vector<u8>& input, std::vector
} }
if (params.fence.value == 0) { if (params.fence.value == 0) {
params.value.raw = syncpoint_manager.GetSyncpointMin(fence_id); if (!syncpoint_manager.IsSyncpointAllocated(params.fence.id)) {
LOG_WARNING(Service_NVDRV,
"Unallocated syncpt_id={}, threshold={}, timeout={}, is_allocation={}",
params.fence.id, params.fence.value, params.timeout, is_allocation);
} else {
params.value.raw = syncpoint_manager.ReadSyncpointMinValue(fence_id);
}
return NvResult::Success; return NvResult::Success;
} }
if (syncpoint_manager.IsSyncpointExpired(fence_id, params.fence.value)) { if (syncpoint_manager.IsFenceSignalled(params.fence)) {
params.value.raw = syncpoint_manager.GetSyncpointMin(fence_id); params.value.raw = syncpoint_manager.ReadSyncpointMinValue(fence_id);
return NvResult::Success; return NvResult::Success;
} }
if (const auto new_value = syncpoint_manager.RefreshSyncpoint(fence_id); if (const auto new_value = syncpoint_manager.UpdateMin(fence_id);
syncpoint_manager.IsSyncpointExpired(fence_id, params.fence.value)) { syncpoint_manager.IsFenceSignalled(params.fence)) {
params.value.raw = new_value; params.value.raw = new_value;
return NvResult::Success; return NvResult::Success;
} }
@ -296,7 +302,7 @@ NvResult nvhost_ctrl::IocCtrlClearEventWait(const std::vector<u8>& input, std::v
EventState::Waiting) { EventState::Waiting) {
auto& host1x_syncpoint_manager = system.Host1x().GetSyncpointManager(); auto& host1x_syncpoint_manager = system.Host1x().GetSyncpointManager();
host1x_syncpoint_manager.DeregisterHostAction(event.assigned_syncpt, event.wait_handle); host1x_syncpoint_manager.DeregisterHostAction(event.assigned_syncpt, event.wait_handle);
syncpoint_manager.RefreshSyncpoint(event.assigned_syncpt); syncpoint_manager.UpdateMin(event.assigned_syncpt);
event.wait_handle = {}; event.wait_handle = {};
} }
event.fails++; event.fails++;

