1
0
Fork 0
forked from suyu/suyu

Move time services to new IPC.

Add some fixes/improvements to usage with the new IPC
This commit is contained in:
Kelebek1 2024-01-26 15:29:04 +00:00
parent bd8635e26a
commit da410506a4
42 changed files with 1256 additions and 2091 deletions

View file

@ -1625,11 +1625,11 @@ s32 ParseTimeZoneBinary(Rule& out_rule, std::span<const u8> binary) {
return 0;
}
bool localtime_rz(CalendarTimeInternal* tmp, Rule* sp, time_t* timep) {
bool localtime_rz(CalendarTimeInternal* tmp, Rule const* sp, time_t* timep) {
return localsub(sp, timep, 0, tmp) == nullptr;
}
u32 mktime_tzname(time_t* out_time, Rule* sp, CalendarTimeInternal* tmp) {
u32 mktime_tzname(time_t* out_time, Rule const* sp, CalendarTimeInternal* tmp) {
return time1(out_time, tmp, localsub, sp, 0);
}

View file

@ -75,7 +75,7 @@ static_assert(sizeof(CalendarTimeInternal) == 0x3C, "CalendarTimeInternal has th
s32 ParseTimeZoneBinary(Rule& out_rule, std::span<const u8> binary);
bool localtime_rz(CalendarTimeInternal* tmp, Rule* sp, time_t* timep);
u32 mktime_tzname(time_t* out_time, Rule* sp, CalendarTimeInternal* tmp);
bool localtime_rz(CalendarTimeInternal* tmp, Rule const* sp, time_t* timep);
u32 mktime_tzname(time_t* out_time, Rule const* sp, CalendarTimeInternal* tmp);
} // namespace Tz

View file

@ -210,8 +210,6 @@ add_library(audio_core STATIC
sink/sink_stream.h
)
create_target_directory_groups(audio_core)
if (MSVC)
target_compile_options(audio_core PRIVATE
/we4242 # 'identifier': conversion from 'type1' to 'type2', possible loss of data
@ -267,3 +265,5 @@ endif()
if (YUZU_USE_PRECOMPILED_HEADERS)
target_precompile_headers(audio_core PRIVATE precompiled_headers.h)
endif()
create_target_directory_groups(audio_core)

View file

@ -244,8 +244,6 @@ if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
)
endif()
create_target_directory_groups(common)
target_link_libraries(common PUBLIC Boost::context Boost::headers fmt::fmt microprofile stb::headers Threads::Threads)
target_link_libraries(common PRIVATE lz4::lz4 zstd::zstd LLVM::Demangle)
@ -257,3 +255,5 @@ endif()
if (YUZU_USE_PRECOMPILED_HEADERS)
target_precompile_headers(common PRIVATE precompiled_headers.h)
endif()
create_target_directory_groups(common)

View file

@ -915,8 +915,6 @@ else()
)
endif()
create_target_directory_groups(core)
target_link_libraries(core PUBLIC common PRIVATE audio_core hid_core network video_core nx_tzdb tz)
target_link_libraries(core PUBLIC Boost::headers PRIVATE fmt::fmt nlohmann_json::nlohmann_json mbedtls RenderDoc::API)
if (MINGW)
@ -994,3 +992,5 @@ endif()
if (YUZU_ENABLE_LTO)
set_property(TARGET core PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE)
endif()
create_target_directory_groups(core)

View file

@ -200,22 +200,22 @@ struct System::Impl {
system.ServiceManager().GetService<Service::PSC::Time::StaticService>("time:s", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock;
static_service_a->GetStandardUserSystemClock(user_clock);
static_service_a->GetStandardUserSystemClock(&user_clock);
std::shared_ptr<Service::PSC::Time::SystemClock> local_clock;
static_service_a->GetStandardLocalSystemClock(local_clock);
static_service_a->GetStandardLocalSystemClock(&local_clock);
std::shared_ptr<Service::PSC::Time::SystemClock> network_clock;
static_service_s->GetStandardNetworkSystemClock(network_clock);
static_service_s->GetStandardNetworkSystemClock(&network_clock);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service;
static_service_a->GetTimeZoneService(timezone_service);
static_service_a->GetTimeZoneService(&timezone_service);
Service::PSC::Time::LocationName name{};
auto new_name = Settings::GetTimeZoneString(Settings::values.time_zone_index.GetValue());
std::memcpy(name.name.data(), new_name.data(), std::min(name.name.size(), new_name.size()));
std::memcpy(name.data(), new_name.data(), std::min(name.size(), new_name.size()));
timezone_service->SetDeviceLocation(name);
timezone_service->SetDeviceLocationName(name);
u64 time_offset = 0;
if (Settings::values.custom_rtc_enabled) {
@ -233,7 +233,7 @@ struct System::Impl {
local_clock->SetCurrentTime(new_time);
network_clock->GetSystemClockContext(context);
network_clock->GetSystemClockContext(&context);
settings_service->SetNetworkSystemClockContext(context);
network_clock->SetCurrentTime(new_time);
}

View file

@ -246,10 +246,10 @@ Result AlbumManager::SaveScreenShot(ApplicationAlbumEntry& out_entry,
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock{};
static_service->GetStandardUserSystemClock(user_clock);
static_service->GetStandardUserSystemClock(&user_clock);
s64 posix_time{};
auto result = user_clock->GetCurrentTime(posix_time);
auto result = user_clock->GetCurrentTime(&posix_time);
if (result.IsError()) {
return result;
@ -268,10 +268,10 @@ Result AlbumManager::SaveEditedScreenShot(ApplicationAlbumEntry& out_entry,
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock{};
static_service->GetStandardUserSystemClock(user_clock);
static_service->GetStandardUserSystemClock(&user_clock);
s64 posix_time{};
auto result = user_clock->GetCurrentTime(posix_time);
auto result = user_clock->GetCurrentTime(&posix_time);
if (result.IsError()) {
return result;
@ -470,11 +470,11 @@ AlbumFileDateTime AlbumManager::ConvertToAlbumDateTime(u64 posix_time) const {
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service{};
static_service->GetTimeZoneService(timezone_service);
static_service->GetTimeZoneService(&timezone_service);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
timezone_service->ToCalendarTimeWithMyRule(calendar_time, additional_info, posix_time);
timezone_service->ToCalendarTimeWithMyRule(&calendar_time, &additional_info, posix_time);
return {
.year = calendar_time.year,

View file

@ -12,6 +12,109 @@
namespace Service {
// clang-format off
template <typename T>
struct UnwrapArg {
using Type = std::remove_cvref_t<T>;
};
template <typename T, int A>
struct UnwrapArg<InLargeData<T, A>> {
using Type = std::remove_cv_t<typename InLargeData<T, A>::Type>;
};
template <typename T>
struct UnwrapArg<Out<T>> {
using Type = AutoOut<typename Out<T>::Type>;
};
template <typename T>
struct UnwrapArg<OutCopyHandle<T>> {
using Type = AutoOut<typename OutCopyHandle<T>::Type>;
};
template <typename T>
struct UnwrapArg<OutMoveHandle<T>> {
using Type = AutoOut<typename OutMoveHandle<T>::Type>;
};
template <typename T, int A>
struct UnwrapArg<OutLargeData<T, A>> {
using Type = AutoOut<typename OutLargeData<T, A>::Type>;
};
enum class ArgumentType {
InProcessId,
InData,
InInterface,
InCopyHandle,
OutData,
OutInterface,
OutCopyHandle,
OutMoveHandle,
InBuffer,
InLargeData,
OutBuffer,
OutLargeData,
};
template <typename T>
struct ArgumentTraits;
template <>
struct ArgumentTraits<ClientProcessId> {
static constexpr ArgumentType Type = ArgumentType::InProcessId;
};
template <typename T>
struct ArgumentTraits<SharedPointer<T>> {
static constexpr ArgumentType Type = ArgumentType::InInterface;
};
template <typename T>
struct ArgumentTraits<InCopyHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::InCopyHandle;
};
template <typename T>
struct ArgumentTraits<Out<SharedPointer<T>>> {
static constexpr ArgumentType Type = ArgumentType::OutInterface;
};
template <typename T>
struct ArgumentTraits<Out<T>> {
static constexpr ArgumentType Type = ArgumentType::OutData;
};
template <typename T>
struct ArgumentTraits<OutCopyHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::OutCopyHandle;
};
template <typename T>
struct ArgumentTraits<OutMoveHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::OutMoveHandle;
};
template <typename T, int A>
struct ArgumentTraits<Buffer<T, A>> {
static constexpr ArgumentType Type = (A & BufferAttr_In) == 0 ? ArgumentType::OutBuffer : ArgumentType::InBuffer;
};
template <typename T, int A>
struct ArgumentTraits<InLargeData<T, A>> {
static constexpr ArgumentType Type = ArgumentType::InLargeData;
};
template <typename T, int A>
struct ArgumentTraits<OutLargeData<T, A>> {
static constexpr ArgumentType Type = ArgumentType::OutLargeData;
};
template <typename T>
struct ArgumentTraits {
static constexpr ArgumentType Type = ArgumentType::InData;
};
struct RequestLayout {
u32 copy_handle_count;
u32 move_handle_count;
@ -122,6 +225,8 @@ void ReadInArgument(bool is_domain, CallArguments& args, const u8* raw_data, HLE
static_assert(PrevAlign <= ArgAlign, "Input argument is not ordered by alignment");
static_assert(!RawDataFinished, "All input interface arguments must appear after raw data");
static_assert(!std::is_pointer_v<ArgType>, "Input raw data must not be a pointer");
static_assert(std::is_trivially_copyable_v<ArgType>, "Input raw data must be trivially copyable");
constexpr size_t ArgOffset = Common::AlignUp(DataOffset, ArgAlign);
constexpr size_t ArgEnd = ArgOffset + ArgSize;
@ -198,7 +303,7 @@ void ReadInArgument(bool is_domain, CallArguments& args, const u8* raw_data, HLE
constexpr size_t BufferSize = sizeof(ArgType);
// Clear the existing data.
std::memset(&std::get<ArgIndex>(args), 0, BufferSize);
std::memset(&std::get<ArgIndex>(args).raw, 0, BufferSize);
return ReadInArgument<MethodArguments, CallArguments, PrevAlign, DataOffset, HandleIndex, InBufferIndex, OutBufferIndex + 1, RawDataFinished, ArgIndex + 1>(is_domain, args, raw_data, ctx, temp);
} else if constexpr (ArgumentTraits<ArgType>::Type == ArgumentType::OutBuffer) {
@ -237,27 +342,29 @@ void WriteOutArgument(bool is_domain, CallArguments& args, u8* raw_data, HLERequ
static_assert(PrevAlign <= ArgAlign, "Output argument is not ordered by alignment");
static_assert(!RawDataFinished, "All output interface arguments must appear after raw data");
static_assert(!std::is_pointer_v<ArgType>, "Output raw data must not be a pointer");
static_assert(std::is_trivially_copyable_v<decltype(std::get<ArgIndex>(args).raw)>, "Output raw data must be trivially copyable");
constexpr size_t ArgOffset = Common::AlignUp(DataOffset, ArgAlign);
constexpr size_t ArgEnd = ArgOffset + ArgSize;
std::memcpy(raw_data + ArgOffset, &std::get<ArgIndex>(args), ArgSize);
std::memcpy(raw_data + ArgOffset, &std::get<ArgIndex>(args).raw, ArgSize);
return WriteOutArgument<MethodArguments, CallArguments, ArgAlign, ArgEnd, OutBufferIndex, false, ArgIndex + 1>(is_domain, args, raw_data, ctx, temp);
} else if constexpr (ArgumentTraits<ArgType>::Type == ArgumentType::OutInterface) {
if (is_domain) {
ctx.AddDomainObject(std::get<ArgIndex>(args));
ctx.AddDomainObject(std::get<ArgIndex>(args).raw);
} else {
ctx.AddMoveInterface(std::get<ArgIndex>(args));
ctx.AddMoveInterface(std::get<ArgIndex>(args).raw);
}
return WriteOutArgument<MethodArguments, CallArguments, PrevAlign, DataOffset, OutBufferIndex, true, ArgIndex + 1>(is_domain, args, raw_data, ctx, temp);
} else if constexpr (ArgumentTraits<ArgType>::Type == ArgumentType::OutCopyHandle) {
ctx.AddCopyObject(std::get<ArgIndex>(args));
ctx.AddCopyObject(std::get<ArgIndex>(args).raw);
return WriteOutArgument<MethodArguments, CallArguments, PrevAlign, DataOffset, OutBufferIndex, RawDataFinished, ArgIndex + 1>(is_domain, args, raw_data, ctx, temp);
} else if constexpr (ArgumentTraits<ArgType>::Type == ArgumentType::OutMoveHandle) {
ctx.AddMoveObject(std::get<ArgIndex>(args));
ctx.AddMoveObject(std::get<ArgIndex>(args).raw);
return WriteOutArgument<MethodArguments, CallArguments, PrevAlign, DataOffset, OutBufferIndex, RawDataFinished, ArgIndex + 1>(is_domain, args, raw_data, ctx, temp);
} else if constexpr (ArgumentTraits<ArgType>::Type == ArgumentType::OutLargeData) {
@ -302,10 +409,10 @@ void CmifReplyWrapImpl(HLERequestContext& ctx, T& t, Result (T::*f)(A...)) {
}
const bool is_domain = Domain ? ctx.GetManager()->IsDomain() : false;
using MethodArguments = std::tuple<std::remove_reference_t<A>...>;
using MethodArguments = std::tuple<std::remove_cvref_t<A>...>;
OutTemporaryBuffers buffers{};
auto call_arguments = std::tuple<typename RemoveOut<A>::Type...>();
auto call_arguments = std::tuple<typename UnwrapArg<A>::Type...>();
// Read inputs.
const size_t offset_plus_command_id = ctx.GetDataPayloadOffset() + 2;

View file

@ -12,22 +12,31 @@
namespace Service {
// clang-format off
template <typename T>
struct AutoOut {
T raw;
};
template <typename T>
class Out {
public:
using Type = T;
/* implicit */ Out(Type& t) : raw(&t) {}
~Out() = default;
/* implicit */ Out(AutoOut<Type>& t) : raw(&t.raw) {}
/* implicit */ Out(Type* t) : raw(t) {}
Type* Get() const {
return raw;
}
Type& operator*() {
Type& operator*() const {
return *raw;
}
Type* operator->() const {
return raw;
}
private:
Type* raw;
};
@ -35,6 +44,9 @@ private:
template <typename T>
using SharedPointer = std::shared_ptr<T>;
template <typename T>
using OutInterface = Out<SharedPointer<T>>;
struct ClientProcessId {
explicit operator bool() const {
return pid != 0;
@ -101,17 +113,21 @@ class OutCopyHandle {
public:
using Type = T*;
/* implicit */ OutCopyHandle(Type& t) : raw(&t) {}
~OutCopyHandle() = default;
/* implicit */ OutCopyHandle(AutoOut<Type>& t) : raw(&t.raw) {}
/* implicit */ OutCopyHandle(Type* t) : raw(t) {}
Type* Get() const {
return raw;
}
Type& operator*() {
Type& operator*() const {
return *raw;
}
Type* operator->() const {
return raw;
}
private:
Type* raw;
};
@ -121,30 +137,34 @@ class OutMoveHandle {
public:
using Type = T*;
/* implicit */ OutMoveHandle(Type& t) : raw(&t) {}
~OutMoveHandle() = default;
/* implicit */ OutMoveHandle(AutoOut<Type>& t) : raw(&t.raw) {}
/* implicit */ OutMoveHandle(Type* t) : raw(t) {}
Type* Get() const {
return raw;
}
Type& operator*() {
Type& operator*() const {
return *raw;
}
Type* operator->() const {
return raw;
}
private:
Type* raw;
};
enum BufferAttr : int {
BufferAttr_In = (1U << 0),
BufferAttr_Out = (1U << 1),
BufferAttr_HipcMapAlias = (1U << 2),
BufferAttr_HipcPointer = (1U << 3),
BufferAttr_FixedSize = (1U << 4),
BufferAttr_HipcAutoSelect = (1U << 5),
BufferAttr_HipcMapTransferAllowsNonSecure = (1U << 6),
BufferAttr_HipcMapTransferAllowsNonDevice = (1U << 7),
/* 0x01 */ BufferAttr_In = (1U << 0),
/* 0x02 */ BufferAttr_Out = (1U << 1),
/* 0x04 */ BufferAttr_HipcMapAlias = (1U << 2),
/* 0x08 */ BufferAttr_HipcPointer = (1U << 3),
/* 0x10 */ BufferAttr_FixedSize = (1U << 4),
/* 0x20 */ BufferAttr_HipcAutoSelect = (1U << 5),
/* 0x40 */ BufferAttr_HipcMapTransferAllowsNonSecure = (1U << 6),
/* 0x80 */ BufferAttr_HipcMapTransferAllowsNonDevice = (1U << 7),
};
template <typename T, int A>
@ -172,122 +192,79 @@ struct Buffer : public std::span<T> {
}
};
template <BufferAttr A>
template <int A>
using InBuffer = Buffer<const u8, BufferAttr_In | A>;
template <typename T, BufferAttr A>
template <typename T, int A>
using InArray = Buffer<T, BufferAttr_In | A>;
template <BufferAttr A>
template <int A>
using OutBuffer = Buffer<u8, BufferAttr_Out | A>;
template <typename T, BufferAttr A>
template <typename T, int A>
using OutArray = Buffer<T, BufferAttr_Out | A>;
template <typename T, int A>
struct LargeData : public T {
class InLargeData {
public:
static_assert(std::is_trivially_copyable_v<T>, "LargeData type must be trivially copyable");
static_assert((A & BufferAttr_FixedSize) != 0, "LargeData attr must contain FixedSize");
static_assert(((A & BufferAttr_In) == 0) ^ ((A & BufferAttr_Out) == 0), "LargeData attr must be In or Out");
static constexpr BufferAttr Attr = static_cast<BufferAttr>(A);
static_assert((A & BufferAttr_Out) == 0, "InLargeData attr must not be Out");
static constexpr BufferAttr Attr = static_cast<BufferAttr>(A | BufferAttr_In | BufferAttr_FixedSize);
using Type = const T;
/* implicit */ InLargeData(Type& t) : raw(&t) {}
~InLargeData() = default;
InLargeData& operator=(Type* rhs) {
raw = rhs;
return *this;
}
Type* Get() const {
return raw;
}
Type& operator*() const {
return *raw;
}
Type* operator->() const {
return raw;
}
explicit operator bool() const {
return raw != nullptr;
}
private:
Type* raw;
};
template <typename T, int A>
class OutLargeData {
public:
static_assert(std::is_trivially_copyable_v<T>, "LargeData type must be trivially copyable");
static_assert((A & BufferAttr_In) == 0, "OutLargeData attr must not be In");
static constexpr BufferAttr Attr = static_cast<BufferAttr>(A | BufferAttr_In | BufferAttr_FixedSize);
using Type = T;
/* implicit */ LargeData(const T& rhs) : T(rhs) {}
/* implicit */ LargeData() = default;
};
/* implicit */ OutLargeData(Type* t) : raw(t) {}
/* implicit */ OutLargeData(AutoOut<T>& t) : raw(&t.raw) {}
template <typename T, BufferAttr A>
using InLargeData = LargeData<T, BufferAttr_FixedSize | BufferAttr_In | A>;
Type* Get() const {
return raw;
}
template <typename T, BufferAttr A>
using OutLargeData = LargeData<T, BufferAttr_FixedSize | BufferAttr_Out | A>;
Type& operator*() const {
return *raw;
}
template <typename T>
struct RemoveOut {
using Type = std::remove_reference_t<T>;
};
Type* operator->() const {
return raw;
}
template <typename T>
struct RemoveOut<Out<T>> {
using Type = typename Out<T>::Type;
};
template <typename T>
struct RemoveOut<OutCopyHandle<T>> {
using Type = typename OutCopyHandle<T>::Type;
};
template <typename T>
struct RemoveOut<OutMoveHandle<T>> {
using Type = typename OutMoveHandle<T>::Type;
};
enum class ArgumentType {
InProcessId,
InData,
InInterface,
InCopyHandle,
OutData,
OutInterface,
OutCopyHandle,
OutMoveHandle,
InBuffer,
InLargeData,
OutBuffer,
OutLargeData,
};
template <typename T>
struct ArgumentTraits;
template <>
struct ArgumentTraits<ClientProcessId> {
static constexpr ArgumentType Type = ArgumentType::InProcessId;
};
template <typename T>
struct ArgumentTraits<SharedPointer<T>> {
static constexpr ArgumentType Type = ArgumentType::InInterface;
};
template <typename T>
struct ArgumentTraits<InCopyHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::InCopyHandle;
};
template <typename T>
struct ArgumentTraits<Out<SharedPointer<T>>> {
static constexpr ArgumentType Type = ArgumentType::OutInterface;
};
template <typename T>
struct ArgumentTraits<Out<T>> {
static constexpr ArgumentType Type = ArgumentType::OutData;
};
template <typename T>
struct ArgumentTraits<OutCopyHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::OutCopyHandle;
};
template <typename T>
struct ArgumentTraits<OutMoveHandle<T>> {
static constexpr ArgumentType Type = ArgumentType::OutMoveHandle;
};
template <typename T, int A>
struct ArgumentTraits<Buffer<T, A>> {
static constexpr ArgumentType Type = (A & BufferAttr_In) == 0 ? ArgumentType::OutBuffer : ArgumentType::InBuffer;
};
template <typename T, int A>
struct ArgumentTraits<LargeData<T, A>> {
static constexpr ArgumentType Type = (A & BufferAttr_In) == 0 ? ArgumentType::OutLargeData : ArgumentType::InLargeData;
};
template <typename T>
struct ArgumentTraits {
static constexpr ArgumentType Type = ArgumentType::InData;
private:
Type* raw;
};
// clang-format on

