e4c381b885
The Write functions are used slightly less than the Read functions, which make these a bit nicer to move over. The only adjustments we really need to make here are to Dynarmic's exclusive monitor instance. We need to keep a reference to the currently active memory instance to perform exclusive read/write operations.
152 lines
4.4 KiB
C++
152 lines
4.4 KiB
C++
// Copyright 2018 yuzu emulator team
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "common/assert.h"
|
|
#include "core/arm/exclusive_monitor.h"
|
|
#include "core/core.h"
|
|
#include "core/core_cpu.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/cpu_core_manager.h"
|
|
#include "core/gdbstub/gdbstub.h"
|
|
#include "core/settings.h"
|
|
|
|
namespace Core {
|
|
namespace {
|
|
void RunCpuCore(const System& system, Cpu& cpu_state) {
|
|
while (system.IsPoweredOn()) {
|
|
cpu_state.RunLoop(true);
|
|
}
|
|
}
|
|
} // Anonymous namespace
|
|
|
|
CpuCoreManager::CpuCoreManager(System& system) : system{system} {}
|
|
CpuCoreManager::~CpuCoreManager() = default;
|
|
|
|
void CpuCoreManager::Initialize() {
|
|
barrier = std::make_unique<CpuBarrier>();
|
|
exclusive_monitor = Cpu::MakeExclusiveMonitor(system.Memory(), cores.size());
|
|
|
|
for (std::size_t index = 0; index < cores.size(); ++index) {
|
|
cores[index] = std::make_unique<Cpu>(system, *exclusive_monitor, *barrier, index);
|
|
}
|
|
}
|
|
|
|
void CpuCoreManager::StartThreads() {
|
|
// Create threads for CPU cores 1-3, and build thread_to_cpu map
|
|
// CPU core 0 is run on the main thread
|
|
thread_to_cpu[std::this_thread::get_id()] = cores[0].get();
|
|
if (!Settings::values.use_multi_core) {
|
|
return;
|
|
}
|
|
|
|
for (std::size_t index = 0; index < core_threads.size(); ++index) {
|
|
core_threads[index] = std::make_unique<std::thread>(RunCpuCore, std::cref(system),
|
|
std::ref(*cores[index + 1]));
|
|
thread_to_cpu[core_threads[index]->get_id()] = cores[index + 1].get();
|
|
}
|
|
}
|
|
|
|
void CpuCoreManager::Shutdown() {
|
|
barrier->NotifyEnd();
|
|
if (Settings::values.use_multi_core) {
|
|
for (auto& thread : core_threads) {
|
|
thread->join();
|
|
thread.reset();
|
|
}
|
|
}
|
|
|
|
thread_to_cpu.clear();
|
|
for (auto& cpu_core : cores) {
|
|
cpu_core->Shutdown();
|
|
cpu_core.reset();
|
|
}
|
|
|
|
exclusive_monitor.reset();
|
|
barrier.reset();
|
|
}
|
|
|
|
Cpu& CpuCoreManager::GetCore(std::size_t index) {
|
|
return *cores.at(index);
|
|
}
|
|
|
|
const Cpu& CpuCoreManager::GetCore(std::size_t index) const {
|
|
return *cores.at(index);
|
|
}
|
|
|
|
ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() {
|
|
return *exclusive_monitor;
|
|
}
|
|
|
|
const ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() const {
|
|
return *exclusive_monitor;
|
|
}
|
|
|
|
Cpu& CpuCoreManager::GetCurrentCore() {
|
|
if (Settings::values.use_multi_core) {
|
|
const auto& search = thread_to_cpu.find(std::this_thread::get_id());
|
|
ASSERT(search != thread_to_cpu.end());
|
|
ASSERT(search->second);
|
|
return *search->second;
|
|
}
|
|
|
|
// Otherwise, use single-threaded mode active_core variable
|
|
return *cores[active_core];
|
|
}
|
|
|
|
const Cpu& CpuCoreManager::GetCurrentCore() const {
|
|
if (Settings::values.use_multi_core) {
|
|
const auto& search = thread_to_cpu.find(std::this_thread::get_id());
|
|
ASSERT(search != thread_to_cpu.end());
|
|
ASSERT(search->second);
|
|
return *search->second;
|
|
}
|
|
|
|
// Otherwise, use single-threaded mode active_core variable
|
|
return *cores[active_core];
|
|
}
|
|
|
|
void CpuCoreManager::RunLoop(bool tight_loop) {
|
|
// Update thread_to_cpu in case Core 0 is run from a different host thread
|
|
thread_to_cpu[std::this_thread::get_id()] = cores[0].get();
|
|
|
|
if (GDBStub::IsServerEnabled()) {
|
|
GDBStub::HandlePacket();
|
|
|
|
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
|
|
// execute. Otherwise, get out of the loop function.
|
|
if (GDBStub::GetCpuHaltFlag()) {
|
|
if (GDBStub::GetCpuStepFlag()) {
|
|
tight_loop = false;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto& core_timing = system.CoreTiming();
|
|
core_timing.ResetRun();
|
|
bool keep_running{};
|
|
do {
|
|
keep_running = false;
|
|
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
|
core_timing.SwitchContext(active_core);
|
|
if (core_timing.CanCurrentContextRun()) {
|
|
cores[active_core]->RunLoop(tight_loop);
|
|
}
|
|
keep_running |= core_timing.CanCurrentContextRun();
|
|
}
|
|
} while (keep_running);
|
|
|
|
if (GDBStub::IsServerEnabled()) {
|
|
GDBStub::SetCpuStepFlag(false);
|
|
}
|
|
}
|
|
|
|
void CpuCoreManager::InvalidateAllInstructionCaches() {
|
|
for (auto& cpu : cores) {
|
|
cpu->ArmInterface().ClearInstructionCache();
|
|
}
|
|
}
|
|
|
|
} // namespace Core
|