View file

@ -31,9 +31,7 @@ nvhost_gpu::nvhost_gpu(Core::System& system_, EventInterface& events_interface_,
: nvdevice{system_}, events_interface{events_interface_}, core{core_}, : nvdevice{system_}, events_interface{events_interface_}, core{core_},
syncpoint_manager{core_.GetSyncpointManager()}, nvmap{core.GetNvMapFile()}, syncpoint_manager{core_.GetSyncpointManager()}, nvmap{core.GetNvMapFile()},
channel_state{system.GPU().AllocateChannel()} { channel_state{system.GPU().AllocateChannel()} {
channel_fence.id = syncpoint_manager.AllocateSyncpoint(); channel_syncpoint = syncpoint_manager.AllocateSyncpoint(false);
channel_fence.value =
system_.Host1x().GetSyncpointManager().GetGuestSyncpointValue(channel_fence.id);
sm_exception_breakpoint_int_report_event = sm_exception_breakpoint_int_report_event =
events_interface.CreateEvent("GpuChannelSMExceptionBreakpointInt"); events_interface.CreateEvent("GpuChannelSMExceptionBreakpointInt");
sm_exception_breakpoint_pause_report_event = sm_exception_breakpoint_pause_report_event =
@ -191,10 +189,8 @@ NvResult nvhost_gpu::AllocGPFIFOEx2(const std::vector<u8>& input, std::vector<u8
} }
system.GPU().InitChannel(*channel_state); system.GPU().InitChannel(*channel_state);
channel_fence.value =
system.Host1x().GetSyncpointManager().GetGuestSyncpointValue(channel_fence.id);
params.fence_out = channel_fence; params.fence_out = syncpoint_manager.GetSyncpointFence(channel_syncpoint);
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvResult::Success; return NvResult::Success;
@ -222,14 +218,13 @@ static std::vector<Tegra::CommandHeader> BuildWaitCommandList(NvFence fence) {
}; };
} }
static std::vector<Tegra::CommandHeader> BuildIncrementCommandList(NvFence fence, static std::vector<Tegra::CommandHeader> BuildIncrementCommandList(NvFence fence) {
u32 add_increment) {
std::vector<Tegra::CommandHeader> result{ std::vector<Tegra::CommandHeader> result{
Tegra::BuildCommandHeader(Tegra::BufferMethods::SyncpointPayload, 1, Tegra::BuildCommandHeader(Tegra::BufferMethods::SyncpointPayload, 1,
Tegra::SubmissionMode::Increasing), Tegra::SubmissionMode::Increasing),
{}}; {}};
for (u32 count = 0; count < add_increment; ++count) { for (u32 count = 0; count < 2; ++count) {
result.emplace_back(Tegra::BuildCommandHeader(Tegra::BufferMethods::SyncpointOperation, 1, result.emplace_back(Tegra::BuildCommandHeader(Tegra::BufferMethods::SyncpointOperation, 1,
Tegra::SubmissionMode::Increasing)); Tegra::SubmissionMode::Increasing));
result.emplace_back( result.emplace_back(
@ -239,14 +234,12 @@ static std::vector<Tegra::CommandHeader> BuildIncrementCommandList(NvFence fence
return result; return result;
} }
static std::vector<Tegra::CommandHeader> BuildIncrementWithWfiCommandList(NvFence fence, static std::vector<Tegra::CommandHeader> BuildIncrementWithWfiCommandList(NvFence fence) {
u32 add_increment) {
std::vector<Tegra::CommandHeader> result{ std::vector<Tegra::CommandHeader> result{
Tegra::BuildCommandHeader(Tegra::BufferMethods::WaitForIdle, 1, Tegra::BuildCommandHeader(Tegra::BufferMethods::WaitForIdle, 1,
Tegra::SubmissionMode::Increasing), Tegra::SubmissionMode::Increasing),
{}}; {}};
const std::vector<Tegra::CommandHeader> increment{ const std::vector<Tegra::CommandHeader> increment{BuildIncrementCommandList(fence)};
BuildIncrementCommandList(fence, add_increment)};
result.insert(result.end(), increment.begin(), increment.end()); result.insert(result.end(), increment.begin(), increment.end());
@ -260,35 +253,41 @@ NvResult nvhost_gpu::SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, std::vector<u8>
auto& gpu = system.GPU(); auto& gpu = system.GPU();
std::scoped_lock lock(channel_mutex);
const auto bind_id = channel_state->bind_id; const auto bind_id = channel_state->bind_id;
params.fence_out.id = channel_fence.id; auto& flags = params.flags;
if (params.flags.add_wait.Value() && if (flags.fence_wait.Value()) {
!syncpoint_manager.IsSyncpointExpired(params.fence_out.id, params.fence_out.value)) { if (flags.increment_value.Value()) {
gpu.PushGPUEntries(bind_id, Tegra::CommandList{BuildWaitCommandList(params.fence_out)}); return NvResult::BadParameter;
} }
if (params.flags.add_increment.Value() || params.flags.increment.Value()) { if (!syncpoint_manager.IsFenceSignalled(params.fence)) {
const u32 increment_value = params.flags.increment.Value() ? params.fence_out.value : 0; gpu.PushGPUEntries(bind_id, Tegra::CommandList{BuildWaitCommandList(params.fence)});
params.fence_out.value = syncpoint_manager.IncreaseSyncpoint( }
params.fence_out.id, params.AddIncrementValue() + increment_value);
} else {
params.fence_out.value = syncpoint_manager.GetSyncpointMax(params.fence_out.id);
} }
gpu.PushGPUEntries(bind_id, std::move(entries)); gpu.PushGPUEntries(bind_id, std::move(entries));
params.fence.id = channel_syncpoint;
if (params.flags.add_increment.Value()) { u32 increment{(flags.fence_increment.Value() != 0 ? 2 : 0) +
if (params.flags.suppress_wfi) { (flags.increment_value.Value() != 0 ? params.fence.value : 0)};
gpu.PushGPUEntries(bind_id, Tegra::CommandList{BuildIncrementCommandList( params.fence.value = syncpoint_manager.IncrementSyncpointMaxExt(channel_syncpoint, increment);
params.fence_out, params.AddIncrementValue())});
if (flags.fence_increment.Value()) {
if (flags.suppress_wfi.Value()) {
gpu.PushGPUEntries(bind_id,
Tegra::CommandList{BuildIncrementCommandList(params.fence)});
} else { } else {
gpu.PushGPUEntries(bind_id, Tegra::CommandList{BuildIncrementWithWfiCommandList( gpu.PushGPUEntries(bind_id,
params.fence_out, params.AddIncrementValue())}); Tegra::CommandList{BuildIncrementWithWfiCommandList(params.fence)});
} }
} }
flags.raw = 0;
std::memcpy(output.data(), &params, sizeof(IoctlSubmitGpfifo)); std::memcpy(output.data(), &params, sizeof(IoctlSubmitGpfifo));
return NvResult::Success; return NvResult::Success;
} }