View file

@ -41,7 +41,7 @@ bool AlarmWorker::GetClosestAlarmInfo(Service::PSC::Time::AlarmInfo& out_alarm_i
Service::PSC::Time::AlarmInfo alarm_info{};
s64 closest_time{};
auto res = m_time_m->GetClosestAlarmInfo(is_valid, alarm_info, closest_time);
auto res = m_time_m->GetClosestAlarmInfo(&is_valid, &alarm_info, &closest_time);
ASSERT(res == ResultSuccess);
if (is_valid) {
@ -76,6 +76,7 @@ void AlarmWorker::OnPowerStateChanged() {
Result AlarmWorker::AttachToClosestAlarmEvent() {
m_time_m->GetClosestAlarmUpdatedEvent(&m_event);
R_SUCCEED();
}

View file

@ -26,7 +26,7 @@ public:
void Initialize(std::shared_ptr<Service::PSC::Time::ServiceManager> time_m);
Kernel::KEvent& GetEvent() {
Kernel::KReadableEvent& GetEvent() {
return *m_event;
}
@ -44,7 +44,7 @@ private:
KernelHelpers::ServiceContext m_ctx;
std::shared_ptr<Service::PSC::Time::ServiceManager> m_time_m;
Kernel::KEvent* m_event{};
Kernel::KReadableEvent* m_event{};
Kernel::KEvent* m_timer_event{};
std::shared_ptr<Core::Timing::EventType> m_timer_timing_event;
StandardSteadyClockResource& m_steady_clock_resource;

View file

@ -13,8 +13,8 @@ void FileTimestampWorker::SetFilesystemPosixTime() {
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
if (m_initialized && m_system_clock->GetCurrentTime(time) == ResultSuccess &&
m_time_zone->ToCalendarTimeWithMyRule(calendar_time, additional_info, time) ==
if (m_initialized && m_system_clock->GetCurrentTime(&time) == ResultSuccess &&
m_time_zone->ToCalendarTimeWithMyRule(&calendar_time, &additional_info, time) ==
ResultSuccess) {
// TODO IFileSystemProxy::SetCurrentPosixTime
}

View file

@ -79,18 +79,18 @@ Service::PSC::Time::LocationName GetTimeZoneString(Service::PSC::Time::LocationN
auto configured_zone = Settings::GetTimeZoneString(Settings::values.time_zone_index.GetValue());
Service::PSC::Time::LocationName configured_name{};
std::memcpy(configured_name.name.data(), configured_zone.data(),
std::min(configured_name.name.size(), configured_zone.size()));
std::memcpy(configured_name.data(), configured_zone.data(),
std::min(configured_name.size(), configured_zone.size()));
if (!IsTimeZoneBinaryValid(configured_name)) {
configured_zone = Common::TimeZone::FindSystemTimeZone();
configured_name = {};
std::memcpy(configured_name.name.data(), configured_zone.data(),
std::min(configured_name.name.size(), configured_zone.size()));
std::memcpy(configured_name.data(), configured_zone.data(),
std::min(configured_name.size(), configured_zone.size()));
}
ASSERT_MSG(IsTimeZoneBinaryValid(configured_name), "Invalid time zone {}!",
configured_name.name.data());
configured_name.data());
return configured_name;
}
@ -103,7 +103,7 @@ TimeManager::TimeManager(Core::System& system)
m_time_m =
system.ServiceManager().GetService<Service::PSC::Time::ServiceManager>("time:m", true);
auto res = m_time_m->GetStaticServiceAsServiceManager(m_time_sm);
auto res = m_time_m->GetStaticServiceAsServiceManager(&m_time_sm);
ASSERT(res == ResultSuccess);
m_set_sys =
@ -114,10 +114,10 @@ TimeManager::TimeManager(Core::System& system)
m_worker.Initialize(m_time_sm, m_set_sys);
res = m_time_sm->GetStandardUserSystemClock(m_file_timestamp_worker.m_system_clock);
res = m_time_sm->GetStandardUserSystemClock(&m_file_timestamp_worker.m_system_clock);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetTimeZoneService(m_file_timestamp_worker.m_time_zone);
res = m_time_sm->GetTimeZoneService(&m_file_timestamp_worker.m_time_zone);
ASSERT(res == ResultSuccess);
res = SetupStandardSteadyClockCore();
@ -161,8 +161,8 @@ TimeManager::TimeManager(Core::System& system)
automatic_correction_time_point);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupStandardUserSystemClockCore(automatic_correction_time_point,
is_automatic_correction_enabled);
res = m_time_m->SetupStandardUserSystemClockCore(is_automatic_correction_enabled,
automatic_correction_time_point);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupEphemeralNetworkSystemClockCore();
@ -184,12 +184,12 @@ TimeManager::TimeManager(Core::System& system)
m_file_timestamp_worker.m_initialized = true;
s64 system_clock_time{};
if (m_file_timestamp_worker.m_system_clock->GetCurrentTime(system_clock_time) ==
if (m_file_timestamp_worker.m_system_clock->GetCurrentTime(&system_clock_time) ==
ResultSuccess) {
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo calendar_additional{};
if (m_file_timestamp_worker.m_time_zone->ToCalendarTimeWithMyRule(
calendar_time, calendar_additional, system_clock_time) == ResultSuccess) {
&calendar_time, &calendar_additional, system_clock_time) == ResultSuccess) {
// TODO IFileSystemProxy::SetCurrentPosixTime(system_clock_time,
// calendar_additional.ut_offset)
}
@ -228,10 +228,9 @@ Result TimeManager::SetupStandardSteadyClockCore() {
m_set_sys->SetExternalSteadyClockSourceId(clock_source_id);
}
res = m_time_m->SetupStandardSteadyClockCore(clock_source_id, m_steady_clock_resource.GetTime(),
external_steady_clock_internal_offset_ns,
standard_steady_clock_test_offset_ns,
reset_detected);
res = m_time_m->SetupStandardSteadyClockCore(
reset_detected, clock_source_id, m_steady_clock_resource.GetTime(),
external_steady_clock_internal_offset_ns, standard_steady_clock_test_offset_ns);
ASSERT(res == ResultSuccess);
R_SUCCEED();
}
@ -243,14 +242,15 @@ Result TimeManager::SetupTimeZoneServiceCore() {
auto configured_zone = GetTimeZoneString(name);
if (configured_zone.name != name.name) {
if (configured_zone != name) {
m_set_sys->SetDeviceTimeZoneLocationName(configured_zone);
name = configured_zone;
std::shared_ptr<Service::PSC::Time::SystemClock> local_clock;
m_time_sm->GetStandardLocalSystemClock(local_clock);
m_time_sm->GetStandardLocalSystemClock(&local_clock);
Service::PSC::Time::SystemClockContext context{};
local_clock->GetSystemClockContext(context);
local_clock->GetSystemClockContext(&context);
m_set_sys->SetDeviceTimeZoneLocationUpdatedTime(context.steady_time_point);
}
@ -267,7 +267,7 @@ Result TimeManager::SetupTimeZoneServiceCore() {
res = GetTimeZoneRule(rule_buffer, rule_size, name);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupTimeZoneServiceCore(name, time_point, rule_version, location_count,
res = m_time_m->SetupTimeZoneServiceCore(name, rule_version, location_count, time_point,
rule_buffer);
ASSERT(res == ResultSuccess);

View file

@ -3,9 +3,11 @@
#include <chrono>
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/errors.h"
@ -41,25 +43,25 @@ StaticService::StaticService(Core::System& system_,
time->m_steady_clock_resource} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &StaticService::Handle_GetStandardUserSystemClock, "GetStandardUserSystemClock"},
{1, &StaticService::Handle_GetStandardNetworkSystemClock, "GetStandardNetworkSystemClock"},
{2, &StaticService::Handle_GetStandardSteadyClock, "GetStandardSteadyClock"},
{3, &StaticService::Handle_GetTimeZoneService, "GetTimeZoneService"},
{4, &StaticService::Handle_GetStandardLocalSystemClock, "GetStandardLocalSystemClock"},
{5, &StaticService::Handle_GetEphemeralNetworkSystemClock, "GetEphemeralNetworkSystemClock"},
{20, &StaticService::Handle_GetSharedMemoryNativeHandle, "GetSharedMemoryNativeHandle"},
{50, &StaticService::Handle_SetStandardSteadyClockInternalOffset, "SetStandardSteadyClockInternalOffset"},
{51, &StaticService::Handle_GetStandardSteadyClockRtcValue, "GetStandardSteadyClockRtcValue"},
{100, &StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, &StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, &StaticService::Handle_GetStandardUserSystemClockInitialYear, "GetStandardUserSystemClockInitialYear"},
{200, &StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, &StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, &StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, &StaticService::Handle_GetClockSnapshot, "GetClockSnapshot"},
{401, &StaticService::Handle_GetClockSnapshotFromSystemClockContext, "GetClockSnapshotFromSystemClockContext"},
{500, &StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, &StaticService::Handle_CalculateSpanBetween, "CalculateSpanBetween"},
{0, D<&StaticService::GetStandardUserSystemClock>, "GetStandardUserSystemClock"},
{1, D<&StaticService::GetStandardNetworkSystemClock>, "GetStandardNetworkSystemClock"},
{2, D<&StaticService::GetStandardSteadyClock>, "GetStandardSteadyClock"},
{3, D<&StaticService::GetTimeZoneService>, "GetTimeZoneService"},
{4, D<&StaticService::GetStandardLocalSystemClock>, "GetStandardLocalSystemClock"},
{5, D<&StaticService::GetEphemeralNetworkSystemClock>, "GetEphemeralNetworkSystemClock"},
{20, D<&StaticService::GetSharedMemoryNativeHandle>, "GetSharedMemoryNativeHandle"},
{50, D<&StaticService::SetStandardSteadyClockInternalOffset>, "SetStandardSteadyClockInternalOffset"},
{51, D<&StaticService::GetStandardSteadyClockRtcValue>, "GetStandardSteadyClockRtcValue"},
{100, D<&StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled>, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, D<&StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled>, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, D<&StaticService::GetStandardUserSystemClockInitialYear>, "GetStandardUserSystemClockInitialYear"},
{200, D<&StaticService::IsStandardNetworkSystemClockAccuracySufficient>, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, D<&StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime>, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, D<&StaticService::CalculateMonotonicSystemClockBaseTimePoint>, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, D<&StaticService::GetClockSnapshot>, "GetClockSnapshot"},
{401, D<&StaticService::GetClockSnapshotFromSystemClockContext>, "GetClockSnapshotFromSystemClockContext"},
{500, D<&StaticService::CalculateStandardUserSystemClockDifferenceByUser>, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, D<&StaticService::CalculateSpanBetween>, "CalculateSpanBetween"},
};
// clang-format on
@ -71,314 +73,80 @@ StaticService::StaticService(Core::System& system_,
if (m_setup_info.can_write_local_clock && m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock && m_setup_info.can_write_timezone_device_location &&
!m_setup_info.can_write_steady_clock && !m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsAdmin(m_wrapped_service);
m_time_m->GetStaticServiceAsAdmin(&m_wrapped_service);
} else if (!m_setup_info.can_write_local_clock && !m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock &&
!m_setup_info.can_write_timezone_device_location &&
!m_setup_info.can_write_steady_clock &&
!m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsUser(m_wrapped_service);
m_time_m->GetStaticServiceAsUser(&m_wrapped_service);
} else if (!m_setup_info.can_write_local_clock && !m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock &&
!m_setup_info.can_write_timezone_device_location &&
m_setup_info.can_write_steady_clock && !m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsRepair(m_wrapped_service);
m_time_m->GetStaticServiceAsRepair(&m_wrapped_service);
} else {
UNREACHABLE();
}
auto res = m_wrapped_service->GetTimeZoneService(m_time_zone);
auto res = m_wrapped_service->GetTimeZoneService(&m_time_zone);
ASSERT(res == ResultSuccess);
}
void StaticService::Handle_GetStandardUserSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardUserSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardSteadyClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SteadyClock> service{};
auto res = GetStandardSteadyClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetTimeZoneService(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<TimeZoneService> service{};
auto res = GetTimeZoneService(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetStandardLocalSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardLocalSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetEphemeralNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KSharedMemory* shared_memory{};
auto res = GetSharedMemoryNativeHandle(&shared_memory);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(shared_memory);
}
void StaticService::Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto offset_ns{rp.Pop<s64>()};
auto res = SetStandardSteadyClockInternalOffset(offset_ns);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 rtc_value{};
auto res = GetStandardSteadyClockRtcValue(rtc_value);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(rtc_value);
}
void StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_enabled{};
auto res = IsStandardUserSystemClockAutomaticCorrectionEnabled(is_enabled);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_enabled);
}
void StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto automatic_correction{rp.Pop<bool>()};
auto res = SetStandardUserSystemClockAutomaticCorrectionEnabled(automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s32 initial_year{};
auto res = GetStandardUserSystemClockInitialYear(initial_year);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(initial_year);
}
void StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_sufficient{};
auto res = IsStandardNetworkSystemClockAccuracySufficient(is_sufficient);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_sufficient);
}
void StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx,
2 + sizeof(Service::PSC::Time::SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
s64 time{};
auto res = CalculateMonotonicSystemClockBaseTimePoint(time, context);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void StaticService::Handle_GetClockSnapshot(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto type{rp.PopEnum<Service::PSC::Time::TimeType>()};
Service::PSC::Time::ClockSnapshot snapshot{};
auto res = GetClockSnapshot(snapshot, type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto clock_type{rp.PopEnum<Service::PSC::Time::TimeType>()};
[[maybe_unused]] auto alignment{rp.Pop<u32>()};
auto user_context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
auto network_context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
Service::PSC::Time::ClockSnapshot snapshot{};
auto res =
GetClockSnapshotFromSystemClockContext(snapshot, user_context, network_context, clock_type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::ClockSnapshot a{};
Service::PSC::Time::ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
s64 difference{};
auto res = CalculateStandardUserSystemClockDifferenceByUser(difference, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(difference);
}
void StaticService::Handle_CalculateSpanBetween(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::ClockSnapshot a{};
Service::PSC::Time::ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
s64 time{};
auto res = CalculateSpanBetween(time, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(time);
}
// =============================== Implementations ===========================
Result StaticService::GetStandardUserSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
OutInterface<Service::PSC::Time::SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetStandardUserSystemClock(out_service));
}
Result StaticService::GetStandardNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
OutInterface<Service::PSC::Time::SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetStandardNetworkSystemClock(out_service));
}
Result StaticService::GetStandardSteadyClock(
std::shared_ptr<Service::PSC::Time::SteadyClock>& out_service) {
OutInterface<Service::PSC::Time::SteadyClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetStandardSteadyClock(out_service));
}
Result StaticService::GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service) {
out_service = std::make_shared<TimeZoneService>(m_system, m_file_timestamp_worker,
m_setup_info.can_write_timezone_device_location,
Result StaticService::GetTimeZoneService(OutInterface<TimeZoneService> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<TimeZoneService>(
m_system, m_file_timestamp_worker, m_setup_info.can_write_timezone_device_location,
m_time_zone);
R_SUCCEED();
}
Result StaticService::GetStandardLocalSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
OutInterface<Service::PSC::Time::SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetStandardLocalSystemClock(out_service));
}
Result StaticService::GetEphemeralNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
OutInterface<Service::PSC::Time::SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetEphemeralNetworkSystemClock(out_service));
}
Result StaticService::GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory) {
Result StaticService::GetSharedMemoryNativeHandle(
OutCopyHandle<Kernel::KSharedMemory> out_shared_memory) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_wrapped_service->GetSharedMemoryNativeHandle(out_shared_memory));
}
Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
LOG_DEBUG(Service_Time, "called. offset_ns={}", offset_ns);
R_UNLESS(m_setup_info.can_write_steady_clock, Service::PSC::Time::ResultPermissionDenied);
R_RETURN(m_set_sys->SetExternalSteadyClockInternalOffset(
@ -386,62 +154,92 @@ Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()));
}
Result StaticService::GetStandardSteadyClockRtcValue(s64& out_rtc_value) {
R_RETURN(m_standard_steady_clock_resource.GetRtcTimeInSeconds(out_rtc_value));
Result StaticService::GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value); });
R_RETURN(m_standard_steady_clock_resource.GetRtcTimeInSeconds(*out_rtc_value));
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
bool& out_automatic_correction) {
Out<bool> out_automatic_correction) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. out_automatic_correction={}", *out_automatic_correction);
});
R_RETURN(m_wrapped_service->IsStandardUserSystemClockAutomaticCorrectionEnabled(
out_automatic_correction));
}
Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
bool automatic_correction) {
LOG_DEBUG(Service_Time, "called. automatic_correction={}", automatic_correction);
R_RETURN(m_wrapped_service->SetStandardUserSystemClockAutomaticCorrectionEnabled(
automatic_correction));
}
Result StaticService::GetStandardUserSystemClockInitialYear(s32& out_year) {
out_year = GetSettingsItemValue<s32>(m_set_sys, "time", "standard_user_clock_initial_year");
Result StaticService::GetStandardUserSystemClockInitialYear(Out<s32> out_year) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_year={}", *out_year); });
*out_year = GetSettingsItemValue<s32>(m_set_sys, "time", "standard_user_clock_initial_year");
R_SUCCEED();
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient) {
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient); });
R_RETURN(m_wrapped_service->IsStandardNetworkSystemClockAccuracySufficient(out_is_sufficient));
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point) {
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
R_RETURN(m_wrapped_service->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
out_time_point));
}
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
s64& out_time, Service::PSC::Time::SystemClockContext& context) {
Out<s64> out_time, Service::PSC::Time::SystemClockContext& context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time); });
R_RETURN(m_wrapped_service->CalculateMonotonicSystemClockBaseTimePoint(out_time, context));
}
Result StaticService::GetClockSnapshot(Service::PSC::Time::ClockSnapshot& out_snapshot,
Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot,
Service::PSC::Time::TimeType type) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot); });
R_RETURN(m_wrapped_service->GetClockSnapshot(out_snapshot, type));
}
Result StaticService::GetClockSnapshotFromSystemClockContext(
Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::TimeType type, OutClockSnapshot out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context, Service::PSC::Time::TimeType type) {
R_RETURN(m_wrapped_service->GetClockSnapshotFromSystemClockContext(out_snapshot, user_context,
network_context, type));
Service::PSC::Time::SystemClockContext& network_context) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. type={} out_snapshot={} user_context={} network_context={}", type,
*out_snapshot, user_context, network_context);
});
R_RETURN(m_wrapped_service->GetClockSnapshotFromSystemClockContext(
type, out_snapshot, user_context, network_context));
}
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(
s64& out_time, Service::PSC::Time::ClockSnapshot& a, Service::PSC::Time::ClockSnapshot& b) {
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_time,
InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
R_RETURN(m_wrapped_service->CalculateStandardUserSystemClockDifferenceByUser(out_time, a, b));
}
Result StaticService::CalculateSpanBetween(s64& out_time, Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b) {
Result StaticService::CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
R_RETURN(m_wrapped_service->CalculateSpanBetween(out_time, a, b));
}

