Merge pull request #436 from bunnei/multi-core

Initial support for multi-core
This commit is contained in:
bunnei 2018-05-11 12:59:23 -04:00 committed by GitHub
commit 1b5c02fc37
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
24 changed files with 605 additions and 181 deletions

View file

@ -4,6 +4,8 @@ add_library(core STATIC
arm/unicorn/arm_unicorn.h arm/unicorn/arm_unicorn.h
core.cpp core.cpp
core.h core.h
core_cpu.cpp
core_cpu.h
core_timing.cpp core_timing.cpp
core_timing.h core_timing.h
file_sys/directory.h file_sys/directory.h

View file

@ -52,7 +52,7 @@ static void InterruptHook(uc_engine* uc, u32 intNo, void* user_data) {
static bool UnmappedMemoryHook(uc_engine* uc, uc_mem_type type, u64 addr, int size, u64 value, static bool UnmappedMemoryHook(uc_engine* uc, uc_mem_type type, u64 addr, int size, u64 value,
void* user_data) { void* user_data) {
ARM_Interface::ThreadContext ctx{}; ARM_Interface::ThreadContext ctx{};
Core::CPU().SaveContext(ctx); Core::CurrentArmInterface().SaveContext(ctx);
ASSERT_MSG(false, "Attempted to read from unmapped memory: 0x{:X}, pc=0x{:X}, lr=0x{:X}", addr, ASSERT_MSG(false, "Attempted to read from unmapped memory: 0x{:X}, pc=0x{:X}, lr=0x{:X}", addr,
ctx.pc, ctx.cpu_registers[30]); ctx.pc, ctx.cpu_registers[30]);
return {}; return {};

View file

@ -5,10 +5,6 @@
#include <memory> #include <memory>
#include <utility> #include <utility>
#include "common/logging/log.h" #include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h" #include "core/core.h"
#include "core/core_timing.h" #include "core/core_timing.h"
#include "core/gdbstub/gdbstub.h" #include "core/gdbstub/gdbstub.h"
@ -31,11 +27,31 @@ namespace Core {
System::~System() = default; System::~System() = default;
/// Runs a CPU core while the system is powered on
static void RunCpuCore(std::shared_ptr<Cpu> cpu_state) {
while (Core::System().GetInstance().IsPoweredOn()) {
cpu_state->RunLoop(true);
}
}
Cpu& System::CurrentCpuCore() {
// If multicore is enabled, use host thread to figure out the current CPU core
if (Settings::values.use_multi_core) {
const auto& search = thread_to_cpu.find(std::this_thread::get_id());
ASSERT(search != thread_to_cpu.end());
ASSERT(search->second);
return *search->second;
}
// Otherwise, use single-threaded mode active_core variable
return *cpu_cores[active_core];
}
System::ResultStatus System::RunLoop(bool tight_loop) { System::ResultStatus System::RunLoop(bool tight_loop) {
status = ResultStatus::Success; status = ResultStatus::Success;
if (!cpu_core) {
return ResultStatus::ErrorNotInitialized; // Update thread_to_cpu in case Core 0 is run from a different host thread
} thread_to_cpu[std::this_thread::get_id()] = cpu_cores[0];
if (GDBStub::IsServerEnabled()) { if (GDBStub::IsServerEnabled()) {
GDBStub::HandlePacket(); GDBStub::HandlePacket();
@ -52,25 +68,14 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
} }
} }
// If we don't have a currently active thread then don't execute instructions, for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
// instead advance to the next event and try to yield to the next thread cpu_cores[active_core]->RunLoop(tight_loop);
if (Kernel::GetCurrentThread() == nullptr) { if (Settings::values.use_multi_core) {
NGLOG_TRACE(Core_ARM, "Idling"); // Cores 1-3 are run on other threads in this mode
CoreTiming::Idle(); break;
CoreTiming::Advance();
PrepareReschedule();
} else {
CoreTiming::Advance();
if (tight_loop) {
cpu_core->Run();
} else {
cpu_core->Step();
} }
} }
HW::Update();
Reschedule();
return status; return status;
} }
@ -133,21 +138,26 @@ System::ResultStatus System::Load(EmuWindow* emu_window, const std::string& file
} }
void System::PrepareReschedule() { void System::PrepareReschedule() {
cpu_core->PrepareReschedule(); CurrentCpuCore().PrepareReschedule();
reschedule_pending = true;
} }
PerfStats::Results System::GetAndResetPerfStats() { PerfStats::Results System::GetAndResetPerfStats() {
return perf_stats.GetAndResetStats(CoreTiming::GetGlobalTimeUs()); return perf_stats.GetAndResetStats(CoreTiming::GetGlobalTimeUs());
} }
void System::Reschedule() { const std::shared_ptr<Kernel::Scheduler>& System::Scheduler(size_t core_index) {
if (!reschedule_pending) { ASSERT(core_index < NUM_CPU_CORES);
return; return cpu_cores[core_index]->Scheduler();
} }
reschedule_pending = false; ARM_Interface& System::ArmInterface(size_t core_index) {
Core::System::GetInstance().Scheduler().Reschedule(); ASSERT(core_index < NUM_CPU_CORES);
return cpu_cores[core_index]->ArmInterface();
}
Cpu& System::CpuCore(size_t core_index) {
ASSERT(core_index < NUM_CPU_CORES);
return *cpu_cores[core_index];
} }
System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) { System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) {
@ -157,26 +167,17 @@ System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) {
current_process = Kernel::Process::Create("main"); current_process = Kernel::Process::Create("main");
if (Settings::values.use_cpu_jit) { cpu_barrier = std::make_shared<CpuBarrier>();
#ifdef ARCHITECTURE_x86_64 for (size_t index = 0; index < cpu_cores.size(); ++index) {
cpu_core = std::make_shared<ARM_Dynarmic>(); cpu_cores[index] = std::make_shared<Cpu>(cpu_barrier, index);
#else
cpu_core = std::make_shared<ARM_Unicorn>();
NGLOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
cpu_core = std::make_shared<ARM_Unicorn>();
} }
gpu_core = std::make_unique<Tegra::GPU>(); gpu_core = std::make_unique<Tegra::GPU>();
telemetry_session = std::make_unique<Core::TelemetrySession>(); telemetry_session = std::make_unique<Core::TelemetrySession>();
service_manager = std::make_shared<Service::SM::ServiceManager>(); service_manager = std::make_shared<Service::SM::ServiceManager>();
HW::Init(); HW::Init();
Kernel::Init(system_mode); Kernel::Init(system_mode);
scheduler = std::make_unique<Kernel::Scheduler>(cpu_core.get());
Service::Init(service_manager); Service::Init(service_manager);
GDBStub::Init(); GDBStub::Init();
@ -184,6 +185,17 @@ System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) {
return ResultStatus::ErrorVideoCore; return ResultStatus::ErrorVideoCore;
} }
// Create threads for CPU cores 1-3, and build thread_to_cpu map
// CPU core 0 is run on the main thread
thread_to_cpu[std::this_thread::get_id()] = cpu_cores[0];
if (Settings::values.use_multi_core) {
for (size_t index = 0; index < cpu_core_threads.size(); ++index) {
cpu_core_threads[index] =
std::make_unique<std::thread>(RunCpuCore, cpu_cores[index + 1]);
thread_to_cpu[cpu_core_threads[index]->get_id()] = cpu_cores[index + 1];
}
}
NGLOG_DEBUG(Core, "Initialized OK"); NGLOG_DEBUG(Core, "Initialized OK");
// Reset counters and set time origin to current frame // Reset counters and set time origin to current frame
@ -207,15 +219,30 @@ void System::Shutdown() {
VideoCore::Shutdown(); VideoCore::Shutdown();
GDBStub::Shutdown(); GDBStub::Shutdown();
Service::Shutdown(); Service::Shutdown();
scheduler.reset();
Kernel::Shutdown(); Kernel::Shutdown();
HW::Shutdown(); HW::Shutdown();
service_manager.reset(); service_manager.reset();
telemetry_session.reset(); telemetry_session.reset();
gpu_core.reset(); gpu_core.reset();
cpu_core.reset();
// Close all CPU/threading state
cpu_barrier->NotifyEnd();
if (Settings::values.use_multi_core) {
for (auto& thread : cpu_core_threads) {
thread->join();
thread.reset();
}
}
thread_to_cpu.clear();
for (auto& cpu_core : cpu_cores) {
cpu_core.reset();
}
cpu_barrier.reset();
// Close core timing
CoreTiming::Shutdown(); CoreTiming::Shutdown();
// Close app loader
app_loader.reset(); app_loader.reset();
NGLOG_DEBUG(Core, "Shutdown OK"); NGLOG_DEBUG(Core, "Shutdown OK");