View file

@ -163,17 +163,13 @@ private:
u32_le num_entries{}; // number of fence objects being submitted u32_le num_entries{}; // number of fence objects being submitted
union { union {
u32_le raw; u32_le raw;
BitField<0, 1, u32_le> add_wait; // append a wait sync_point to the list BitField<0, 1, u32_le> fence_wait; // append a wait sync_point to the list
BitField<1, 1, u32_le> add_increment; // append an increment to the list BitField<1, 1, u32_le> fence_increment; // append an increment to the list
BitField<2, 1, u32_le> new_hw_format; // mostly ignored BitField<2, 1, u32_le> new_hw_format; // mostly ignored
BitField<4, 1, u32_le> suppress_wfi; // suppress wait for interrupt BitField<4, 1, u32_le> suppress_wfi; // suppress wait for interrupt
BitField<8, 1, u32_le> increment; // increment the returned fence BitField<8, 1, u32_le> increment_value; // increment the returned fence
} flags; } flags;
NvFence fence_out{}; // returned new fence object for others to wait on NvFence fence{}; // returned new fence object for others to wait on
u32 AddIncrementValue() const {
return flags.add_increment.Value() << 1;
}
}; };
static_assert(sizeof(IoctlSubmitGpfifo) == 16 + sizeof(NvFence), static_assert(sizeof(IoctlSubmitGpfifo) == 16 + sizeof(NvFence),
"IoctlSubmitGpfifo is incorrect size"); "IoctlSubmitGpfifo is incorrect size");
@ -213,7 +209,8 @@ private:
NvCore::SyncpointManager& syncpoint_manager; NvCore::SyncpointManager& syncpoint_manager;
NvCore::NvMap& nvmap; NvCore::NvMap& nvmap;
std::shared_ptr<Tegra::Control::ChannelState> channel_state; std::shared_ptr<Tegra::Control::ChannelState> channel_state;
NvFence channel_fence; u32 channel_syncpoint;
std::mutex channel_mutex;
// Events // Events
Kernel::KEvent* sm_exception_breakpoint_int_report_event; Kernel::KEvent* sm_exception_breakpoint_int_report_event;

View file

@ -13,7 +13,7 @@ namespace Service::Nvidia::Devices {
u32 nvhost_nvdec::next_id{}; u32 nvhost_nvdec::next_id{};
nvhost_nvdec::nvhost_nvdec(Core::System& system_, NvCore::Container& core) nvhost_nvdec::nvhost_nvdec(Core::System& system_, NvCore::Container& core)
: nvhost_nvdec_common{system_, core} {} : nvhost_nvdec_common{system_, core, NvCore::ChannelType::NvDec} {}
nvhost_nvdec::~nvhost_nvdec() = default; nvhost_nvdec::~nvhost_nvdec() = default;
NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, const std::vector<u8>& input, NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, const std::vector<u8>& input,