View file

@ -4,6 +4,7 @@
#pragma once
#include "common/common_types.h"
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/glue/time/manager.h"
#include "core/hle/service/glue/time/time_zone.h"
#include "core/hle/service/psc/time/common.h"
@ -29,6 +30,10 @@ class FileTimestampWorker;
class StandardSteadyClockResource;
class StaticService final : public ServiceFramework<StaticService> {
using InClockSnapshot = InLargeData<Service::PSC::Time::ClockSnapshot, BufferAttr_HipcPointer>;
using OutClockSnapshot =
OutLargeData<Service::PSC::Time::ClockSnapshot, BufferAttr_HipcPointer>;
public:
explicit StaticService(Core::System& system,
Service::PSC::Time::StaticServiceSetupInfo setup_info,
@ -36,65 +41,34 @@ public:
~StaticService() override = default;
Result GetStandardUserSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetStandardNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetStandardSteadyClock(std::shared_ptr<Service::PSC::Time::SteadyClock>& out_service);
Result GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service);
Result GetStandardLocalSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetStandardUserSystemClock(OutInterface<Service::PSC::Time::SystemClock> out_service);
Result GetStandardNetworkSystemClock(OutInterface<Service::PSC::Time::SystemClock> out_service);
Result GetStandardSteadyClock(OutInterface<Service::PSC::Time::SteadyClock> out_service);
Result GetTimeZoneService(OutInterface<TimeZoneService> out_service);
Result GetStandardLocalSystemClock(OutInterface<Service::PSC::Time::SystemClock> out_service);
Result GetEphemeralNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory);
Result SetStandardSteadyClockInternalOffset(s64 offset);
Result GetStandardSteadyClockRtcValue(s64& out_rtc_value);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_automatic_correction);
OutInterface<Service::PSC::Time::SystemClock> out_service);
Result GetSharedMemoryNativeHandle(OutCopyHandle<Kernel::KSharedMemory> out_shared_memory);
Result SetStandardSteadyClockInternalOffset(s64 offset_ns);
Result GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(Out<bool> out_is_enabled);
Result SetStandardUserSystemClockAutomaticCorrectionEnabled(bool automatic_correction);
Result GetStandardUserSystemClockInitialYear(s32& out_year);
Result IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient);
Result GetStandardUserSystemClockInitialYear(Out<s32> out_year);
Result IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point);
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point);
Result CalculateMonotonicSystemClockBaseTimePoint(
s64& out_time, Service::PSC::Time::SystemClockContext& context);
Result GetClockSnapshot(Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::TimeType type);
Out<s64> out_time, Service::PSC::Time::SystemClockContext& context);
Result GetClockSnapshot(OutClockSnapshot out_snapshot, Service::PSC::Time::TimeType type);
Result GetClockSnapshotFromSystemClockContext(
Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::TimeType type, OutClockSnapshot out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context, Service::PSC::Time::TimeType type);
Result CalculateStandardUserSystemClockDifferenceByUser(s64& out_time,
Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b);
Result CalculateSpanBetween(s64& out_time, Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b);
Service::PSC::Time::SystemClockContext& network_context);
Result CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_difference,
InClockSnapshot a, InClockSnapshot b);
Result CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a, InClockSnapshot b);
private:
Result GetClockSnapshotImpl(Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context,
Service::PSC::Time::TimeType type);
void Handle_GetStandardUserSystemClock(HLERequestContext& ctx);
void Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetStandardSteadyClock(HLERequestContext& ctx);
void Handle_GetTimeZoneService(HLERequestContext& ctx);
void Handle_GetStandardLocalSystemClock(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx);
void Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx);
void Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx);
void Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(HLERequestContext& ctx);
void Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx);
void Handle_GetClockSnapshot(HLERequestContext& ctx);
void Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx);
void Handle_CalculateStandardUserSystemClockDifferenceByUser(HLERequestContext& ctx);
void Handle_CalculateSpanBetween(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;

View file

@ -3,8 +3,10 @@
#include <chrono>
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/time_zone.h"
#include "core/hle/service/glue/time/time_zone_binary.h"
@ -28,20 +30,20 @@ TimeZoneService::TimeZoneService(
m_wrapped_service{std::move(time_zone_service)}, m_operation_event{m_system} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &TimeZoneService::Handle_GetDeviceLocationName, "GetDeviceLocationName"},
{1, &TimeZoneService::Handle_SetDeviceLocationName, "SetDeviceLocationName"},
{2, &TimeZoneService::Handle_GetTotalLocationNameCount, "GetTotalLocationNameCount"},
{3, &TimeZoneService::Handle_LoadLocationNameList, "LoadLocationNameList"},
{4, &TimeZoneService::Handle_LoadTimeZoneRule, "LoadTimeZoneRule"},
{5, &TimeZoneService::Handle_GetTimeZoneRuleVersion, "GetTimeZoneRuleVersion"},
{6, &TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime, "GetDeviceLocationNameAndUpdatedTime"},
{7, &TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule, "SetDeviceLocationNameWithTimeZoneRule"},
{8, &TimeZoneService::Handle_ParseTimeZoneBinary, "ParseTimeZoneBinary"},
{20, &TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, &TimeZoneService::Handle_ToCalendarTime, "ToCalendarTime"},
{101, &TimeZoneService::Handle_ToCalendarTimeWithMyRule, "ToCalendarTimeWithMyRule"},
{201, &TimeZoneService::Handle_ToPosixTime, "ToPosixTime"},
{202, &TimeZoneService::Handle_ToPosixTimeWithMyRule, "ToPosixTimeWithMyRule"},
{0, D<&TimeZoneService::GetDeviceLocationName>, "GetDeviceLocationName"},
{1, D<&TimeZoneService::SetDeviceLocationName>, "SetDeviceLocationName"},
{2, D<&TimeZoneService::GetTotalLocationNameCount>, "GetTotalLocationNameCount"},
{3, D<&TimeZoneService::LoadLocationNameList>, "LoadLocationNameList"},
{4, D<&TimeZoneService::LoadTimeZoneRule>, "LoadTimeZoneRule"},
{5, D<&TimeZoneService::GetTimeZoneRuleVersion>, "GetTimeZoneRuleVersion"},
{6, D<&TimeZoneService::GetDeviceLocationNameAndUpdatedTime>, "GetDeviceLocationNameAndUpdatedTime"},
{7, D<&TimeZoneService::SetDeviceLocationNameWithTimeZoneRule>, "SetDeviceLocationNameWithTimeZoneRule"},
{8, D<&TimeZoneService::ParseTimeZoneBinary>, "ParseTimeZoneBinary"},
{20, D<&TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle>, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, D<&TimeZoneService::ToCalendarTime>, "ToCalendarTime"},
{101, D<&TimeZoneService::ToCalendarTimeWithMyRule>, "ToCalendarTimeWithMyRule"},
{201, D<&TimeZoneService::ToPosixTime>, "ToPosixTime"},
{202, D<&TimeZoneService::ToPosixTimeWithMyRule>, "ToPosixTimeWithMyRule"},
};
// clang-format on
RegisterHandlers(functions);
@ -53,220 +55,16 @@ TimeZoneService::TimeZoneService(
TimeZoneService::~TimeZoneService() = default;
void TimeZoneService::Handle_GetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::GetDeviceLocationName(
Out<Service::PSC::Time::LocationName> out_location_name) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name); });
Service::PSC::Time::LocationName name{};
auto res = GetDeviceLocationName(name);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::LocationName) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::LocationName>(name);
}
void TimeZoneService::Handle_SetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<Service::PSC::Time::LocationName>()};
auto res = SetDeviceLocation(name);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetTotalLocationNameCount(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
u32 count{};
auto res = GetTotalLocationNameCount(count);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_LoadLocationNameList(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto index{rp.Pop<u32>()};
auto max_names{ctx.GetWriteBufferSize() / sizeof(Service::PSC::Time::LocationName)};
std::vector<Service::PSC::Time::LocationName> names{};
u32 count{};
auto res = LoadLocationNameList(count, names, max_names, index);
ctx.WriteBuffer(names);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_LoadTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<Service::PSC::Time::LocationName>()};
Tz::Rule rule{};
auto res = LoadTimeZoneRule(rule, name);
ctx.WriteBuffer(rule);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::RuleVersion rule_version{};
auto res = GetTimeZoneRuleVersion(rule_version);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::RuleVersion) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::RuleVersion>(rule_version);
}
void TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::LocationName name{};
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetDeviceLocationNameAndUpdatedTime(time_point, name);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::LocationName) / sizeof(u32)) +
(sizeof(Service::PSC::Time::SteadyClockTimePoint) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::LocationName>(name);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = SetDeviceLocationNameWithTimeZoneRule();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_ParseTimeZoneBinary(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(Service::PSC::Time::ResultNotImplemented);
}
void TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetDeviceLocationNameOperationEventReadableHandle(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void TimeZoneService::Handle_ToCalendarTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto rule_buffer{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, rule_buffer.data(), sizeof(Tz::Rule));
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTime(calendar_time, additional_info, time, rule);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::CalendarTime) / sizeof(u32)) +
(sizeof(Service::PSC::Time::CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::CalendarTime>(calendar_time);
rb.PushRaw<Service::PSC::Time::CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
LOG_DEBUG(Service_Time, "called. time={}", time);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTimeWithMyRule(calendar_time, additional_info, time);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::CalendarTime) / sizeof(u32)) +
(sizeof(Service::PSC::Time::CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::CalendarTime>(calendar_time);
rb.PushRaw<Service::PSC::Time::CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToPosixTime(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<Service::PSC::Time::CalendarTime>()};
LOG_DEBUG(Service_Time, "called. calendar year {} month {} day {} hour {} minute {} second {}",
calendar.year, calendar.month, calendar.day, calendar.hour, calendar.minute,
calendar.second);
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, binary.data(), sizeof(Tz::Rule));
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTime(count, times, times_count, calendar, rule);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<Service::PSC::Time::CalendarTime>()};
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTimeWithMyRule(count, times, times_count, calendar);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
// =============================== Implementations ===========================
Result TimeZoneService::GetDeviceLocationName(Service::PSC::Time::LocationName& out_location_name) {
R_RETURN(m_wrapped_service->GetDeviceLocationName(out_location_name));
}
Result TimeZoneService::SetDeviceLocation(Service::PSC::Time::LocationName& location_name) {
Result TimeZoneService::SetDeviceLocationName(Service::PSC::Time::LocationName& location_name) {
LOG_DEBUG(Service_Time, "called. location_name={}", location_name);
R_UNLESS(m_can_write_timezone_device_location, Service::PSC::Time::ResultPermissionDenied);
R_UNLESS(IsTimeZoneBinaryValid(location_name), Service::PSC::Time::ResultTimeZoneNotFound);
@ -282,7 +80,7 @@ Result TimeZoneService::SetDeviceLocation(Service::PSC::Time::LocationName& loca
Service::PSC::Time::SteadyClockTimePoint time_point{};
Service::PSC::Time::LocationName name{};
R_TRY(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(time_point, name));
R_TRY(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(&name, &time_point));
m_set_sys->SetDeviceTimeZoneLocationName(name);
m_set_sys->SetDeviceTimeZoneLocationUpdatedTime(time_point);
@ -294,19 +92,27 @@ Result TimeZoneService::SetDeviceLocation(Service::PSC::Time::LocationName& loca
R_SUCCEED();
}
Result TimeZoneService::GetTotalLocationNameCount(u32& out_count) {
Result TimeZoneService::GetTotalLocationNameCount(Out<u32> out_count) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_count={}", *out_count); });
R_RETURN(m_wrapped_service->GetTotalLocationNameCount(out_count));
}
Result TimeZoneService::LoadLocationNameList(
u32& out_count, std::vector<Service::PSC::Time::LocationName>& out_names, size_t max_names,
u32 index) {
Out<u32> out_count,
OutArray<Service::PSC::Time::LocationName, BufferAttr_HipcMapAlias> out_names, u32 index) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. index={} out_count={} out_names[0]={} out_names[1]={}",
index, *out_count, out_names[0], out_names[1]);
});
std::scoped_lock l{m_mutex};
R_RETURN(GetTimeZoneLocationList(out_count, out_names, max_names, index));
R_RETURN(GetTimeZoneLocationList(*out_count, out_names, out_names.size(), index));
}
Result TimeZoneService::LoadTimeZoneRule(Tz::Rule& out_rule,
Service::PSC::Time::LocationName& name) {
Result TimeZoneService::LoadTimeZoneRule(OutRule out_rule, Service::PSC::Time::LocationName& name) {
LOG_DEBUG(Service_Time, "called. name={}", name);
std::scoped_lock l{m_mutex};
std::span<const u8> binary{};
size_t binary_size{};
@ -314,23 +120,43 @@ Result TimeZoneService::LoadTimeZoneRule(Tz::Rule& out_rule,
R_RETURN(m_wrapped_service->ParseTimeZoneBinary(out_rule, binary));
}
Result TimeZoneService::GetTimeZoneRuleVersion(Service::PSC::Time::RuleVersion& out_rule_version) {
Result TimeZoneService::GetTimeZoneRuleVersion(
Out<Service::PSC::Time::RuleVersion> out_rule_version) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version); });
R_RETURN(m_wrapped_service->GetTimeZoneRuleVersion(out_rule_version));
}
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point,
Service::PSC::Time::LocationName& location_name) {
R_RETURN(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(out_time_point, location_name));
Out<Service::PSC::Time::LocationName> location_name,
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. location_name={} out_time_point={}", *location_name,
*out_time_point);
});
R_RETURN(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(location_name, out_time_point));
}
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule() {
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule(
Service::PSC::Time::LocationName& location_name, InBuffer<BufferAttr_HipcAutoSelect> binary) {
LOG_DEBUG(Service_Time, "called. location_name={}", location_name);
R_UNLESS(m_can_write_timezone_device_location, Service::PSC::Time::ResultPermissionDenied);
R_RETURN(Service::PSC::Time::ResultNotImplemented);
}
Result TimeZoneService::ParseTimeZoneBinary(OutRule out_rule,
InBuffer<BufferAttr_HipcAutoSelect> binary) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(Service::PSC::Time::ResultNotImplemented);
}
Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
Kernel::KEvent** out_event) {
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
if (!operation_event_initialized) {
operation_event_initialized = false;
@ -342,34 +168,59 @@ Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
g_list_nodes.push_back(m_operation_event);
}
*out_event = m_operation_event.m_event;
*out_event = &m_operation_event.m_event->GetReadableEvent();
R_SUCCEED();
}
Result TimeZoneService::ToCalendarTime(
Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule) {
Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info, s64 time, InRule rule) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
R_RETURN(m_wrapped_service->ToCalendarTime(out_calendar_time, out_additional_info, time, rule));
}
Result TimeZoneService::ToCalendarTimeWithMyRule(
Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time) {
Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info, s64 time) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
R_RETURN(
m_wrapped_service->ToCalendarTimeWithMyRule(out_calendar_time, out_additional_info, time));
}
Result TimeZoneService::ToPosixTime(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time,
Tz::Rule& rule) {
Result TimeZoneService::ToPosixTime(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count,
Service::PSC::Time::CalendarTime& calendar_time, InRule rule) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} "
"out_times_count={}",
calendar_time, *out_count, out_times[0], out_times[1], *out_times_count);
});
R_RETURN(
m_wrapped_service->ToPosixTime(out_count, out_times, out_times_count, calendar_time, rule));
}
Result TimeZoneService::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count,
Result TimeZoneService::ToPosixTimeWithMyRule(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count,
Service::PSC::Time::CalendarTime& calendar_time) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} "
"out_times_count={}",
calendar_time, *out_count, out_times[0], out_times[1], *out_times_count);
});
R_RETURN(m_wrapped_service->ToPosixTimeWithMyRule(out_count, out_times, out_times_count,
calendar_time));
}

