forked from suyu/suyu
hle: kernel: Use host memory allocations for KSlabMemory.
- There are some issues with the current workaround, we will just use host memory until we have a complete kernel memory implementation.
This commit is contained in:
parent
7331bb9d8d
commit
b4fc2e52a2
4 changed files with 20 additions and 174 deletions
|
@ -70,14 +70,22 @@ constexpr size_t SlabCountExtraKThread = 160;
|
|||
template <typename T>
|
||||
VAddr InitializeSlabHeap(Core::System& system, KMemoryLayout& memory_layout, VAddr address,
|
||||
size_t num_objects) {
|
||||
// TODO(bunnei): This is just a place holder. We should initialize the appropriate KSlabHeap for
|
||||
// kernel object type T with the backing kernel memory pointer once we emulate kernel memory.
|
||||
|
||||
const size_t size = Common::AlignUp(sizeof(T) * num_objects, alignof(void*));
|
||||
VAddr start = Common::AlignUp(address, alignof(T));
|
||||
|
||||
// This is intentionally empty. Once KSlabHeap is fully implemented, we can replace this with
|
||||
// the pointer to emulated memory to pass along. Until then, KSlabHeap will just allocate/free
|
||||
// host memory.
|
||||
void* backing_kernel_memory{};
|
||||
|
||||
if (size > 0) {
|
||||
const KMemoryRegion* region = memory_layout.FindVirtual(start + size - 1);
|
||||
ASSERT(region != nullptr);
|
||||
ASSERT(region->IsDerivedFrom(KMemoryRegionType_KernelSlab));
|
||||
T::InitializeSlabHeap(system.Kernel(), system.Memory().GetKernelBuffer(start, size), size);
|
||||
T::InitializeSlabHeap(system.Kernel(), backing_kernel_memory, size);
|
||||
}
|
||||
|
||||
return start + size;
|
||||
|
|
|
@ -4,165 +4,33 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "common/assert.h"
|
||||
#include "common/common_types.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
namespace impl {
|
||||
class KernelCore;
|
||||
|
||||
class KSlabHeapImpl final : NonCopyable {
|
||||
public:
|
||||
struct Node {
|
||||
Node* next{};
|
||||
};
|
||||
|
||||
constexpr KSlabHeapImpl() = default;
|
||||
|
||||
void Initialize(std::size_t size) {
|
||||
ASSERT(head == nullptr);
|
||||
obj_size = size;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetObjectSize() const {
|
||||
return obj_size;
|
||||
}
|
||||
|
||||
Node* GetHead() const {
|
||||
return head;
|
||||
}
|
||||
|
||||
void* Allocate() {
|
||||
Node* ret = head.load();
|
||||
|
||||
do {
|
||||
if (ret == nullptr) {
|
||||
break;
|
||||
}
|
||||
} while (!head.compare_exchange_weak(ret, ret->next));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void Free(void* obj) {
|
||||
Node* node = static_cast<Node*>(obj);
|
||||
|
||||
Node* cur_head = head.load();
|
||||
do {
|
||||
node->next = cur_head;
|
||||
} while (!head.compare_exchange_weak(cur_head, node));
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic<Node*> head{};
|
||||
std::size_t obj_size{};
|
||||
};
|
||||
|
||||
} // namespace impl
|
||||
|
||||
class KSlabHeapBase : NonCopyable {
|
||||
public:
|
||||
constexpr KSlabHeapBase() = default;
|
||||
|
||||
constexpr bool Contains(uintptr_t addr) const {
|
||||
return start <= addr && addr < end;
|
||||
}
|
||||
|
||||
constexpr std::size_t GetSlabHeapSize() const {
|
||||
return (end - start) / GetObjectSize();
|
||||
}
|
||||
|
||||
constexpr std::size_t GetObjectSize() const {
|
||||
return impl.GetObjectSize();
|
||||
}
|
||||
|
||||
constexpr uintptr_t GetSlabHeapAddress() const {
|
||||
return start;
|
||||
}
|
||||
|
||||
std::size_t GetObjectIndexImpl(const void* obj) const {
|
||||
return (reinterpret_cast<uintptr_t>(obj) - start) / GetObjectSize();
|
||||
}
|
||||
|
||||
std::size_t GetPeakIndex() const {
|
||||
return GetObjectIndexImpl(reinterpret_cast<const void*>(peak));
|
||||
}
|
||||
|
||||
void* AllocateImpl() {
|
||||
return impl.Allocate();
|
||||
}
|
||||
|
||||
void FreeImpl(void* obj) {
|
||||
// Don't allow freeing an object that wasn't allocated from this heap
|
||||
ASSERT(Contains(reinterpret_cast<uintptr_t>(obj)));
|
||||
|
||||
impl.Free(obj);
|
||||
}
|
||||
|
||||
void InitializeImpl(std::size_t obj_size, void* memory, std::size_t memory_size) {
|
||||
// Ensure we don't initialize a slab using null memory
|
||||
ASSERT(memory != nullptr);
|
||||
|
||||
// Initialize the base allocator
|
||||
impl.Initialize(obj_size);
|
||||
|
||||
// Set our tracking variables
|
||||
const std::size_t num_obj = (memory_size / obj_size);
|
||||
start = reinterpret_cast<uintptr_t>(memory);
|
||||
end = start + num_obj * obj_size;
|
||||
peak = start;
|
||||
|
||||
// Free the objects
|
||||
u8* cur = reinterpret_cast<u8*>(end);
|
||||
|
||||
for (std::size_t i{}; i < num_obj; i++) {
|
||||
cur -= obj_size;
|
||||
impl.Free(cur);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
using Impl = impl::KSlabHeapImpl;
|
||||
|
||||
Impl impl;
|
||||
uintptr_t peak{};
|
||||
uintptr_t start{};
|
||||
uintptr_t end{};
|
||||
};
|
||||
/// This is a placeholder class to manage slab heaps for kernel objects. For now, we just allocate
|
||||
/// these with new/delete, but this can be re-implemented later to allocate these in emulated
|
||||
/// memory.