View file

@ -48,9 +48,10 @@ std::size_t WriteVectors(std::vector<u8>& dst, const std::vector<T>& src, std::s
std::unordered_map<DeviceFD, u32> nvhost_nvdec_common::fd_to_id{}; std::unordered_map<DeviceFD, u32> nvhost_nvdec_common::fd_to_id{};
nvhost_nvdec_common::nvhost_nvdec_common(Core::System& system_, NvCore::Container& core_) nvhost_nvdec_common::nvhost_nvdec_common(Core::System& system_, NvCore::Container& core_,
: nvdevice{system_}, core{core_}, NvCore::ChannelType channel_type_)
syncpoint_manager{core.GetSyncpointManager()}, nvmap{core.GetNvMapFile()} {} : nvdevice{system_}, core{core_}, syncpoint_manager{core.GetSyncpointManager()},
nvmap{core.GetNvMapFile()}, channel_type{channel_type_} {}
nvhost_nvdec_common::~nvhost_nvdec_common() = default; nvhost_nvdec_common::~nvhost_nvdec_common() = default;
NvResult nvhost_nvdec_common::SetNVMAPfd(const std::vector<u8>& input) { NvResult nvhost_nvdec_common::SetNVMAPfd(const std::vector<u8>& input) {
@ -88,7 +89,7 @@ NvResult nvhost_nvdec_common::Submit(DeviceFD fd, const std::vector<u8>& input,
for (std::size_t i = 0; i < syncpt_increments.size(); i++) { for (std::size_t i = 0; i < syncpt_increments.size(); i++) {
const SyncptIncr& syncpt_incr = syncpt_increments[i]; const SyncptIncr& syncpt_incr = syncpt_increments[i];
fence_thresholds[i] = fence_thresholds[i] =
syncpoint_manager.IncreaseSyncpoint(syncpt_incr.id, syncpt_incr.increments); syncpoint_manager.IncrementSyncpointMaxExt(syncpt_incr.id, syncpt_incr.increments);
} }
} }
for (const auto& cmd_buffer : command_buffers) { for (const auto& cmd_buffer : command_buffers) {
@ -116,10 +117,8 @@ NvResult nvhost_nvdec_common::GetSyncpoint(const std::vector<u8>& input, std::ve
std::memcpy(&params, input.data(), sizeof(IoctlGetSyncpoint)); std::memcpy(&params, input.data(), sizeof(IoctlGetSyncpoint));
LOG_DEBUG(Service_NVDRV, "called GetSyncpoint, id={}", params.param); LOG_DEBUG(Service_NVDRV, "called GetSyncpoint, id={}", params.param);
if (device_syncpoints[params.param] == 0 && system.GPU().UseNvdec()) { const u32 id{NvCore::SyncpointManager::channel_syncpoints[static_cast<u32>(channel_type)]};
device_syncpoints[params.param] = syncpoint_manager.AllocateSyncpoint(); params.value = id;
}
params.value = device_syncpoints[params.param];
std::memcpy(output.data(), &params, sizeof(IoctlGetSyncpoint)); std::memcpy(output.data(), &params, sizeof(IoctlGetSyncpoint));
return NvResult::Success; return NvResult::Success;

View file

@ -6,6 +6,7 @@
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/swap.h" #include "common/swap.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
#include "core/hle/service/nvdrv/devices/nvdevice.h" #include "core/hle/service/nvdrv/devices/nvdevice.h"
namespace Service::Nvidia { namespace Service::Nvidia {
@ -13,14 +14,14 @@ namespace Service::Nvidia {
namespace NvCore { namespace NvCore {
class Container; class Container;
class NvMap; class NvMap;
class SyncpointManager;
} // namespace NvCore } // namespace NvCore
namespace Devices { namespace Devices {
class nvhost_nvdec_common : public nvdevice { class nvhost_nvdec_common : public nvdevice {
public: public:
explicit nvhost_nvdec_common(Core::System& system_, NvCore::Container& core); explicit nvhost_nvdec_common(Core::System& system_, NvCore::Container& core,
NvCore::ChannelType channel_type);
~nvhost_nvdec_common() override; ~nvhost_nvdec_common() override;
protected: protected:
@ -121,6 +122,7 @@ protected:
NvCore::Container& core; NvCore::Container& core;
NvCore::SyncpointManager& syncpoint_manager; NvCore::SyncpointManager& syncpoint_manager;
NvCore::NvMap& nvmap; NvCore::NvMap& nvmap;
NvCore::ChannelType channel_type;
std::array<u32, MaxSyncPoints> device_syncpoints{}; std::array<u32, MaxSyncPoints> device_syncpoints{};
}; };
}; // namespace Devices }; // namespace Devices