View file

@ -8,6 +8,7 @@
#include <span>
#include <vector>
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/server_manager.h"
@ -33,6 +34,9 @@ namespace Service::Glue::Time {
class FileTimestampWorker;
class TimeZoneService final : public ServiceFramework<TimeZoneService> {
using InRule = InLargeData<Tz::Rule, BufferAttr_HipcMapAlias>;
using OutRule = OutLargeData<Tz::Rule, BufferAttr_HipcMapAlias>;
public:
explicit TimeZoneService(
Core::System& system, FileTimestampWorker& file_timestamp_worker,
@ -41,46 +45,37 @@ public:
~TimeZoneService() override;
Result GetDeviceLocationName(Service::PSC::Time::LocationName& out_location_name);
Result SetDeviceLocation(Service::PSC::Time::LocationName& location_name);
Result GetTotalLocationNameCount(u32& out_count);
Result LoadLocationNameList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
size_t max_names, u32 index);
Result LoadTimeZoneRule(Tz::Rule& out_rule, Service::PSC::Time::LocationName& name);
Result GetTimeZoneRuleVersion(Service::PSC::Time::RuleVersion& out_rule_version);
Result GetDeviceLocationName(Out<Service::PSC::Time::LocationName> out_location_name);
Result SetDeviceLocationName(Service::PSC::Time::LocationName& location_name);
Result GetTotalLocationNameCount(Out<u32> out_count);
Result LoadLocationNameList(
Out<u32> out_count,
OutArray<Service::PSC::Time::LocationName, BufferAttr_HipcMapAlias> out_names, u32 index);
Result LoadTimeZoneRule(OutRule out_rule, Service::PSC::Time::LocationName& location_name);
Result GetTimeZoneRuleVersion(Out<Service::PSC::Time::RuleVersion> out_rule_version);
Result GetDeviceLocationNameAndUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point,
Service::PSC::Time::LocationName& location_name);
Result SetDeviceLocationNameWithTimeZoneRule();
Result GetDeviceLocationNameOperationEventReadableHandle(Kernel::KEvent** out_event);
Result ToCalendarTime(Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info,
s64 time);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
Out<Service::PSC::Time::LocationName> location_name,
Out<Service::PSC::Time::SteadyClockTimePoint> out_time_point);
Result SetDeviceLocationNameWithTimeZoneRule(Service::PSC::Time::LocationName& location_name,
InBuffer<BufferAttr_HipcAutoSelect> binary);
Result ParseTimeZoneBinary(OutRule out_rule, InBuffer<BufferAttr_HipcAutoSelect> binary);
Result GetDeviceLocationNameOperationEventReadableHandle(
OutCopyHandle<Kernel::KReadableEvent> out_event);
Result ToCalendarTime(Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info,
s64 time, InRule rule);
Result ToCalendarTimeWithMyRule(
Out<Service::PSC::Time::CalendarTime> out_calendar_time,
Out<Service::PSC::Time::CalendarAdditionalInfo> out_additional_info, s64 time);
Result ToPosixTime(Out<u32> out_count, OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count, Service::PSC::Time::CalendarTime& calendar_time,
InRule rule);
Result ToPosixTimeWithMyRule(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count,
Service::PSC::Time::CalendarTime& calendar_time);
private:
void Handle_GetDeviceLocationName(HLERequestContext& ctx);
void Handle_SetDeviceLocationName(HLERequestContext& ctx);
void Handle_GetTotalLocationNameCount(HLERequestContext& ctx);
void Handle_LoadLocationNameList(HLERequestContext& ctx);
void Handle_LoadTimeZoneRule(HLERequestContext& ctx);
void Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx);
void Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx);
void Handle_ParseTimeZoneBinary(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameOperationEventReadableHandle(HLERequestContext& ctx);
void Handle_ToCalendarTime(HLERequestContext& ctx);
void Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx);
void Handle_ToPosixTime(HLERequestContext& ctx);
void Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;

View file

@ -103,7 +103,7 @@ void GetTimeZoneZonePath(std::string& out_path, Service::PSC::Time::LocationName
return;
}
// out_path = fmt::format("{}:/zoneinfo/{}", "TimeZoneBinary", name);
out_path = fmt::format("/zoneinfo/{}", name.name.data());
out_path = fmt::format("/zoneinfo/{}", name.data());
}
bool IsTimeZoneBinaryValid(Service::PSC::Time::LocationName& name) {
@ -169,7 +169,7 @@ Result GetTimeZoneRule(std::span<const u8>& out_rule, size_t& out_rule_size,
}
Result GetTimeZoneLocationList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
std::span<Service::PSC::Time::LocationName> out_names,
size_t max_names, u32 index) {
std::string path{};
GetTimeZoneBinaryListPath(path);
@ -193,7 +193,7 @@ Result GetTimeZoneLocationList(u32& out_count,
if (chr == '\n') {
if (name_count >= index) {
out_names.push_back(current_name);
out_names[out_count] = current_name;
out_count++;
if (out_count >= max_names) {
break;
@ -209,10 +209,9 @@ Result GetTimeZoneLocationList(u32& out_count,
break;
}
R_UNLESS(current_name_len <= current_name.name.size() - 2,
Service::PSC::Time::ResultFailed);
R_UNLESS(current_name_len <= current_name.size() - 2, Service::PSC::Time::ResultFailed);
current_name.name[current_name_len++] = chr;
current_name[current_name_len++] = chr;
}
R_SUCCEED();

View file

@ -26,7 +26,7 @@ Result GetTimeZoneVersion(Service::PSC::Time::RuleVersion& out_rule_version);
Result GetTimeZoneRule(std::span<const u8>& out_rule, size_t& out_rule_size,
Service::PSC::Time::LocationName& name);
Result GetTimeZoneLocationList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
std::span<Service::PSC::Time::LocationName> out_names,
size_t max_names, u32 index);
} // namespace Service::Glue::Time

View file

@ -38,11 +38,12 @@ T GetSettingsItemValue(std::shared_ptr<Service::Set::ISystemSettingsServer>& set
TimeWorker::TimeWorker(Core::System& system, StandardSteadyClockResource& steady_clock_resource,
FileTimestampWorker& file_timestamp_worker)
: m_system{system}, m_ctx{m_system, "Glue:58"}, m_event{m_ctx.CreateEvent("Glue:58:Event")},
: m_system{system}, m_ctx{m_system, "Glue:TimeWorker"}, m_event{m_ctx.CreateEvent(
"Glue:TimeWorker:Event")},
m_steady_clock_resource{steady_clock_resource},
m_file_timestamp_worker{file_timestamp_worker}, m_timer_steady_clock{m_ctx.CreateEvent(
"Glue:58:SteadyClockTimerEvent")},
m_timer_file_system{m_ctx.CreateEvent("Glue:58:FileTimeTimerEvent")},
"Glue:TimeWorker:SteadyClockTimerEvent")},
m_timer_file_system{m_ctx.CreateEvent("Glue:TimeWorker:FileTimeTimerEvent")},
m_alarm_worker{m_system, m_steady_clock_resource}, m_pm_state_change_handler{m_alarm_worker} {
g_ig_report_network_clock_context_set = false;
g_report_network_clock_context = {};
@ -113,17 +114,17 @@ void TimeWorker::Initialize(std::shared_ptr<Service::PSC::Time::StaticService> t
std::chrono::nanoseconds(fs_notify_time_ns),
m_timer_file_system_timing_event);
auto res = m_time_sm->GetStandardLocalSystemClock(m_local_clock);
auto res = m_time_sm->GetStandardLocalSystemClock(&m_local_clock);
ASSERT(res == ResultSuccess);
res = m_time_m->GetStandardLocalClockOperationEvent(&m_local_clock_event);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetStandardNetworkSystemClock(m_network_clock);
res = m_time_sm->GetStandardNetworkSystemClock(&m_network_clock);
ASSERT(res == ResultSuccess);
res = m_time_m->GetStandardNetworkClockOperationEventForServiceManager(&m_network_clock_event);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetEphemeralNetworkSystemClock(m_ephemeral_clock);
res = m_time_sm->GetEphemeralNetworkSystemClock(&m_ephemeral_clock);
ASSERT(res == ResultSuccess);
res =
m_time_m->GetEphemeralNetworkClockOperationEventForServiceManager(&m_ephemeral_clock_event);
@ -183,22 +184,19 @@ void TimeWorker::ThreadFunc(std::stop_token stop_token) {
AddWaiter(&m_event->GetReadableEvent(), EventType::Exit);
// TODO
// AddWaiter(gIPmModuleService::GetEvent(), 1);
AddWaiter(&m_alarm_worker.GetEvent().GetReadableEvent(), EventType::PowerStateChange);
AddWaiter(&m_alarm_worker.GetEvent(), EventType::PowerStateChange);
} else {
AddWaiter(&m_event->GetReadableEvent(), EventType::Exit);
// TODO
// AddWaiter(gIPmModuleService::GetEvent(), 1);
AddWaiter(&m_alarm_worker.GetEvent().GetReadableEvent(), EventType::PowerStateChange);
AddWaiter(&m_alarm_worker.GetEvent(), EventType::PowerStateChange);
AddWaiter(&m_alarm_worker.GetTimerEvent().GetReadableEvent(), EventType::SignalAlarms);
AddWaiter(&m_local_clock_event->GetReadableEvent(), EventType::UpdateLocalSystemClock);
AddWaiter(&m_network_clock_event->GetReadableEvent(),
EventType::UpdateNetworkSystemClock);
AddWaiter(&m_ephemeral_clock_event->GetReadableEvent(),
EventType::UpdateEphemeralSystemClock);
AddWaiter(m_local_clock_event, EventType::UpdateLocalSystemClock);
AddWaiter(m_network_clock_event, EventType::UpdateNetworkSystemClock);
AddWaiter(m_ephemeral_clock_event, EventType::UpdateEphemeralSystemClock);
AddWaiter(&m_timer_steady_clock->GetReadableEvent(), EventType::UpdateSteadyClock);
AddWaiter(&m_timer_file_system->GetReadableEvent(), EventType::UpdateFileTimestamp);
AddWaiter(&m_standard_user_auto_correct_clock_event->GetReadableEvent(),
EventType::AutoCorrect);
AddWaiter(m_standard_user_auto_correct_clock_event, EventType::AutoCorrect);
}
s32 out_index{-1};
@ -237,7 +235,7 @@ void TimeWorker::ThreadFunc(std::stop_token stop_token) {
m_local_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_local_clock->GetSystemClockContext(context);
auto res = m_local_clock->GetSystemClockContext(&context);
ASSERT(res == ResultSuccess);
m_set_sys->SetUserSystemClockContext(context);
@ -248,12 +246,12 @@ void TimeWorker::ThreadFunc(std::stop_token stop_token) {
case EventType::UpdateNetworkSystemClock: {
m_network_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_network_clock->GetSystemClockContext(context);
auto res = m_network_clock->GetSystemClockContext(&context);
ASSERT(res == ResultSuccess);
m_set_sys->SetNetworkSystemClockContext(context);
s64 time{};
if (m_network_clock->GetCurrentTime(time) != ResultSuccess) {
if (m_network_clock->GetCurrentTime(&time) != ResultSuccess) {
break;
}
@ -275,13 +273,13 @@ void TimeWorker::ThreadFunc(std::stop_token stop_token) {
m_ephemeral_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_ephemeral_clock->GetSystemClockContext(context);
auto res = m_ephemeral_clock->GetSystemClockContext(&context);
if (res != ResultSuccess) {
break;
}
s64 time{};
res = m_ephemeral_clock->GetCurrentTime(time);
res = m_ephemeral_clock->GetCurrentTime(&time);
if (res != ResultSuccess) {
break;
}
@ -317,11 +315,11 @@ void TimeWorker::ThreadFunc(std::stop_token stop_token) {
bool automatic_correction{};
auto res = m_time_sm->IsStandardUserSystemClockAutomaticCorrectionEnabled(
automatic_correction);
&automatic_correction);
ASSERT(res == ResultSuccess);
Service::PSC::Time::SteadyClockTimePoint time_point{};
res = m_time_sm->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
res = m_time_sm->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(&time_point);
ASSERT(res == ResultSuccess);
m_set_sys->SetUserSystemClockAutomaticCorrectionEnabled(automatic_correction);

View file

@ -49,10 +49,10 @@ private:
std::shared_ptr<Service::PSC::Time::SystemClock> m_ephemeral_clock;
StandardSteadyClockResource& m_steady_clock_resource;
FileTimestampWorker& m_file_timestamp_worker;
Kernel::KEvent* m_local_clock_event{};
Kernel::KEvent* m_network_clock_event{};
Kernel::KEvent* m_ephemeral_clock_event{};
Kernel::KEvent* m_standard_user_auto_correct_clock_event{};
Kernel::KReadableEvent* m_local_clock_event{};
Kernel::KReadableEvent* m_network_clock_event{};
Kernel::KReadableEvent* m_ephemeral_clock_event{};
Kernel::KReadableEvent* m_standard_user_auto_correct_clock_event{};
Kernel::KEvent* m_timer_steady_clock{};
std::shared_ptr<Core::Timing::EventType> m_timer_steady_clock_timing_event;
Kernel::KEvent* m_timer_file_system{};

View file

@ -1405,7 +1405,7 @@ NFP::AmiiboDate NfcDevice::GetAmiiboDate(s64 posix_time) const {
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service{};
static_service->GetTimeZoneService(timezone_service);
static_service->GetTimeZoneService(&timezone_service);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
@ -1416,7 +1416,7 @@ NFP::AmiiboDate NfcDevice::GetAmiiboDate(s64 posix_time) const {
amiibo_date.SetMonth(1);
amiibo_date.SetDay(1);
if (timezone_service->ToCalendarTimeWithMyRule(calendar_time, additional_info, posix_time) ==
if (timezone_service->ToCalendarTimeWithMyRule(&calendar_time, &additional_info, posix_time) ==
ResultSuccess) {
amiibo_date.SetYear(calendar_time.year);
amiibo_date.SetMonth(calendar_time.month);
@ -1431,10 +1431,10 @@ s64 NfcDevice::GetCurrentPosixTime() const {
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
static_service->GetStandardSteadyClock(&steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
R_ASSERT(steady_clock->GetCurrentTimePoint(&time_point));
return time_point.time_point;
}

View file

@ -91,10 +91,10 @@ Result DeviceManager::ListDevices(std::vector<u64>& nfp_devices, std::size_t max
true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
static_service->GetStandardSteadyClock(&steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
R_ASSERT(steady_clock->GetCurrentTimePoint(&time_point));
const s64 elapsed_time = time_point.time_point - time_since_last_error;
if (time_since_last_error != 0 && elapsed_time < MinimumRecoveryTime) {
@ -754,10 +754,10 @@ Result DeviceManager::VerifyDeviceResult(std::shared_ptr<NfcDevice> device,
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
static_service->GetStandardSteadyClock(&steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
R_ASSERT(steady_clock->GetCurrentTimePoint(&time_point));
time_since_last_error = time_point.time_point;
}

View file

@ -5,6 +5,7 @@
#include <array>
#include <chrono>
#include <fmt/format.h>
#include "common/common_types.h"
#include "common/intrusive_list.h"
@ -21,8 +22,14 @@ class System;
namespace Service::PSC::Time {
using ClockSourceId = Common::UUID;
enum class TimeType : u8 {
UserSystemClock = 0,
NetworkSystemClock = 1,
LocalSystemClock = 2,
};
struct SteadyClockTimePoint {
constexpr bool IdMatches(SteadyClockTimePoint& other) {
constexpr bool IdMatches(const SteadyClockTimePoint& other) const {
return clock_source_id == other.clock_source_id;
}
bool operator==(const SteadyClockTimePoint& other) const = default;
@ -42,12 +49,6 @@ struct SystemClockContext {
static_assert(sizeof(SystemClockContext) == 0x20, "SystemClockContext has the wrong size!");
static_assert(std::is_trivial_v<SystemClockContext>);
enum class TimeType : u8 {
UserSystemClock,
NetworkSystemClock,
LocalSystemClock,
};
struct CalendarTime {
s16 year;
s8 month;
@ -67,14 +68,10 @@ struct CalendarAdditionalInfo {
};
static_assert(sizeof(CalendarAdditionalInfo) == 0x18, "CalendarAdditionalInfo has the wrong size!");
struct LocationName {
std::array<char, 36> name;
};
using LocationName = std::array<char, 0x24>;
static_assert(sizeof(LocationName) == 0x24, "LocationName has the wrong size!");
struct RuleVersion {
std::array<char, 16> version;
};
using RuleVersion = std::array<char, 0x10>;
static_assert(sizeof(RuleVersion) == 0x10, "RuleVersion has the wrong size!");
struct ClockSnapshot {
@ -152,8 +149,8 @@ constexpr inline std::chrono::nanoseconds ConvertToTimeSpan(s64 ticks) {
return std::chrono::nanoseconds(a + b);
}
constexpr inline Result GetSpanBetweenTimePoints(s64* out_seconds, SteadyClockTimePoint& a,
SteadyClockTimePoint& b) {
constexpr inline Result GetSpanBetweenTimePoints(s64* out_seconds, const SteadyClockTimePoint& a,
const SteadyClockTimePoint& b) {
R_UNLESS(out_seconds, ResultInvalidArgument);
R_UNLESS(a.IdMatches(b), ResultInvalidArgument);
R_UNLESS(a.time_point >= 0 || b.time_point <= a.time_point + std::numeric_limits<s64>::max(),
@ -166,3 +163,111 @@ constexpr inline Result GetSpanBetweenTimePoints(s64* out_seconds, SteadyClockTi
}
} // namespace Service::PSC::Time
template <>
struct fmt::formatter<Service::PSC::Time::TimeType> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(Service::PSC::Time::TimeType type, FormatContext& ctx) {
const string_view name = [type] {
using Service::PSC::Time::TimeType;
switch (type) {
case TimeType::UserSystemClock:
return "UserSystemClock";
case TimeType::NetworkSystemClock:
return "NetworkSystemClock";
case TimeType::LocalSystemClock:
return "LocalSystemClock";
}
return "Invalid";
}();
return formatter<string_view>::format(name, ctx);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::SteadyClockTimePoint> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::SteadyClockTimePoint& time_point,
FormatContext& ctx) const {
return fmt::format_to(ctx.out(), "time_point={}", time_point.time_point);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::SystemClockContext> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::SystemClockContext& context, FormatContext& ctx) const {
return fmt::format_to(ctx.out(), "offset={} steady_time_point={}", context.offset,
context.steady_time_point.time_point);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::CalendarTime> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::CalendarTime& calendar, FormatContext& ctx) const {
return fmt::format_to(ctx.out(), "{}/{}/{} {}:{}:{}", calendar.day, calendar.month,
calendar.year, calendar.hour, calendar.minute, calendar.second);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::CalendarAdditionalInfo>
: fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::CalendarAdditionalInfo& additional,
FormatContext& ctx) const {
return fmt::format_to(ctx.out(), "weekday={} yearday={} name={} is_dst={} ut_offset={}",
additional.day_of_week, additional.day_of_year,
additional.name.data(), additional.is_dst, additional.ut_offset);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::LocationName> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::LocationName& name, FormatContext& ctx) const {
std::string_view n{name.data(), name.size()};
return formatter<string_view>::format(n, ctx);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::RuleVersion> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::RuleVersion& version, FormatContext& ctx) const {
std::string_view v{version.data(), version.size()};
return formatter<string_view>::format(v, ctx);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::ClockSnapshot> : fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::ClockSnapshot& snapshot, FormatContext& ctx) const {
return fmt::format_to(
ctx.out(),
"user_context={} network_context={} user_time={} network_time={} user_calendar_time={} "
"network_calendar_time={} user_calendar_additional_time={} "
"network_calendar_additional_time={} steady_clock_time_point={} location={} "
"is_automatic_correction_enabled={} type={}",
snapshot.user_context, snapshot.network_context, snapshot.user_time,
snapshot.network_time, snapshot.user_calendar_time, snapshot.network_calendar_time,
snapshot.user_calendar_additional_time, snapshot.network_calendar_additional_time,
snapshot.steady_clock_time_point, snapshot.location_name,
snapshot.is_automatic_correction_enabled, snapshot.type);
}
};
template <>
struct fmt::formatter<Service::PSC::Time::ContinuousAdjustmentTimePoint>
: fmt::formatter<fmt::string_view> {
template <typename FormatContext>
auto format(const Service::PSC::Time::ContinuousAdjustmentTimePoint& time_point,
FormatContext& ctx) const {
return fmt::format_to(ctx.out(),
"rtc_offset={} diff_scale={} shift_amount={} lower={} upper={}",
time_point.rtc_offset, time_point.diff_scale, time_point.shift_amount,
time_point.lower, time_point.upper);
}
};