|
||||
|
||||
template <typename T>
|
||||
class KSlabHeap final : public KSlabHeapBase {
|
||||
class KSlabHeap final : NonCopyable {
|
||||
public:
|
||||
constexpr KSlabHeap() : KSlabHeapBase() {}
|
||||
KSlabHeap() = default;
|
||||
|
||||
void Initialize(void* memory, std::size_t memory_size) {
|
||||
InitializeImpl(sizeof(T), memory, memory_size);
|
||||
void Initialize([[maybe_unused]] void* memory, [[maybe_unused]] std::size_t memory_size) {
|
||||
// Placeholder that should initialize the backing slab heap implementation.
|
||||
}
|
||||
|
||||
T* Allocate() {
|
||||
T* obj = static_cast<T*>(AllocateImpl());
|
||||
if (obj != nullptr) {
|
||||
new (obj) T();
|
||||
}
|
||||
return obj;
|
||||
return new T();
|
||||
}
|
||||
|
||||
T* AllocateWithKernel(KernelCore& kernel) {
|
||||
T* obj = static_cast<T*>(AllocateImpl());
|
||||
if (obj != nullptr) {
|
||||
new (obj) T(kernel);
|
||||
}
|
||||
return obj;
|
||||
return new T(kernel);
|
||||
}
|
||||
|
||||
void Free(T* obj) {
|
||||
FreeImpl(obj);
|
||||
}
|
||||
|
||||
constexpr std::size_t GetObjectIndex(const T* obj) const {
|
||||
return GetObjectIndexImpl(obj);
|
||||
delete obj;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -82,22 +82,6 @@ struct Memory::Impl {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
u8* GetKernelBuffer(VAddr start_vaddr, size_t size) {
|
||||
// TODO(bunnei): This is just a workaround until we have kernel memory layout mapped &
|
||||
// managed. Until then, we use this to allocate and access kernel memory regions.
|
||||
|
||||
auto search = kernel_memory_regions.find(start_vaddr);
|
||||
if (search != kernel_memory_regions.end()) {
|
||||
return search->second.get();
|
||||
}
|
||||
|
||||
std::unique_ptr<u8[]> new_memory_region{new u8[size]};
|
||||
u8* raw_ptr = new_memory_region.get();
|
||||
kernel_memory_regions[start_vaddr] = std::move(new_memory_region);
|
||||
|
||||
return raw_ptr;
|
||||
}
|
||||
|
||||
u8 Read8(const VAddr addr) {
|
||||
return Read<u8>(addr);
|
||||
}
|
||||
|
@ -727,7 +711,6 @@ struct Memory::Impl {
|
|||
}
|
||||
|
||||
Common::PageTable* current_page_table = nullptr;
|
||||
std::unordered_map<VAddr, std::unique_ptr<u8[]>> kernel_memory_regions;
|
||||
Core::System& system;
|
||||
};
|
||||
|
||||
|
@ -765,10 +748,6 @@ u8* Memory::GetPointer(VAddr vaddr) {
|
|||
return impl->GetPointer(vaddr);
|
||||
}
|
||||
|
||||
u8* Memory::GetKernelBuffer(VAddr start_vaddr, size_t size) {
|
||||
return impl->GetKernelBuffer(start_vaddr, size);
|
||||
}
|
||||
|
||||
const u8* Memory::GetPointer(VAddr vaddr) const {
|
||||
return impl->GetPointer(vaddr);
|
||||
}
|
||||
|
|
|
@ -121,15 +121,6 @@ public:
|
|||
*/
|
||||
u8* GetPointer(VAddr vaddr);
|
||||
|
||||
/**
|
||||
* Gets a pointer to the start of a kernel heap allocated memory region. Will allocate one if it
|
||||
* does not already exist.
|
||||
*
|
||||
* @param start_vaddr Start virtual address for the memory region.
|
||||
* @param size Size of the memory region.
|
||||
*/
|
||||
u8* GetKernelBuffer(VAddr start_vaddr, size_t size);
|
||||
|
||||
template <typename T>
|
||||
T* GetPointer(VAddr vaddr) {
|
||||
return reinterpret_cast<T*>(GetPointer(vaddr));
|
||||
|
|
Loading…
Reference in a new issue