View file

@ -12,7 +12,7 @@ namespace Service::Nvidia::Devices {
u32 nvhost_vic::next_id{}; u32 nvhost_vic::next_id{};
nvhost_vic::nvhost_vic(Core::System& system_, NvCore::Container& core) nvhost_vic::nvhost_vic(Core::System& system_, NvCore::Container& core)
: nvhost_nvdec_common{system_, core} {} : nvhost_nvdec_common{system_, core, NvCore::ChannelType::VIC} {}
nvhost_vic::~nvhost_vic() = default; nvhost_vic::~nvhost_vic() = default;

View file

@ -453,18 +453,10 @@ void Maxwell3D::ProcessFirmwareCall4() {
} }
void Maxwell3D::StampQueryResult(u64 payload, bool long_query) { void Maxwell3D::StampQueryResult(u64 payload, bool long_query) {
struct LongQueryResult {
u64_le value;
u64_le timestamp;
};
static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size");
const GPUVAddr sequence_address{regs.query.QueryAddress()}; const GPUVAddr sequence_address{regs.query.QueryAddress()};
if (long_query) { if (long_query) {
// Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast memory_manager.Write<u64>(sequence_address + sizeof(u64), system.GPU().GetTicks());
// GPU, this command may actually take a while to complete in real hardware due to GPU memory_manager.Write<u64>(sequence_address, payload);
// wait queues.
LongQueryResult query_result{payload, system.GPU().GetTicks()};
memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result));
} else { } else {
memory_manager.Write<u32>(sequence_address, static_cast<u32>(payload)); memory_manager.Write<u32>(sequence_address, static_cast<u32>(payload));
} }
@ -493,10 +485,10 @@ void Maxwell3D::ProcessQueryGet() {
const GPUVAddr sequence_address{regs.query.QueryAddress()}; const GPUVAddr sequence_address{regs.query.QueryAddress()};
const u32 payload = regs.query.query_sequence; const u32 payload = regs.query.query_sequence;
std::function<void()> operation([this, sequence_address, payload] { std::function<void()> operation([this, sequence_address, payload] {
LongQueryResult query_result{payload, system.GPU().GetTicks()}; memory_manager.Write<u64>(sequence_address + sizeof(u64), system.GPU().GetTicks());
memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result)); memory_manager.Write<u64>(sequence_address, payload);
}); });
rasterizer->SignalFence(std::move(operation)); rasterizer->SyncOperation(std::move(operation));
} }
break; break;
case Regs::QueryOperation::Acquire: case Regs::QueryOperation::Acquire:

View file

@ -274,16 +274,24 @@ void MaxwellDMA::FastCopyBlockLinearToPitch() {
void MaxwellDMA::ReleaseSemaphore() { void MaxwellDMA::ReleaseSemaphore() {
const auto type = regs.launch_dma.semaphore_type; const auto type = regs.launch_dma.semaphore_type;
const GPUVAddr address = regs.semaphore.address; const GPUVAddr address = regs.semaphore.address;
const u32 payload = regs.semaphore.payload;
switch (type) { switch (type) {
case LaunchDMA::SemaphoreType::NONE: case LaunchDMA::SemaphoreType::NONE:
break; break;
case LaunchDMA::SemaphoreType::RELEASE_ONE_WORD_SEMAPHORE: case LaunchDMA::SemaphoreType::RELEASE_ONE_WORD_SEMAPHORE: {
memory_manager.Write<u32>(address, regs.semaphore.payload); std::function<void()> operation(
[this, address, payload] { memory_manager.Write<u32>(address, payload); });
rasterizer->SignalFence(std::move(operation));
break; break;
case LaunchDMA::SemaphoreType::RELEASE_FOUR_WORD_SEMAPHORE: }
memory_manager.Write<u64>(address, static_cast<u64>(regs.semaphore.payload)); case LaunchDMA::SemaphoreType::RELEASE_FOUR_WORD_SEMAPHORE: {
memory_manager.Write<u64>(address + 8, system.GPU().GetTicks()); std::function<void()> operation([this, address, payload] {
memory_manager.Write<u64>(address + sizeof(u64), system.GPU().GetTicks());
memory_manager.Write<u64>(address, payload);
});
rasterizer->SignalFence(std::move(operation));
break; break;
}
default: default:
ASSERT_MSG(false, "Unknown semaphore type: {}", static_cast<u32>(type.Value())); ASSERT_MSG(false, "Unknown semaphore type: {}", static_cast<u32>(type.Value()));
} }