View file

@ -1,6 +1,7 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/power_state_service.h"
namespace Service::PSC::Time {
@ -11,39 +12,34 @@ IPowerStateRequestHandler::IPowerStateRequestHandler(
power_state_request_manager} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle, "GetPowerStateRequestEventReadableHandle"},
{1, &IPowerStateRequestHandler::GetAndClearPowerStateRequest, "GetAndClearPowerStateRequest"},
{0, D<&IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle>, "GetPowerStateRequestEventReadableHandle"},
{1, D<&IPowerStateRequestHandler::GetAndClearPowerStateRequest>, "GetAndClearPowerStateRequest"},
};
// clang-format on
RegisterHandlers(functions);
}
void IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle(HLERequestContext& ctx) {
Result IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle(
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(ResultSuccess);
rb.PushCopyObjects(m_power_state_request_manager.GetReadableEvent());
*out_event = &m_power_state_request_manager.GetReadableEvent();
R_SUCCEED();
}
void IPowerStateRequestHandler::GetAndClearPowerStateRequest(HLERequestContext& ctx) {
Result IPowerStateRequestHandler::GetAndClearPowerStateRequest(Out<bool> out_cleared,
Out<u32> out_priority) {
LOG_DEBUG(Service_Time, "called.");
u32 priority{};
auto cleared = m_power_state_request_manager.GetAndClearPowerStateRequest(priority);
*out_cleared = cleared;
if (cleared) {
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(ResultSuccess);
rb.Push(priority);
rb.Push(cleared);
return;
*out_priority = priority;
}
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push(cleared);
R_SUCCEED();
}
} // namespace Service::PSC::Time

View file

@ -3,6 +3,7 @@
#pragma once
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/power_state_request_manager.h"
#include "core/hle/service/server_manager.h"
@ -21,10 +22,10 @@ public:
~IPowerStateRequestHandler() override = default;
private:
void GetPowerStateRequestEventReadableHandle(HLERequestContext& ctx);
void GetAndClearPowerStateRequest(HLERequestContext& ctx);
Result GetPowerStateRequestEventReadableHandle(OutCopyHandle<Kernel::KReadableEvent> out_event);
Result GetAndClearPowerStateRequest(Out<bool> out_cleared, Out<u32> out_priority);
private:
Core::System& m_system;
PowerStateRequestManager& m_power_state_request_manager;
};

View file

@ -3,6 +3,7 @@
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/power_state_service.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
@ -25,24 +26,24 @@ ServiceManager::ServiceManager(Core::System& system_, std::shared_ptr<TimeManage
m_local_operation{m_system}, m_network_operation{m_system}, m_ephemeral_operation{m_system} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &ServiceManager::Handle_GetStaticServiceAsUser, "GetStaticServiceAsUser"},
{5, &ServiceManager::Handle_GetStaticServiceAsAdmin, "GetStaticServiceAsAdmin"},
{6, &ServiceManager::Handle_GetStaticServiceAsRepair, "GetStaticServiceAsRepair"},
{9, &ServiceManager::Handle_GetStaticServiceAsServiceManager, "GetStaticServiceAsServiceManager"},
{10, &ServiceManager::Handle_SetupStandardSteadyClockCore, "SetupStandardSteadyClockCore"},
{11, &ServiceManager::Handle_SetupStandardLocalSystemClockCore, "SetupStandardLocalSystemClockCore"},
{12, &ServiceManager::Handle_SetupStandardNetworkSystemClockCore, "SetupStandardNetworkSystemClockCore"},
{13, &ServiceManager::Handle_SetupStandardUserSystemClockCore, "SetupStandardUserSystemClockCore"},
{14, &ServiceManager::Handle_SetupTimeZoneServiceCore, "SetupTimeZoneServiceCore"},
{15, &ServiceManager::Handle_SetupEphemeralNetworkSystemClockCore, "SetupEphemeralNetworkSystemClockCore"},
{50, &ServiceManager::Handle_GetStandardLocalClockOperationEvent, "GetStandardLocalClockOperationEvent"},
{51, &ServiceManager::Handle_GetStandardNetworkClockOperationEventForServiceManager, "GetStandardNetworkClockOperationEventForServiceManager"},
{52, &ServiceManager::Handle_GetEphemeralNetworkClockOperationEventForServiceManager, "GetEphemeralNetworkClockOperationEventForServiceManager"},
{60, &ServiceManager::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent, "GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent"},
{100, &ServiceManager::Handle_SetStandardSteadyClockBaseTime, "SetStandardSteadyClockBaseTime"},
{200, &ServiceManager::Handle_GetClosestAlarmUpdatedEvent, "GetClosestAlarmUpdatedEvent"},
{201, &ServiceManager::Handle_CheckAndSignalAlarms, "CheckAndSignalAlarms"},
{202, &ServiceManager::Handle_GetClosestAlarmInfo, "GetClosestAlarmInfo "},
{0, D<&ServiceManager::GetStaticServiceAsUser>, "GetStaticServiceAsUser"},
{5, D<&ServiceManager::GetStaticServiceAsAdmin>, "GetStaticServiceAsAdmin"},
{6, D<&ServiceManager::GetStaticServiceAsRepair>, "GetStaticServiceAsRepair"},
{9, D<&ServiceManager::GetStaticServiceAsServiceManager>, "GetStaticServiceAsServiceManager"},
{10, D<&ServiceManager::SetupStandardSteadyClockCore>, "SetupStandardSteadyClockCore"},
{11, D<&ServiceManager::SetupStandardLocalSystemClockCore>, "SetupStandardLocalSystemClockCore"},
{12, D<&ServiceManager::SetupStandardNetworkSystemClockCore>, "SetupStandardNetworkSystemClockCore"},
{13, D<&ServiceManager::SetupStandardUserSystemClockCore>, "SetupStandardUserSystemClockCore"},
{14, D<&ServiceManager::SetupTimeZoneServiceCore>, "SetupTimeZoneServiceCore"},
{15, D<&ServiceManager::SetupEphemeralNetworkSystemClockCore>, "SetupEphemeralNetworkSystemClockCore"},
{50, D<&ServiceManager::GetStandardLocalClockOperationEvent>, "GetStandardLocalClockOperationEvent"},
{51, D<&ServiceManager::GetStandardNetworkClockOperationEventForServiceManager>, "GetStandardNetworkClockOperationEventForServiceManager"},
{52, D<&ServiceManager::GetEphemeralNetworkClockOperationEventForServiceManager>, "GetEphemeralNetworkClockOperationEventForServiceManager"},
{60, D<&ServiceManager::GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent>, "GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent"},
{100, D<&ServiceManager::SetStandardSteadyClockBaseTime>, "SetStandardSteadyClockBaseTime"},
{200, D<&ServiceManager::GetClosestAlarmUpdatedEvent>, "GetClosestAlarmUpdatedEvent"},
{201, D<&ServiceManager::CheckAndSignalAlarms>, "CheckAndSignalAlarms"},
{202, D<&ServiceManager::GetClosestAlarmInfo>, "GetClosestAlarmInfo "},
};
// clang-format on
RegisterHandlers(functions);
@ -52,302 +53,39 @@ ServiceManager::ServiceManager(Core::System& system_, std::shared_ptr<TimeManage
m_ephemeral_system_context_writer.Link(m_ephemeral_operation);
}
void ServiceManager::SetupSAndP() {
if (!m_is_s_and_p_setup) {
m_is_s_and_p_setup = true;
m_server_manager.RegisterNamedService(
"time:s", std::make_shared<StaticService>(
m_system, StaticServiceSetupInfo{0, 0, 1, 0, 0, 0}, m_time, "time:s"));
m_server_manager.RegisterNamedService("time:p",
std::make_shared<IPowerStateRequestHandler>(
m_system, m_time->m_power_state_request_manager));
}
}
void ServiceManager::CheckAndSetupServicesSAndP() {
if (m_local_system_clock.IsInitialized() && m_user_system_clock.IsInitialized() &&
m_network_system_clock.IsInitialized() && m_steady_clock.IsInitialized() &&
m_time_zone.IsInitialized() && m_ephemeral_network_clock.IsInitialized()) {
SetupSAndP();
}
}
void ServiceManager::Handle_GetStaticServiceAsUser(HLERequestContext& ctx) {
Result ServiceManager::GetStaticServiceAsUser(OutInterface<StaticService> out_service) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsUser(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsAdmin(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsAdmin(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsRepair(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsRepair(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsServiceManager(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsServiceManager(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_SetupStandardSteadyClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
bool reset_detected;
Common::UUID clock_source_id;
s64 rtc_offset;
s64 internal_offset;
s64 test_offset;
};
static_assert(sizeof(Parameters) == 0x30);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto res = SetupStandardSteadyClockCore(params.clock_source_id, params.rtc_offset,
params.internal_offset, params.test_offset,
params.reset_detected);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardLocalSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto time{rp.Pop<s64>()};
auto res = SetupStandardLocalSystemClockCore(context, time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardNetworkSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto accuracy{rp.Pop<s64>()};
auto res = SetupStandardNetworkSystemClockCore(context, accuracy);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardUserSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
bool automatic_correction;
SteadyClockTimePoint time_point;
};
static_assert(sizeof(Parameters) == 0x20);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto res = SetupStandardUserSystemClockCore(params.time_point, params.automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupTimeZoneServiceCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
u32 location_count;
LocationName name;
SteadyClockTimePoint time_point;
RuleVersion rule_version;
};
static_assert(sizeof(Parameters) == 0x50);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto rule_buffer{ctx.ReadBuffer()};
auto res = SetupTimeZoneServiceCore(params.name, params.time_point, params.rule_version,
params.location_count, rule_buffer);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupEphemeralNetworkSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = SetupEphemeralNetworkSystemClockCore();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetStandardLocalClockOperationEvent(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardLocalClockOperationEvent(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void ServiceManager::Handle_GetStandardNetworkClockOperationEventForServiceManager(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardNetworkClockOperationEventForServiceManager(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_GetEphemeralNetworkClockOperationEventForServiceManager(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetEphemeralNetworkClockOperationEventForServiceManager(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_SetStandardSteadyClockBaseTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto base_time{rp.Pop<s64>()};
auto res = SetStandardSteadyClockBaseTime(base_time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetClosestAlarmUpdatedEvent(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetClosestAlarmUpdatedEvent(&event);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void ServiceManager::Handle_CheckAndSignalAlarms(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = CheckAndSignalAlarms();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetClosestAlarmInfo(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
AlarmInfo alarm_info{};
bool is_valid{};
s64 time{};
auto res = GetClosestAlarmInfo(is_valid, alarm_info, time);
struct OutParameters {
bool is_valid;
AlarmInfo alarm_info;
s64 time;
};
static_assert(sizeof(OutParameters) == 0x20);
OutParameters out_params{
.is_valid = is_valid,
.alarm_info = alarm_info,
.time = time,
};
IPC::ResponseBuilder rb{ctx, 2 + sizeof(OutParameters) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<OutParameters>(out_params);
}
// =============================== Implementations ===========================
Result ServiceManager::GetStaticService(std::shared_ptr<StaticService>& out_service,
StaticServiceSetupInfo setup_info, const char* name) {
out_service = std::make_shared<StaticService>(m_system, setup_info, m_time, name);
R_SUCCEED();
}
Result ServiceManager::GetStaticServiceAsUser(std::shared_ptr<StaticService>& out_service) {
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{0, 0, 0, 0, 0, 0}, "time:u"));
}
Result ServiceManager::GetStaticServiceAsAdmin(std::shared_ptr<StaticService>& out_service) {
Result ServiceManager::GetStaticServiceAsAdmin(OutInterface<StaticService> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{1, 1, 0, 1, 0, 0}, "time:a"));
}
Result ServiceManager::GetStaticServiceAsRepair(std::shared_ptr<StaticService>& out_service) {
Result ServiceManager::GetStaticServiceAsRepair(OutInterface<StaticService> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{0, 0, 0, 0, 1, 0}, "time:r"));
}
Result ServiceManager::GetStaticServiceAsServiceManager(
std::shared_ptr<StaticService>& out_service) {
Result ServiceManager::GetStaticServiceAsServiceManager(OutInterface<StaticService> out_service) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{1, 1, 1, 1, 1, 0}, "time:sm"));
}
Result ServiceManager::SetupStandardSteadyClockCore(Common::UUID& clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset,
bool is_rtc_reset_detected) {
Result ServiceManager::SetupStandardSteadyClockCore(bool is_rtc_reset_detected,
Common::UUID& clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset) {
LOG_DEBUG(Service_Time,
"called. is_rtc_reset_detected={} clock_source_id={} rtc_offset={} "
"internal_offset={} test_offset={}",
is_rtc_reset_detected, clock_source_id.RawString(), rtc_offset, internal_offset,
test_offset);
m_steady_clock.Initialize(clock_source_id, rtc_offset, internal_offset, test_offset,
is_rtc_reset_detected);
auto time = m_steady_clock.GetRawTime();
@ -365,6 +103,10 @@ Result ServiceManager::SetupStandardSteadyClockCore(Common::UUID& clock_source_i
}
Result ServiceManager::SetupStandardLocalSystemClockCore(SystemClockContext& context, s64 time) {
LOG_DEBUG(Service_Time,
"called. context={} context.steady_time_point.clock_source_id={} time={}", context,
context.steady_time_point.clock_source_id.RawString(), time);
m_local_system_clock.SetContextWriter(m_local_system_context_writer);
m_local_system_clock.Initialize(context, time);
@ -374,6 +116,9 @@ Result ServiceManager::SetupStandardLocalSystemClockCore(SystemClockContext& con
Result ServiceManager::SetupStandardNetworkSystemClockCore(SystemClockContext& context,
s64 accuracy) {
LOG_DEBUG(Service_Time, "called. context={} steady_time_point.clock_source_id={} accuracy={}",
context, context.steady_time_point.clock_source_id.RawString(), accuracy);
// TODO this is a hack! The network clock should be updated independently, from the ntc service
// and maybe elsewhere. We do not do that, so fix the clock to the local clock on first boot
// to avoid it being stuck at 0.
@ -388,8 +133,11 @@ Result ServiceManager::SetupStandardNetworkSystemClockCore(SystemClockContext& c
R_SUCCEED();
}
Result ServiceManager::SetupStandardUserSystemClockCore(SteadyClockTimePoint& time_point,
bool automatic_correction) {
Result ServiceManager::SetupStandardUserSystemClockCore(bool automatic_correction,
SteadyClockTimePoint& time_point) {
LOG_DEBUG(Service_Time, "called. automatic_correction={} time_point={} clock_source_id={}",
automatic_correction, time_point, time_point.clock_source_id.RawString());
// TODO this is a hack! The user clock should be updated independently, from the ntc service
// and maybe elsewhere. We do not do that, so fix the clock to the local clock on first boot
// to avoid it being stuck at 0.
@ -406,10 +154,16 @@ Result ServiceManager::SetupStandardUserSystemClockCore(SteadyClockTimePoint& ti
R_SUCCEED();
}
Result ServiceManager::SetupTimeZoneServiceCore(LocationName& name,
Result ServiceManager::SetupTimeZoneServiceCore(LocationName& name, RuleVersion& rule_version,
u32 location_count,
SteadyClockTimePoint& time_point,
RuleVersion& rule_version, u32 location_count,
std::span<const u8> rule_buffer) {
InBuffer<BufferAttr_HipcAutoSelect> rule_buffer) {
LOG_DEBUG(Service_Time,
"called. name={} rule_version={} location_count={} time_point={} "
"clock_source_id={}",
name, rule_version, location_count, time_point,
time_point.clock_source_id.RawString());
if (m_time_zone.ParseBinary(name, rule_buffer) != ResultSuccess) {
LOG_ERROR(Service_Time, "Failed to parse time zone binary!");
}
@ -424,6 +178,8 @@ Result ServiceManager::SetupTimeZoneServiceCore(LocationName& name,
}
Result ServiceManager::SetupEphemeralNetworkSystemClockCore() {
LOG_DEBUG(Service_Time, "called.");
m_ephemeral_network_clock.SetContextWriter(m_ephemeral_system_context_writer);
m_ephemeral_network_clock.SetInitialized();
@ -431,30 +187,41 @@ Result ServiceManager::SetupEphemeralNetworkSystemClockCore() {
R_SUCCEED();
}
Result ServiceManager::GetStandardLocalClockOperationEvent(Kernel::KEvent** out_event) {
*out_event = m_local_operation.m_event;
Result ServiceManager::GetStandardLocalClockOperationEvent(
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
*out_event = &m_local_operation.m_event->GetReadableEvent();
R_SUCCEED();
}
Result ServiceManager::GetStandardNetworkClockOperationEventForServiceManager(
Kernel::KEvent** out_event) {
*out_event = m_network_operation.m_event;
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
*out_event = &m_network_operation.m_event->GetReadableEvent();
R_SUCCEED();
}
Result ServiceManager::GetEphemeralNetworkClockOperationEventForServiceManager(
Kernel::KEvent** out_event) {
*out_event = m_ephemeral_operation.m_event;
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
*out_event = &m_ephemeral_operation.m_event->GetReadableEvent();
R_SUCCEED();
}
Result ServiceManager::GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
Kernel::KEvent** out_event) {
*out_event = &m_user_system_clock.GetEvent();
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
*out_event = &m_user_system_clock.GetEvent().GetReadableEvent();
R_SUCCEED();
}
Result ServiceManager::SetStandardSteadyClockBaseTime(s64 base_time) {
LOG_DEBUG(Service_Time, "called. base_time={}", base_time);
m_steady_clock.SetRtcOffset(base_time);
auto time = m_steady_clock.GetRawTime();
auto ticks = m_system.CoreTiming().GetClockTicks();
@ -468,26 +235,63 @@ Result ServiceManager::SetStandardSteadyClockBaseTime(s64 base_time) {
R_SUCCEED();
}
Result ServiceManager::GetClosestAlarmUpdatedEvent(Kernel::KEvent** out_event) {
*out_event = &m_alarms.GetEvent();
Result ServiceManager::GetClosestAlarmUpdatedEvent(
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
*out_event = &m_alarms.GetEvent().GetReadableEvent();
R_SUCCEED();
}
Result ServiceManager::CheckAndSignalAlarms() {
LOG_DEBUG(Service_Time, "called.");
m_alarms.CheckAndSignal();
R_SUCCEED();
}
Result ServiceManager::GetClosestAlarmInfo(bool& out_is_valid, AlarmInfo& out_info, s64& out_time) {
Result ServiceManager::GetClosestAlarmInfo(Out<bool> out_is_valid, Out<AlarmInfo> out_info,
Out<s64> out_time) {
Alarm* alarm{nullptr};
out_is_valid = m_alarms.GetClosestAlarm(&alarm);
if (out_is_valid) {
out_info = {
*out_is_valid = m_alarms.GetClosestAlarm(&alarm);
if (*out_is_valid) {
*out_info = {
.alert_time = alarm->GetAlertTime(),
.priority = alarm->GetPriority(),
};
out_time = m_alarms.GetRawTime();
*out_time = m_alarms.GetRawTime();
}
LOG_DEBUG(Service_Time,
"called. out_is_valid={} out_info.alert_time={} out_info.priority={}, out_time={}",
*out_is_valid, out_info->alert_time, out_info->priority, *out_time);
R_SUCCEED();
}
void ServiceManager::CheckAndSetupServicesSAndP() {
if (m_local_system_clock.IsInitialized() && m_user_system_clock.IsInitialized() &&
m_network_system_clock.IsInitialized() && m_steady_clock.IsInitialized() &&
m_time_zone.IsInitialized() && m_ephemeral_network_clock.IsInitialized()) {
SetupSAndP();
}
}
void ServiceManager::SetupSAndP() {
if (!m_is_s_and_p_setup) {
m_is_s_and_p_setup = true;
m_server_manager.RegisterNamedService(
"time:s", std::make_shared<StaticService>(
m_system, StaticServiceSetupInfo{0, 0, 1, 0, 0, 0}, m_time, "time:s"));
m_server_manager.RegisterNamedService("time:p",
std::make_shared<IPowerStateRequestHandler>(
m_system, m_time->m_power_state_request_manager));
}
}
Result ServiceManager::GetStaticService(OutInterface<StaticService> out_service,
StaticServiceSetupInfo setup_info, const char* name) {
*out_service = std::make_shared<StaticService>(m_system, setup_info, m_time, name);
R_SUCCEED();
}

View file

@ -6,6 +6,7 @@
#include <list>
#include <memory>
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
@ -29,55 +30,38 @@ public:
ServerManager* server_manager);
~ServiceManager() override = default;
Result GetStaticServiceAsUser(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsAdmin(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsRepair(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsServiceManager(std::shared_ptr<StaticService>& out_service);
Result SetupStandardSteadyClockCore(Common::UUID& clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset,
bool is_rtc_reset_detected);
Result GetStaticServiceAsUser(OutInterface<StaticService> out_service);
Result GetStaticServiceAsAdmin(OutInterface<StaticService> out_service);
Result GetStaticServiceAsRepair(OutInterface<StaticService> out_service);
Result GetStaticServiceAsServiceManager(OutInterface<StaticService> out_service);
Result SetupStandardSteadyClockCore(bool is_rtc_reset_detected, Common::UUID& clock_source_id,
s64 rtc_offset, s64 internal_offset, s64 test_offset);
Result SetupStandardLocalSystemClockCore(SystemClockContext& context, s64 time);
Result SetupStandardNetworkSystemClockCore(SystemClockContext& context, s64 accuracy);
Result SetupStandardUserSystemClockCore(SteadyClockTimePoint& time_point,
bool automatic_correction);
Result SetupTimeZoneServiceCore(LocationName& name, SteadyClockTimePoint& time_point,
RuleVersion& rule_version, u32 location_count,
std::span<const u8> rule_buffer);
Result SetupStandardUserSystemClockCore(bool automatic_correction,
SteadyClockTimePoint& time_point);
Result SetupTimeZoneServiceCore(LocationName& name, RuleVersion& rule_version,
u32 location_count, SteadyClockTimePoint& time_point,
InBuffer<BufferAttr_HipcAutoSelect> rule_buffer);
Result SetupEphemeralNetworkSystemClockCore();
Result GetStandardLocalClockOperationEvent(Kernel::KEvent** out_event);
Result GetStandardNetworkClockOperationEventForServiceManager(Kernel::KEvent** out_event);
Result GetEphemeralNetworkClockOperationEventForServiceManager(Kernel::KEvent** out_event);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(Kernel::KEvent** out_event);
Result GetStandardLocalClockOperationEvent(OutCopyHandle<Kernel::KReadableEvent> out_event);
Result GetStandardNetworkClockOperationEventForServiceManager(
OutCopyHandle<Kernel::KReadableEvent> out_event);
Result GetEphemeralNetworkClockOperationEventForServiceManager(
OutCopyHandle<Kernel::KReadableEvent> out_event);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
OutCopyHandle<Kernel::KReadableEvent> out_event);
Result SetStandardSteadyClockBaseTime(s64 base_time);
Result GetClosestAlarmUpdatedEvent(Kernel::KEvent** out_event);
Result GetClosestAlarmUpdatedEvent(OutCopyHandle<Kernel::KReadableEvent> out_event);
Result CheckAndSignalAlarms();
Result GetClosestAlarmInfo(bool& out_is_valid, AlarmInfo& out_info, s64& out_time);
Result GetClosestAlarmInfo(Out<bool> out_is_valid, Out<AlarmInfo> out_info, Out<s64> out_time);
private:
void CheckAndSetupServicesSAndP();
void SetupSAndP();
Result GetStaticService(std::shared_ptr<StaticService>& out_service,
Result GetStaticService(OutInterface<StaticService> out_service,
StaticServiceSetupInfo setup_info, const char* name);
void Handle_GetStaticServiceAsUser(HLERequestContext& ctx);
void Handle_GetStaticServiceAsAdmin(HLERequestContext& ctx);
void Handle_GetStaticServiceAsRepair(HLERequestContext& ctx);
void Handle_GetStaticServiceAsServiceManager(HLERequestContext& ctx);
void Handle_SetupStandardSteadyClockCore(HLERequestContext& ctx);
void Handle_SetupStandardLocalSystemClockCore(HLERequestContext& ctx);
void Handle_SetupStandardNetworkSystemClockCore(HLERequestContext& ctx);
void Handle_SetupStandardUserSystemClockCore(HLERequestContext& ctx);
void Handle_SetupTimeZoneServiceCore(HLERequestContext& ctx);
void Handle_SetupEphemeralNetworkSystemClockCore(HLERequestContext& ctx);
void Handle_GetStandardLocalClockOperationEvent(HLERequestContext& ctx);
void Handle_GetStandardNetworkClockOperationEventForServiceManager(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkClockOperationEventForServiceManager(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockBaseTime(HLERequestContext& ctx);
void Handle_GetClosestAlarmUpdatedEvent(HLERequestContext& ctx);
void Handle_CheckAndSignalAlarms(HLERequestContext& ctx);
void Handle_GetClosestAlarmInfo(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<TimeManager> m_time;
ServerManager& m_server_manager;

View file

@ -1,9 +1,11 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/clocks/ephemeral_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
@ -39,358 +41,122 @@ StaticService::StaticService(Core::System& system_, StaticServiceSetupInfo setup
m_time->m_shared_memory} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &StaticService::Handle_GetStandardUserSystemClock, "GetStandardUserSystemClock"},
{1, &StaticService::Handle_GetStandardNetworkSystemClock, "GetStandardNetworkSystemClock"},
{2, &StaticService::Handle_GetStandardSteadyClock, "GetStandardSteadyClock"},
{3, &StaticService::Handle_GetTimeZoneService, "GetTimeZoneService"},
{4, &StaticService::Handle_GetStandardLocalSystemClock, "GetStandardLocalSystemClock"},
{5, &StaticService::Handle_GetEphemeralNetworkSystemClock, "GetEphemeralNetworkSystemClock"},
{20, &StaticService::Handle_GetSharedMemoryNativeHandle, "GetSharedMemoryNativeHandle"},
{50, &StaticService::Handle_SetStandardSteadyClockInternalOffset, "SetStandardSteadyClockInternalOffset"},
{51, &StaticService::Handle_GetStandardSteadyClockRtcValue, "GetStandardSteadyClockRtcValue"},
{100, &StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, &StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, &StaticService::Handle_GetStandardUserSystemClockInitialYear, "GetStandardUserSystemClockInitialYear"},
{200, &StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, &StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, &StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, &StaticService::Handle_GetClockSnapshot, "GetClockSnapshot"},
{401, &StaticService::Handle_GetClockSnapshotFromSystemClockContext, "GetClockSnapshotFromSystemClockContext"},
{500, &StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, &StaticService::Handle_CalculateSpanBetween, "CalculateSpanBetween"},
{0, D<&StaticService::GetStandardUserSystemClock>, "GetStandardUserSystemClock"},
{1, D<&StaticService::GetStandardNetworkSystemClock>, "GetStandardNetworkSystemClock"},
{2, D<&StaticService::GetStandardSteadyClock>, "GetStandardSteadyClock"},
{3, D<&StaticService::GetTimeZoneService>, "GetTimeZoneService"},
{4, D<&StaticService::GetStandardLocalSystemClock>, "GetStandardLocalSystemClock"},
{5, D<&StaticService::GetEphemeralNetworkSystemClock>, "GetEphemeralNetworkSystemClock"},
{20, D<&StaticService::GetSharedMemoryNativeHandle>, "GetSharedMemoryNativeHandle"},
{50, D<&StaticService::SetStandardSteadyClockInternalOffset>, "SetStandardSteadyClockInternalOffset"},
{51, D<&StaticService::GetStandardSteadyClockRtcValue>, "GetStandardSteadyClockRtcValue"},
{100, D<&StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled>, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, D<&StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled>, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, D<&StaticService::GetStandardUserSystemClockInitialYear>, "GetStandardUserSystemClockInitialYear"},
{200, D<&StaticService::IsStandardNetworkSystemClockAccuracySufficient>, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, D<&StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime>, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, D<&StaticService::CalculateMonotonicSystemClockBaseTimePoint>, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, D<&StaticService::GetClockSnapshot>, "GetClockSnapshot"},
{401, D<&StaticService::GetClockSnapshotFromSystemClockContext>, "GetClockSnapshotFromSystemClockContext"},
{500, D<&StaticService::CalculateStandardUserSystemClockDifferenceByUser>, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, D<&StaticService::CalculateSpanBetween>, "CalculateSpanBetween"},
};
// clang-format on
RegisterHandlers(functions);
}
Result StaticService::GetClockSnapshotImpl(ClockSnapshot& out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context, TimeType type) {
out_snapshot.user_context = user_context;
out_snapshot.network_context = network_context;
R_TRY(
m_time->m_standard_steady_clock.GetCurrentTimePoint(out_snapshot.steady_clock_time_point));
out_snapshot.is_automatic_correction_enabled = m_user_system_clock.GetAutomaticCorrection();
R_TRY(m_time_zone.GetLocationName(out_snapshot.location_name));
R_TRY(GetTimeFromTimePointAndContext(
&out_snapshot.user_time, out_snapshot.steady_clock_time_point, out_snapshot.user_context));
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot.user_calendar_time,
out_snapshot.user_calendar_additional_time,
out_snapshot.user_time));
if (GetTimeFromTimePointAndContext(&out_snapshot.network_time,
out_snapshot.steady_clock_time_point,
out_snapshot.network_context) != ResultSuccess) {
out_snapshot.network_time = 0;
}
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot.network_calendar_time,
out_snapshot.network_calendar_additional_time,
out_snapshot.network_time));
out_snapshot.type = type;
out_snapshot.unk_CE = 0;
R_SUCCEED();
}
void StaticService::Handle_GetStandardUserSystemClock(HLERequestContext& ctx) {
Result StaticService::GetStandardUserSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardUserSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardSteadyClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SteadyClock> service{};
auto res = GetStandardSteadyClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetTimeZoneService(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<TimeZoneService> service{};
auto res = GetTimeZoneService(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetStandardLocalSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardLocalSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetEphemeralNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KSharedMemory* shared_memory{};
auto res = GetSharedMemoryNativeHandle(&shared_memory);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(shared_memory);
}
void StaticService::Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(m_setup_info.can_write_steady_clock ? ResultNotImplemented : ResultPermissionDenied);
}
void StaticService::Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_enabled{};
auto res = IsStandardUserSystemClockAutomaticCorrectionEnabled(is_enabled);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_enabled);
}
void StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto automatic_correction{rp.Pop<bool>()};
auto res = SetStandardUserSystemClockAutomaticCorrectionEnabled(automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_sufficient{};
auto res = IsStandardNetworkSystemClockAccuracySufficient(is_sufficient);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_sufficient);
}
void StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
SteadyClockTimePoint time_point{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
s64 time{};
auto res = CalculateMonotonicSystemClockBaseTimePoint(time, context);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void StaticService::Handle_GetClockSnapshot(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto type{rp.PopEnum<TimeType>()};
ClockSnapshot snapshot{};
auto res = GetClockSnapshot(snapshot, type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto clock_type{rp.PopEnum<TimeType>()};
[[maybe_unused]] auto alignment{rp.Pop<u32>()};
auto user_context{rp.PopRaw<SystemClockContext>()};
auto network_context{rp.PopRaw<SystemClockContext>()};
ClockSnapshot snapshot{};
auto res =
GetClockSnapshotFromSystemClockContext(snapshot, user_context, network_context, clock_type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
ClockSnapshot a{};
ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(ClockSnapshot));
s64 difference{};
auto res = CalculateStandardUserSystemClockDifferenceByUser(difference, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(difference);
}
void StaticService::Handle_CalculateSpanBetween(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
ClockSnapshot a{};
ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(ClockSnapshot));
s64 time{};
auto res = CalculateSpanBetween(time, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(time);
}
// =============================== Implementations ===========================
Result StaticService::GetStandardUserSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_user_system_clock,
*out_service = std::make_shared<SystemClock>(m_system, m_user_system_clock,
m_setup_info.can_write_user_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardNetworkSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_network_system_clock,
Result StaticService::GetStandardNetworkSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_network_system_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardSteadyClock(std::shared_ptr<SteadyClock>& out_service) {
out_service =
Result StaticService::GetStandardSteadyClock(OutInterface<SteadyClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service =
std::make_shared<SteadyClock>(m_system, m_time, m_setup_info.can_write_steady_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service) {
out_service =
Result StaticService::GetTimeZoneService(OutInterface<TimeZoneService> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service =
std::make_shared<TimeZoneService>(m_system, m_time->m_standard_steady_clock, m_time_zone,
m_setup_info.can_write_timezone_device_location);
R_SUCCEED();
}
Result StaticService::GetStandardLocalSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_local_system_clock,
Result StaticService::GetStandardLocalSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_local_system_clock,
m_setup_info.can_write_local_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetEphemeralNetworkSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_ephemeral_network_clock,
Result StaticService::GetEphemeralNetworkSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_ephemeral_network_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory) {
Result StaticService::GetSharedMemoryNativeHandle(
OutCopyHandle<Kernel::KSharedMemory> out_shared_memory) {
LOG_DEBUG(Service_Time, "called.");
*out_shared_memory = &m_shared_memory.GetKSharedMemory();
R_SUCCEED();
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_is_enabled) {
Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_UNLESS(m_setup_info.can_write_steady_clock, ResultPermissionDenied);
R_RETURN(ResultNotImplemented);
}
Result StaticService::GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_RETURN(ResultNotImplemented);
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
Out<bool> out_is_enabled) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_enabled={}", *out_is_enabled); });
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
out_is_enabled = m_user_system_clock.GetAutomaticCorrection();
*out_is_enabled = m_user_system_clock.GetAutomaticCorrection();
R_SUCCEED();
}
Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
bool automatic_correction) {
LOG_DEBUG(Service_Time, "called. automatic_correction={}", automatic_correction);
R_UNLESS(m_user_system_clock.IsInitialized() && m_time->m_standard_steady_clock.IsInitialized(),
ResultClockUninitialized);
R_UNLESS(m_setup_info.can_write_user_clock, ResultPermissionDenied);
@ -407,22 +173,35 @@ Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
R_SUCCEED();
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient) {
out_is_sufficient = m_network_system_clock.IsAccuracySufficient();
Result StaticService::GetStandardUserSystemClockInitialYear(Out<s32> out_year) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_RETURN(ResultNotImplemented);
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient); });
*out_is_sufficient = m_network_system_clock.IsAccuracySufficient();
R_SUCCEED();
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
SteadyClockTimePoint& out_time_point) {
Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
m_user_system_clock.GetTimePoint(out_time_point);
m_user_system_clock.GetTimePoint(*out_time_point);
R_SUCCEED();
}
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(s64& out_time,
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(Out<s64> out_time,
SystemClockContext& context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time); });
R_UNLESS(m_time->m_standard_steady_clock.IsInitialized(), ResultClockUninitialized);
SteadyClockTimePoint time_point{};
@ -433,12 +212,16 @@ Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(s64& out_time,
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
auto ticks{m_system.CoreTiming().GetClockTicks()};
auto current_time{ConvertToTimeSpan(ticks).count()};
out_time = ((context.offset + time_point.time_point) - (current_time / one_second_ns));
auto current_time_ns{ConvertToTimeSpan(ticks).count()};
*out_time = ((context.offset + time_point.time_point) - (current_time_ns / one_second_ns));
R_SUCCEED();
}
Result StaticService::GetClockSnapshot(ClockSnapshot& out_snapshot, TimeType type) {
Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot, TimeType type) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot); });
SystemClockContext user_context{};
R_TRY(m_user_system_clock.GetContext(user_context));
@ -448,53 +231,101 @@ Result StaticService::GetClockSnapshot(ClockSnapshot& out_snapshot, TimeType typ
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::GetClockSnapshotFromSystemClockContext(ClockSnapshot& out_snapshot,
Result StaticService::GetClockSnapshotFromSystemClockContext(TimeType type,
OutClockSnapshot out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context,
TimeType type) {
SystemClockContext& network_context) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. type={} user_context={} network_context={} out_snapshot={}", type,
user_context, network_context, *out_snapshot);
});
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(s64& out_time,
ClockSnapshot& a,
ClockSnapshot& b) {
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_difference,
InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. a={} b={} out_difference={}", *a, *b, *out_difference);
});
auto diff_s =
std::chrono::seconds(b.user_context.offset) - std::chrono::seconds(a.user_context.offset);
std::chrono::seconds(b->user_context.offset) - std::chrono::seconds(a->user_context.offset);
if (a.user_context == b.user_context ||
!a.user_context.steady_time_point.IdMatches(b.user_context.steady_time_point)) {
out_time = 0;
if (a->user_context == b->user_context ||
!a->user_context.steady_time_point.IdMatches(b->user_context.steady_time_point)) {
*out_difference = 0;
R_SUCCEED();
}
if (!a.is_automatic_correction_enabled || !b.is_automatic_correction_enabled) {
out_time = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
if (!a->is_automatic_correction_enabled || !b->is_automatic_correction_enabled) {
*out_difference = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
if (a.network_context.steady_time_point.IdMatches(a.steady_clock_time_point) ||
b.network_context.steady_time_point.IdMatches(b.steady_clock_time_point)) {
out_time = 0;
if (a->network_context.steady_time_point.IdMatches(a->steady_clock_time_point) ||
b->network_context.steady_time_point.IdMatches(b->steady_clock_time_point)) {
*out_difference = 0;
R_SUCCEED();
}
out_time = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
*out_difference = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
Result StaticService::CalculateSpanBetween(s64& out_time, ClockSnapshot& a, ClockSnapshot& b) {
Result StaticService::CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time); });
s64 time_s{};
auto res =
GetSpanBetweenTimePoints(&time_s, a.steady_clock_time_point, b.steady_clock_time_point);
GetSpanBetweenTimePoints(&time_s, a->steady_clock_time_point, b->steady_clock_time_point);
if (res != ResultSuccess) {
R_UNLESS(a.network_time != 0 && b.network_time != 0, ResultTimeNotFound);
time_s = b.network_time - a.network_time;
R_UNLESS(a->network_time != 0 && b->network_time != 0, ResultTimeNotFound);
time_s = b->network_time - a->network_time;
}
out_time =
*out_time =
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(time_s)).count();
R_SUCCEED();
}
Result StaticService::GetClockSnapshotImpl(OutClockSnapshot out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context, TimeType type) {
out_snapshot->user_context = user_context;
out_snapshot->network_context = network_context;
R_TRY(
m_time->m_standard_steady_clock.GetCurrentTimePoint(out_snapshot->steady_clock_time_point));
out_snapshot->is_automatic_correction_enabled = m_user_system_clock.GetAutomaticCorrection();
R_TRY(m_time_zone.GetLocationName(out_snapshot->location_name));
R_TRY(GetTimeFromTimePointAndContext(&out_snapshot->user_time,
out_snapshot->steady_clock_time_point,
out_snapshot->user_context));
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot->user_calendar_time,
out_snapshot->user_calendar_additional_time,
out_snapshot->user_time));
if (GetTimeFromTimePointAndContext(&out_snapshot->network_time,
out_snapshot->steady_clock_time_point,
out_snapshot->network_context) != ResultSuccess) {
out_snapshot->network_time = 0;
}
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot->network_calendar_time,
out_snapshot->network_calendar_additional_time,
out_snapshot->network_time));
out_snapshot->type = type;
out_snapshot->unk_CE = 0;
R_SUCCEED();
}
} // namespace Service::PSC::Time