View file

@ -59,6 +59,7 @@ void Puller::ProcessFenceActionMethod() {
case Puller::FenceOperation::Acquire: case Puller::FenceOperation::Acquire:
// UNIMPLEMENTED_MSG("Channel Scheduling pending."); // UNIMPLEMENTED_MSG("Channel Scheduling pending.");
// WaitFence(regs.fence_action.syncpoint_id, regs.fence_value); // WaitFence(regs.fence_action.syncpoint_id, regs.fence_value);
rasterizer->ReleaseFences();
break; break;
case Puller::FenceOperation::Increment: case Puller::FenceOperation::Increment:
rasterizer->SignalSyncPoint(regs.fence_action.syncpoint_id); rasterizer->SignalSyncPoint(regs.fence_action.syncpoint_id);
@ -73,19 +74,11 @@ void Puller::ProcessSemaphoreTriggerMethod() {
const auto op = const auto op =
static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask); static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
if (op == GpuSemaphoreOperation::WriteLong) { if (op == GpuSemaphoreOperation::WriteLong) {
struct Block {
u32 sequence;
u32 zeros = 0;
u64 timestamp;
};
const GPUVAddr sequence_address{regs.semaphore_address.SemaphoreAddress()}; const GPUVAddr sequence_address{regs.semaphore_address.SemaphoreAddress()};
const u32 payload = regs.semaphore_sequence; const u32 payload = regs.semaphore_sequence;
std::function<void()> operation([this, sequence_address, payload] { std::function<void()> operation([this, sequence_address, payload] {
Block block{}; memory_manager.Write<u64>(sequence_address + sizeof(u64), gpu.GetTicks());
block.sequence = payload; memory_manager.Write<u64>(sequence_address, payload);
block.timestamp = gpu.GetTicks();
memory_manager.WriteBlock(sequence_address, &block, sizeof(block));
}); });
rasterizer->SignalFence(std::move(operation)); rasterizer->SignalFence(std::move(operation));
} else { } else {
@ -98,7 +91,6 @@ void Puller::ProcessSemaphoreTriggerMethod() {
regs.acquire_mode = false; regs.acquire_mode = false;
if (word != regs.acquire_value) { if (word != regs.acquire_value) {
rasterizer->ReleaseFences(); rasterizer->ReleaseFences();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue; continue;
} }
} else if (op == GpuSemaphoreOperation::AcquireGequal) { } else if (op == GpuSemaphoreOperation::AcquireGequal) {
@ -106,13 +98,11 @@ void Puller::ProcessSemaphoreTriggerMethod() {
regs.acquire_mode = true; regs.acquire_mode = true;
if (word < regs.acquire_value) { if (word < regs.acquire_value) {
rasterizer->ReleaseFences(); rasterizer->ReleaseFences();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue; continue;
} }
} else if (op == GpuSemaphoreOperation::AcquireMask) { } else if (op == GpuSemaphoreOperation::AcquireMask) {
if (word && regs.semaphore_sequence == 0) { if (word && regs.semaphore_sequence == 0) {
rasterizer->ReleaseFences(); rasterizer->ReleaseFences();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue; continue;
} }
} else { } else {
@ -128,7 +118,7 @@ void Puller::ProcessSemaphoreRelease() {
std::function<void()> operation([this, sequence_address, payload] { std::function<void()> operation([this, sequence_address, payload] {
memory_manager.Write<u32>(sequence_address, payload); memory_manager.Write<u32>(sequence_address, payload);
}); });
rasterizer->SignalFence(std::move(operation)); rasterizer->SyncOperation(std::move(operation));
} }
void Puller::ProcessSemaphoreAcquire() { void Puller::ProcessSemaphoreAcquire() {