View file

@ -3,6 +3,7 @@
#pragma once
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/server_manager.h"
@ -29,58 +30,44 @@ class EphemeralNetworkSystemClockCore;
class SharedMemory;
class StaticService final : public ServiceFramework<StaticService> {
using InClockSnapshot = InLargeData<ClockSnapshot, BufferAttr_HipcPointer>;
using OutClockSnapshot = OutLargeData<ClockSnapshot, BufferAttr_HipcPointer>;
public:
explicit StaticService(Core::System& system, StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name);
~StaticService() override = default;
Result GetStandardUserSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetStandardNetworkSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetStandardSteadyClock(std::shared_ptr<SteadyClock>& out_service);
Result GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service);
Result GetStandardLocalSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetEphemeralNetworkSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_is_enabled);
Result GetStandardUserSystemClock(OutInterface<SystemClock> out_service);
Result GetStandardNetworkSystemClock(OutInterface<SystemClock> out_service);
Result GetStandardSteadyClock(OutInterface<SteadyClock> out_service);
Result GetTimeZoneService(OutInterface<TimeZoneService> out_service);
Result GetStandardLocalSystemClock(OutInterface<SystemClock> out_service);
Result GetEphemeralNetworkSystemClock(OutInterface<SystemClock> out_service);
Result GetSharedMemoryNativeHandle(OutCopyHandle<Kernel::KSharedMemory> out_shared_memory);
Result SetStandardSteadyClockInternalOffset(s64 offset_ns);
Result GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(Out<bool> out_is_enabled);
Result SetStandardUserSystemClockAutomaticCorrectionEnabled(bool automatic_correction);
Result IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient);
Result GetStandardUserSystemClockInitialYear(Out<s32> out_year);
Result IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
SteadyClockTimePoint& out_time_point);
Result CalculateMonotonicSystemClockBaseTimePoint(s64& out_time, SystemClockContext& context);
Result GetClockSnapshot(ClockSnapshot& out_snapshot, TimeType type);
Result GetClockSnapshotFromSystemClockContext(ClockSnapshot& out_snapshot,
Out<SteadyClockTimePoint> out_time_point);
Result CalculateMonotonicSystemClockBaseTimePoint(Out<s64> out_time,
SystemClockContext& context);
Result GetClockSnapshot(OutClockSnapshot out_snapshot, TimeType type);
Result GetClockSnapshotFromSystemClockContext(TimeType type, OutClockSnapshot out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context,
TimeType type);
Result CalculateStandardUserSystemClockDifferenceByUser(s64& out_time, ClockSnapshot& a,
ClockSnapshot& b);
Result CalculateSpanBetween(s64& out_time, ClockSnapshot& a, ClockSnapshot& b);
SystemClockContext& network_context);
Result CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_difference,
InClockSnapshot a, InClockSnapshot b);
Result CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a, InClockSnapshot b);
private:
Result GetClockSnapshotImpl(ClockSnapshot& out_snapshot, SystemClockContext& user_context,
Result GetClockSnapshotImpl(OutClockSnapshot out_snapshot, SystemClockContext& user_context,
SystemClockContext& network_context, TimeType type);
void Handle_GetStandardUserSystemClock(HLERequestContext& ctx);
void Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetStandardSteadyClock(HLERequestContext& ctx);
void Handle_GetTimeZoneService(HLERequestContext& ctx);
void Handle_GetStandardLocalSystemClock(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx);
void Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx);
void Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx);
void Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(HLERequestContext& ctx);
void Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx);
void Handle_GetClockSnapshot(HLERequestContext& ctx);
void Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx);
void Handle_CalculateStandardUserSystemClockDifferenceByUser(HLERequestContext& ctx);
void Handle_CalculateSpanBetween(HLERequestContext& ctx);
Core::System& m_system;
StaticServiceSetupInfo m_setup_info;
std::shared_ptr<TimeManager> m_time;

View file

@ -1,7 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/steady_clock.h"
namespace Service::PSC::Time {
@ -14,114 +16,40 @@ SteadyClock::SteadyClock(Core::System& system_, std::shared_ptr<TimeManager> man
can_write_uninitialized_clock} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &SteadyClock::Handle_GetCurrentTimePoint, "GetCurrentTimePoint"},
{2, &SteadyClock::Handle_GetTestOffset, "GetTestOffset"},
{3, &SteadyClock::Handle_SetTestOffset, "SetTestOffset"},
{100, &SteadyClock::Handle_GetRtcValue, "GetRtcValue"},
{101, &SteadyClock::Handle_IsRtcResetDetected, "IsRtcResetDetected"},
{102, &SteadyClock::Handle_GetSetupResultValue, "GetSetupResultValue"},
{200, &SteadyClock::Handle_GetInternalOffset, "GetInternalOffset"},
{0, D<&SteadyClock::GetCurrentTimePoint>, "GetCurrentTimePoint"},
{2, D<&SteadyClock::GetTestOffset>, "GetTestOffset"},
{3, D<&SteadyClock::SetTestOffset>, "SetTestOffset"},
{100, D<&SteadyClock::GetRtcValue>, "GetRtcValue"},
{101, D<&SteadyClock::IsRtcResetDetected>, "IsRtcResetDetected"},
{102, D<&SteadyClock::GetSetupResultValue>, "GetSetupResultValue"},
{200, D<&SteadyClock::GetInternalOffset>, "GetInternalOffset"},
};
// clang-format on
RegisterHandlers(functions);
}
void SteadyClock::Handle_GetCurrentTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result SteadyClock::GetCurrentTimePoint(Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point); });
SteadyClockTimePoint time_point{};
auto res = GetCurrentTimePoint(time_point);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void SteadyClock::Handle_GetTestOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 test_offset{};
auto res = GetTestOffset(test_offset);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(test_offset);
}
void SteadyClock::Handle_SetTestOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto test_offset{rp.Pop<s64>()};
auto res = SetTestOffset(test_offset);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SteadyClock::Handle_GetRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 rtc_value{};
auto res = GetRtcValue(rtc_value);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(rtc_value);
}
void SteadyClock::Handle_IsRtcResetDetected(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool reset_detected{false};
auto res = IsRtcResetDetected(reset_detected);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(reset_detected);
}
void SteadyClock::Handle_GetSetupResultValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result result_value{ResultSuccess};
auto res = GetSetupResultValue(result_value);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(result_value);
}
void SteadyClock::Handle_GetInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 internal_offset{};
auto res = GetInternalOffset(internal_offset);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(internal_offset);
}
// =============================== Implementations ===========================
Result SteadyClock::GetCurrentTimePoint(SteadyClockTimePoint& out_time_point) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetCurrentTimePoint(out_time_point));
R_RETURN(m_clock_core.GetCurrentTimePoint(*out_time_point));
}
Result SteadyClock::GetTestOffset(s64& out_test_offset) {
Result SteadyClock::GetTestOffset(Out<s64> out_test_offset) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_test_offset={}", *out_test_offset); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_test_offset = m_clock_core.GetTestOffset();
*out_test_offset = m_clock_core.GetTestOffset();
R_SUCCEED();
}
Result SteadyClock::SetTestOffset(s64 test_offset) {
LOG_DEBUG(Service_Time, "called. test_offset={}", test_offset);
R_UNLESS(m_can_write_steady_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -130,34 +58,43 @@ Result SteadyClock::SetTestOffset(s64 test_offset) {
R_SUCCEED();
}
Result SteadyClock::GetRtcValue(s64& out_rtc_value) {
Result SteadyClock::GetRtcValue(Out<s64> out_rtc_value) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rtc_value={}", *out_rtc_value); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetRtcValue(out_rtc_value));
R_RETURN(m_clock_core.GetRtcValue(*out_rtc_value));
}
Result SteadyClock::IsRtcResetDetected(bool& out_is_detected) {
Result SteadyClock::IsRtcResetDetected(Out<bool> out_is_detected) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_is_detected={}", *out_is_detected); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_is_detected = m_clock_core.IsResetDetected();
*out_is_detected = m_clock_core.IsResetDetected();
R_SUCCEED();
}
Result SteadyClock::GetSetupResultValue(Result& out_result) {
Result SteadyClock::GetSetupResultValue(Out<Result> out_result) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_result=0x{:X}", out_result->raw); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_result = m_clock_core.GetSetupResultValue();
*out_result = m_clock_core.GetSetupResultValue();
R_SUCCEED();
}
Result SteadyClock::GetInternalOffset(s64& out_internal_offset) {
Result SteadyClock::GetInternalOffset(Out<s64> out_internal_offset) {
SCOPE_EXIT(
{ LOG_DEBUG(Service_Time, "called. out_internal_offset={}", *out_internal_offset); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_internal_offset = m_clock_core.GetInternalOffset();
*out_internal_offset = m_clock_core.GetInternalOffset();
R_SUCCEED();
}

View file

@ -3,6 +3,7 @@
#pragma once
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
@ -22,23 +23,15 @@ public:
~SteadyClock() override = default;
Result GetCurrentTimePoint(SteadyClockTimePoint& out_time_point);
Result GetTestOffset(s64& out_test_offset);
Result GetCurrentTimePoint(Out<SteadyClockTimePoint> out_time_point);
Result GetTestOffset(Out<s64> out_test_offset);
Result SetTestOffset(s64 test_offset);
Result GetRtcValue(s64& out_rtc_value);
Result IsRtcResetDetected(bool& out_is_detected);
Result GetSetupResultValue(Result& out_result);
Result GetInternalOffset(s64& out_internal_offset);
Result GetRtcValue(Out<s64> out_rtc_value);
Result IsRtcResetDetected(Out<bool> out_is_detected);
Result GetSetupResultValue(Out<Result> out_result);
Result GetInternalOffset(Out<s64> out_internal_offset);
private:
void Handle_GetCurrentTimePoint(HLERequestContext& ctx);
void Handle_GetTestOffset(HLERequestContext& ctx);
void Handle_SetTestOffset(HLERequestContext& ctx);
void Handle_GetRtcValue(HLERequestContext& ctx);
void Handle_IsRtcResetDetected(HLERequestContext& ctx);
void Handle_GetSetupResultValue(HLERequestContext& ctx);
void Handle_GetInternalOffset(HLERequestContext& ctx);
Core::System& m_system;
StandardSteadyClockCore& m_clock_core;

View file

@ -1,7 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/system_clock.h"
namespace Service::PSC::Time {
@ -13,83 +15,28 @@ SystemClock::SystemClock(Core::System& system_, SystemClockCore& clock_core, boo
can_write_uninitialized_clock} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &SystemClock::Handle_GetCurrentTime, "GetCurrentTime"},
{1, &SystemClock::Handle_SetCurrentTime, "SetCurrentTime"},
{2, &SystemClock::Handle_GetSystemClockContext, "GetSystemClockContext"},
{3, &SystemClock::Handle_SetSystemClockContext, "SetSystemClockContext"},
{4, &SystemClock::Handle_GetOperationEventReadableHandle, "GetOperationEventReadableHandle"},
{0, D<&SystemClock::GetCurrentTime>, "GetCurrentTime"},
{1, D<&SystemClock::SetCurrentTime>, "SetCurrentTime"},
{2, D<&SystemClock::GetSystemClockContext>, "GetSystemClockContext"},
{3, D<&SystemClock::SetSystemClockContext>, "SetSystemClockContext"},
{4, D<&SystemClock::GetOperationEventReadableHandle>, "GetOperationEventReadableHandle"},
};
// clang-format on
RegisterHandlers(functions);
}
void SystemClock::Handle_GetCurrentTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result SystemClock::GetCurrentTime(Out<s64> out_time) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_time={}", *out_time); });
s64 time{};
auto res = GetCurrentTime(time);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void SystemClock::Handle_SetCurrentTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto res = SetCurrentTime(time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SystemClock::Handle_GetSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
SystemClockContext context{};
auto res = GetSystemClockContext(context);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SystemClockContext) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SystemClockContext>(context);
}
void SystemClock::Handle_SetSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto res = SetSystemClockContext(context);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SystemClock::Handle_GetOperationEventReadableHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetOperationEventReadableHandle(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
// =============================== Implementations ===========================
Result SystemClock::GetCurrentTime(s64& out_time) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetCurrentTime(&out_time));
R_RETURN(m_clock_core.GetCurrentTime(out_time.Get()));
}
Result SystemClock::SetCurrentTime(s64 time) {
LOG_DEBUG(Service_Time, "called. time={}", time);
R_UNLESS(m_can_write_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -97,14 +44,18 @@ Result SystemClock::SetCurrentTime(s64 time) {
R_RETURN(m_clock_core.SetCurrentTime(time));
}
Result SystemClock::GetSystemClockContext(SystemClockContext& out_context) {
Result SystemClock::GetSystemClockContext(Out<SystemClockContext> out_context) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_context={}", *out_context); });
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetContext(out_context));
R_RETURN(m_clock_core.GetContext(*out_context));
}
Result SystemClock::SetSystemClockContext(SystemClockContext& context) {
LOG_DEBUG(Service_Time, "called. context={}", context);
R_UNLESS(m_can_write_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
@ -112,7 +63,10 @@ Result SystemClock::SetSystemClockContext(SystemClockContext& context) {
R_RETURN(m_clock_core.SetContextAndWrite(context));
}
Result SystemClock::GetOperationEventReadableHandle(Kernel::KEvent** out_event) {
Result SystemClock::GetOperationEventReadableHandle(
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called.");
if (!m_operation_event) {
m_operation_event = std::make_unique<OperationEvent>(m_system);
R_UNLESS(m_operation_event != nullptr, ResultFailed);
@ -120,7 +74,7 @@ Result SystemClock::GetOperationEventReadableHandle(Kernel::KEvent** out_event)
m_clock_core.LinkOperationEvent(*m_operation_event);
}
*out_event = m_operation_event->m_event;
*out_event = &m_operation_event->m_event->GetReadableEvent();
R_SUCCEED();
}

View file

@ -3,6 +3,7 @@
#pragma once
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
@ -22,19 +23,13 @@ public:
~SystemClock() override = default;
Result GetCurrentTime(s64& out_time);
Result GetCurrentTime(Out<s64> out_time);
Result SetCurrentTime(s64 time);
Result GetSystemClockContext(SystemClockContext& out_context);
Result GetSystemClockContext(Out<SystemClockContext> out_context);
Result SetSystemClockContext(SystemClockContext& context);
Result GetOperationEventReadableHandle(Kernel::KEvent** out_event);
Result GetOperationEventReadableHandle(OutCopyHandle<Kernel::KReadableEvent> out_event);
private:
void Handle_GetCurrentTime(HLERequestContext& ctx);
void Handle_SetCurrentTime(HLERequestContext& ctx);
void Handle_GetSystemClockContext(HLERequestContext& ctx);
void Handle_SetSystemClockContext(HLERequestContext& ctx);
void Handle_GetOperationEventReadableHandle(HLERequestContext& ctx);
Core::System& m_system;
SystemClockCore& m_clock_core;

View file

@ -5,7 +5,7 @@
namespace Service::PSC::Time {
namespace {
constexpr Result ValidateRule(Tz::Rule& rule) {
constexpr Result ValidateRule(const Tz::Rule& rule) {
if (rule.typecnt > static_cast<s32>(Tz::TZ_MAX_TYPES) ||
rule.timecnt > static_cast<s32>(Tz::TZ_MAX_TIMES) ||
rule.charcnt > static_cast<s32>(Tz::TZ_MAX_CHARS)) {
@ -26,7 +26,7 @@ constexpr Result ValidateRule(Tz::Rule& rule) {
R_SUCCEED();
}
constexpr bool GetTimeZoneTime(s64& out_time, Tz::Rule& rule, s64 time, s32 index,
constexpr bool GetTimeZoneTime(s64& out_time, const Tz::Rule& rule, s64 time, s32 index,
s32 index_offset) {
s32 found_idx{};
s32 expected_index{index + index_offset};
@ -107,7 +107,7 @@ Result TimeZone::GetTimePoint(SteadyClockTimePoint& out_time_point) {
Result TimeZone::ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
const Tz::Rule& rule) {
std::scoped_lock l{m_mutex};
R_RETURN(ToCalendarTimeImpl(out_calendar_time, out_additional_info, time, rule));
}
@ -140,8 +140,8 @@ Result TimeZone::ParseBinaryInto(Tz::Rule& out_rule, std::span<const u8> binary)
R_RETURN(ParseBinaryImpl(out_rule, binary));
}
Result TimeZone::ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule) {
Result TimeZone::ToPosixTime(u32& out_count, std::span<s64> out_times, u32 out_times_count,
CalendarTime& calendar, const Tz::Rule& rule) {
std::scoped_lock l{m_mutex};
auto res = ToPosixTimeImpl(out_count, out_times, out_times_count, calendar, rule, -1);
@ -157,7 +157,7 @@ Result TimeZone::ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 ou
R_RETURN(res);
}
Result TimeZone::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
Result TimeZone::ToPosixTimeWithMyRule(u32& out_count, std::span<s64> out_times,
u32 out_times_count, CalendarTime& calendar) {
std::scoped_lock l{m_mutex};
@ -183,7 +183,7 @@ Result TimeZone::ParseBinaryImpl(Tz::Rule& out_rule, std::span<const u8> binary)
Result TimeZone::ToCalendarTimeImpl(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
const Tz::Rule& rule) {
R_TRY(ValidateRule(rule));
Tz::CalendarTimeInternal calendar_internal{};
@ -212,8 +212,8 @@ Result TimeZone::ToCalendarTimeImpl(CalendarTime& out_calendar_time,
R_SUCCEED();
}
Result TimeZone::ToPosixTimeImpl(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule, s32 is_dst) {
Result TimeZone::ToPosixTimeImpl(u32& out_count, std::span<s64> out_times, u32 out_times_count,
CalendarTime& calendar, const Tz::Rule& rule, s32 is_dst) {
R_TRY(ValidateRule(rule));
calendar.month -= 1;

View file

@ -32,23 +32,24 @@ public:
Result GetTimePoint(SteadyClockTimePoint& out_time_point);
Result ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule);
CalendarAdditionalInfo& out_additional_info, s64 time,
const Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(CalendarTime& calendar_time,
CalendarAdditionalInfo& calendar_additional, s64 time);
Result ParseBinary(LocationName& name, std::span<const u8> binary);
Result ParseBinaryInto(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
Result ToPosixTime(u32& out_count, std::span<s64> out_times, u32 out_times_count,
CalendarTime& calendar, const Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64> out_times, u32 out_times_count,
CalendarTime& calendar);
private:
Result ParseBinaryImpl(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToCalendarTimeImpl(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule);
Result ToPosixTimeImpl(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule, s32 is_dst);
const Tz::Rule& rule);
Result ToPosixTimeImpl(u32& out_count, std::span<s64> out_times, u32 out_times_count,
CalendarTime& calendar, const Tz::Rule& rule, s32 is_dst);
bool m_initialized{};
std::recursive_mutex m_mutex;

View file

@ -2,7 +2,10 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include <tz/tz.h>
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/time_zone_service.h"
namespace Service::PSC::Time {
@ -14,240 +17,78 @@ TimeZoneService::TimeZoneService(Core::System& system_, StandardSteadyClockCore&
can_write_timezone_device_location} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &TimeZoneService::Handle_GetDeviceLocationName, "GetDeviceLocationName"},
{1, &TimeZoneService::Handle_SetDeviceLocationName, "SetDeviceLocationName"},
{2, &TimeZoneService::Handle_GetTotalLocationNameCount, "GetTotalLocationNameCount"},
{3, &TimeZoneService::Handle_LoadLocationNameList, "LoadLocationNameList"},
{4, &TimeZoneService::Handle_LoadTimeZoneRule, "LoadTimeZoneRule"},
{5, &TimeZoneService::Handle_GetTimeZoneRuleVersion, "GetTimeZoneRuleVersion"},
{6, &TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime, "GetDeviceLocationNameAndUpdatedTime"},
{7, &TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule, "SetDeviceLocationNameWithTimeZoneRule"},
{8, &TimeZoneService::Handle_ParseTimeZoneBinary, "ParseTimeZoneBinary"},
{20, &TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, &TimeZoneService::Handle_ToCalendarTime, "ToCalendarTime"},
{101, &TimeZoneService::Handle_ToCalendarTimeWithMyRule, "ToCalendarTimeWithMyRule"},
{201, &TimeZoneService::Handle_ToPosixTime, "ToPosixTime"},
{202, &TimeZoneService::Handle_ToPosixTimeWithMyRule, "ToPosixTimeWithMyRule"},
{0, D<&TimeZoneService::GetDeviceLocationName>, "GetDeviceLocationName"},
{1, D<&TimeZoneService::SetDeviceLocationName>, "SetDeviceLocationName"},
{2, D<&TimeZoneService::GetTotalLocationNameCount>, "GetTotalLocationNameCount"},
{3, D<&TimeZoneService::LoadLocationNameList>, "LoadLocationNameList"},
{4, D<&TimeZoneService::LoadTimeZoneRule>, "LoadTimeZoneRule"},
{5, D<&TimeZoneService::GetTimeZoneRuleVersion>, "GetTimeZoneRuleVersion"},
{6, D<&TimeZoneService::GetDeviceLocationNameAndUpdatedTime>, "GetDeviceLocationNameAndUpdatedTime"},
{7, D<&TimeZoneService::SetDeviceLocationNameWithTimeZoneRule>, "SetDeviceLocationNameWithTimeZoneRule"},
{8, D<&TimeZoneService::ParseTimeZoneBinary>, "ParseTimeZoneBinary"},
{20, D<&TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle>, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, D<&TimeZoneService::ToCalendarTime>, "ToCalendarTime"},
{101, D<&TimeZoneService::ToCalendarTimeWithMyRule>, "ToCalendarTimeWithMyRule"},
{201, D<&TimeZoneService::ToPosixTime>, "ToPosixTime"},
{202, D<&TimeZoneService::ToPosixTimeWithMyRule>, "ToPosixTimeWithMyRule"},
};
// clang-format on
RegisterHandlers(functions);
}
void TimeZoneService::Handle_GetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::GetDeviceLocationName(Out<LocationName> out_location_name) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_location_name={}", *out_location_name); });
LocationName name{};
auto res = GetDeviceLocationName(name);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(LocationName) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<LocationName>(name);
R_RETURN(m_time_zone.GetLocationName(*out_location_name));
}
void TimeZoneService::Handle_SetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::SetDeviceLocationName(LocationName& location_name) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
IPC::RequestParser rp{ctx};
[[maybe_unused]] auto name{rp.PopRaw<LocationName>()};
if (!m_can_write_timezone_device_location) {
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultPermissionDenied);
return;
R_UNLESS(m_can_write_timezone_device_location, ResultPermissionDenied);
R_RETURN(ResultNotImplemented);
}
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
Result TimeZoneService::GetTotalLocationNameCount(Out<u32> out_count) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_count={}", *out_count); });
R_RETURN(m_time_zone.GetTotalLocationCount(*out_count));
}
void TimeZoneService::Handle_GetTotalLocationNameCount(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::LoadLocationNameList(
Out<u32> out_count, OutArray<LocationName, BufferAttr_HipcMapAlias> out_names, u32 index) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
u32 count{};
auto res = GetTotalLocationNameCount(count);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
R_RETURN(ResultNotImplemented);
}
void TimeZoneService::Handle_LoadLocationNameList(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::LoadTimeZoneRule(OutRule out_rule, LocationName& location_name) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
R_RETURN(ResultNotImplemented);
}
void TimeZoneService::Handle_LoadTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::GetTimeZoneRuleVersion(Out<RuleVersion> out_rule_version) {
SCOPE_EXIT({ LOG_DEBUG(Service_Time, "called. out_rule_version={}", *out_rule_version); });
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
R_RETURN(m_time_zone.GetRuleVersion(*out_rule_version));
}
void TimeZoneService::Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(
Out<LocationName> out_location_name, Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. out_location_name={} out_time_point={}",
*out_location_name, *out_time_point);
});
RuleVersion rule_version{};
auto res = GetTimeZoneRuleVersion(rule_version);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(RuleVersion) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<RuleVersion>(rule_version);
R_TRY(m_time_zone.GetLocationName(*out_location_name));
R_RETURN(m_time_zone.GetTimePoint(*out_time_point));
}
void TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule(
LocationName& location_name, InBuffer<BufferAttr_HipcAutoSelect> binary) {
LOG_DEBUG(Service_Time, "called. location_name={}", location_name);
LocationName name{};
SteadyClockTimePoint time_point{};
auto res = GetDeviceLocationNameAndUpdatedTime(time_point, name);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(LocationName) / sizeof(u32)) +
(sizeof(SteadyClockTimePoint) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<LocationName>(name);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<LocationName>()};
auto binary{ctx.ReadBuffer()};
auto res = SetDeviceLocationNameWithTimeZoneRule(name, binary);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_ParseTimeZoneBinary(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
auto res = ParseTimeZoneBinary(rule, binary);
ctx.WriteBuffer(rule);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void TimeZoneService::Handle_ToCalendarTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto rule_buffer{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, rule_buffer.data(), sizeof(Tz::Rule));
CalendarTime calendar_time{};
CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTime(calendar_time, additional_info, time, rule);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(CalendarTime) / sizeof(u32)) +
(sizeof(CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<CalendarTime>(calendar_time);
rb.PushRaw<CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
CalendarTime calendar_time{};
CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTimeWithMyRule(calendar_time, additional_info, time);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(CalendarTime) / sizeof(u32)) +
(sizeof(CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<CalendarTime>(calendar_time);
rb.PushRaw<CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToPosixTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<CalendarTime>()};
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, binary.data(), sizeof(Tz::Rule));
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTime(count, times, times_count, calendar, rule);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<CalendarTime>()};
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTimeWithMyRule(count, times, times_count, calendar);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
// =============================== Implementations ===========================
Result TimeZoneService::GetDeviceLocationName(LocationName& out_location_name) {
R_RETURN(m_time_zone.GetLocationName(out_location_name));
}
Result TimeZoneService::GetTotalLocationNameCount(u32& out_count) {
R_RETURN(m_time_zone.GetTotalLocationCount(out_count));
}
Result TimeZoneService::GetTimeZoneRuleVersion(RuleVersion& out_rule_version) {
R_RETURN(m_time_zone.GetRuleVersion(out_rule_version));
}
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(SteadyClockTimePoint& out_time_point,
LocationName& location_name) {
R_TRY(m_time_zone.GetLocationName(location_name));
R_RETURN(m_time_zone.GetTimePoint(out_time_point));
}
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule(LocationName& location_name,
std::span<const u8> binary) {
R_UNLESS(m_can_write_timezone_device_location, ResultPermissionDenied);
R_TRY(m_time_zone.ParseBinary(location_name, binary));
@ -258,32 +99,71 @@ Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule(LocationName& loca
R_SUCCEED();
}
Result TimeZoneService::ParseTimeZoneBinary(Tz::Rule& out_rule, std::span<const u8> binary) {
R_RETURN(m_time_zone.ParseBinaryInto(out_rule, binary));
Result TimeZoneService::ParseTimeZoneBinary(OutRule out_rule,
InBuffer<BufferAttr_HipcAutoSelect> binary) {
LOG_DEBUG(Service_Time, "called.");
R_RETURN(m_time_zone.ParseBinaryInto(*out_rule, binary));
}
Result TimeZoneService::ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
R_RETURN(m_time_zone.ToCalendarTime(out_calendar_time, out_additional_info, time, rule));
Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
OutCopyHandle<Kernel::KReadableEvent> out_event) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_RETURN(ResultNotImplemented);
}
Result TimeZoneService::ToCalendarTimeWithMyRule(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info,
s64 time) {
R_RETURN(m_time_zone.ToCalendarTimeWithMyRule(out_calendar_time, out_additional_info, time));
}
Result TimeZoneService::ToCalendarTime(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info, s64 time,
InRule rule) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
Result TimeZoneService::ToPosixTime(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count, CalendarTime& calendar_time,
Tz::Rule& rule) {
R_RETURN(m_time_zone.ToPosixTime(out_count, out_times, out_times_count, calendar_time, rule));
}
Result TimeZoneService::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count, CalendarTime& calendar_time) {
R_RETURN(
m_time_zone.ToPosixTimeWithMyRule(out_count, out_times, out_times_count, calendar_time));
m_time_zone.ToCalendarTime(*out_calendar_time, *out_additional_info, time, *rule.Get()));
}
Result TimeZoneService::ToCalendarTimeWithMyRule(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info,
s64 time) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time, "called. time={} out_calendar_time={} out_additional_info={}", time,
*out_calendar_time, *out_additional_info);
});
R_RETURN(m_time_zone.ToCalendarTimeWithMyRule(*out_calendar_time, *out_additional_info, time));
}
Result TimeZoneService::ToPosixTime(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count, CalendarTime& calendar_time,
InRule rule) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} "
"out_times_count={}",
calendar_time, *out_count, out_times[0], out_times[1], *out_times_count);
});
R_RETURN(
m_time_zone.ToPosixTime(*out_count, out_times, *out_times_count, calendar_time, *rule));
}
Result TimeZoneService::ToPosixTimeWithMyRule(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count,
CalendarTime& calendar_time) {
SCOPE_EXIT({
LOG_DEBUG(Service_Time,
"called. calendar_time={} out_count={} out_times[0]={} out_times[1]={} "
"out_times_count={}",
calendar_time, *out_count, out_times[0], out_times[1], *out_times_count);
});
R_RETURN(
m_time_zone.ToPosixTimeWithMyRule(*out_count, out_times, *out_times_count, calendar_time));
}
} // namespace Service::PSC::Time

View file

@ -3,6 +3,7 @@
#pragma once
#include "core/hle/service/cmif_types.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
@ -20,45 +21,41 @@ struct Rule;
namespace Service::PSC::Time {
class TimeZoneService final : public ServiceFramework<TimeZoneService> {
using InRule = InLargeData<Tz::Rule, BufferAttr_HipcMapAlias>;
using OutRule = OutLargeData<Tz::Rule, BufferAttr_HipcMapAlias>;
public:
explicit TimeZoneService(Core::System& system, StandardSteadyClockCore& clock_core,
TimeZone& time_zone, bool can_write_timezone_device_location);
~TimeZoneService() override = default;
Result GetDeviceLocationName(LocationName& out_location_name);
Result GetTotalLocationNameCount(u32& out_count);
Result GetTimeZoneRuleVersion(RuleVersion& out_rule_version);
Result GetDeviceLocationNameAndUpdatedTime(SteadyClockTimePoint& out_time_point,
LocationName& location_name);
Result GetDeviceLocationName(Out<LocationName> out_location_name);
Result SetDeviceLocationName(LocationName& location_name);
Result GetTotalLocationNameCount(Out<u32> out_count);
Result LoadLocationNameList(Out<u32> out_count,
OutArray<LocationName, BufferAttr_HipcMapAlias> out_names,
u32 index);
Result LoadTimeZoneRule(OutRule out_rule, LocationName& location_name);
Result GetTimeZoneRuleVersion(Out<RuleVersion> out_rule_version);
Result GetDeviceLocationNameAndUpdatedTime(Out<LocationName> location_name,
Out<SteadyClockTimePoint> out_time_point);
Result SetDeviceLocationNameWithTimeZoneRule(LocationName& location_name,
std::span<const u8> binary);
Result ParseTimeZoneBinary(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar_time, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar_time);
InBuffer<BufferAttr_HipcAutoSelect> binary);
Result ParseTimeZoneBinary(OutRule out_rule, InBuffer<BufferAttr_HipcAutoSelect> binary);
Result GetDeviceLocationNameOperationEventReadableHandle(
OutCopyHandle<Kernel::KReadableEvent> out_event);
Result ToCalendarTime(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info, s64 time, InRule rule);
Result ToCalendarTimeWithMyRule(Out<CalendarTime> out_calendar_time,
Out<CalendarAdditionalInfo> out_additional_info, s64 time);
Result ToPosixTime(Out<u32> out_count, OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count, CalendarTime& calendar_time, InRule rule);
Result ToPosixTimeWithMyRule(Out<u32> out_count,
OutArray<s64, BufferAttr_HipcPointer> out_times,
Out<u32> out_times_count, CalendarTime& calendar_time);
private:
void Handle_GetDeviceLocationName(HLERequestContext& ctx);
void Handle_SetDeviceLocationName(HLERequestContext& ctx);
void Handle_GetTotalLocationNameCount(HLERequestContext& ctx);
void Handle_LoadLocationNameList(HLERequestContext& ctx);
void Handle_LoadTimeZoneRule(HLERequestContext& ctx);
void Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx);
void Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx);
void Handle_ParseTimeZoneBinary(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameOperationEventReadableHandle(HLERequestContext& ctx);
void Handle_ToCalendarTime(HLERequestContext& ctx);
void Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx);
void Handle_ToPosixTime(HLERequestContext& ctx);
void Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx);
Core::System& m_system;
StandardSteadyClockCore& m_clock_core;

View file

@ -7,8 +7,6 @@ add_executable(yuzu-room
yuzu_room.rc
)
create_target_directory_groups(yuzu-room)
target_link_libraries(yuzu-room PRIVATE common network)
if (ENABLE_WEB_SERVICE)
target_compile_definitions(yuzu-room PRIVATE -DENABLE_WEB_SERVICE)
@ -28,3 +26,5 @@ endif()
if (YUZU_USE_PRECOMPILED_HEADERS)
target_precompile_headers(yuzu-room PRIVATE precompiled_headers.h)
endif()
create_target_directory_groups(yuzu-room)

View file

@ -289,8 +289,6 @@ add_library(video_core STATIC
vulkan_common/vulkan.h
)
create_target_directory_groups(video_core)
target_link_libraries(video_core PUBLIC common core)
target_link_libraries(video_core PUBLIC glad shader_recompiler stb bc_decoder)
@ -365,3 +363,5 @@ endif()
if (ANDROID AND ARCHITECTURE_arm64)
target_link_libraries(video_core PRIVATE adrenotools)
endif()
create_target_directory_groups(video_core)

View file

@ -375,8 +375,6 @@ elseif(WIN32)
endif()
endif()
create_target_directory_groups(yuzu)
target_link_libraries(yuzu PRIVATE common core input_common frontend_common network video_core)
target_link_libraries(yuzu PRIVATE Boost::headers glad Qt${QT_MAJOR_VERSION}::Widgets)
target_link_libraries(yuzu PRIVATE ${PLATFORM_LIBRARIES} Threads::Threads)
@ -472,3 +470,5 @@ endif()
if (YUZU_USE_PRECOMPILED_HEADERS)
target_precompile_headers(yuzu PRIVATE precompiled_headers.h)
endif()
create_target_directory_groups(yuzu)

View file

@ -28,8 +28,6 @@ add_executable(yuzu-cmd
yuzu.rc
)
create_target_directory_groups(yuzu-cmd)
target_link_libraries(yuzu-cmd PRIVATE common core input_common frontend_common)
target_link_libraries(yuzu-cmd PRIVATE glad)
if (MSVC)
@ -63,3 +61,5 @@ endif()
if (YUZU_USE_PRECOMPILED_HEADERS)
target_precompile_headers(yuzu-cmd PRIVATE precompiled_headers.h)
endif()
create_target_directory_groups(yuzu-cmd)