View file

@ -4,9 +4,12 @@
#pragma once #pragma once
#include <array>
#include <memory> #include <memory>
#include <string> #include <string>
#include <thread>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/core_cpu.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/scheduler.h"
#include "core/loader/loader.h" #include "core/loader/loader.h"
@ -89,7 +92,7 @@ public:
* @returns True if the emulated system is powered on, otherwise false. * @returns True if the emulated system is powered on, otherwise false.
*/ */
bool IsPoweredOn() const { bool IsPoweredOn() const {
return cpu_core != nullptr; return cpu_barrier && cpu_barrier->IsAlive();
} }
/** /**
@ -103,24 +106,34 @@ public:
/// Prepare the core emulation for a reschedule /// Prepare the core emulation for a reschedule
void PrepareReschedule(); void PrepareReschedule();
/// Gets and resets core performance statistics
PerfStats::Results GetAndResetPerfStats(); PerfStats::Results GetAndResetPerfStats();
/** /// Gets an ARM interface to the CPU core that is currently running
* Gets a reference to the emulated CPU. ARM_Interface& CurrentArmInterface() {
* @returns A reference to the emulated CPU. return CurrentCpuCore().ArmInterface();
*/
ARM_Interface& CPU() {
return *cpu_core;
} }
/// Gets an ARM interface to the CPU core with the specified index
ARM_Interface& ArmInterface(size_t core_index);
/// Gets a CPU interface to the CPU core with the specified index
Cpu& CpuCore(size_t core_index);
/// Gets the GPU interface
Tegra::GPU& GPU() { Tegra::GPU& GPU() {
return *gpu_core; return *gpu_core;
} }
Kernel::Scheduler& Scheduler() { /// Gets the scheduler for the CPU core that is currently running
return *scheduler; Kernel::Scheduler& CurrentScheduler() {
return *CurrentCpuCore().Scheduler();
} }
/// Gets the scheduler for the CPU core with the specified index
const std::shared_ptr<Kernel::Scheduler>& Scheduler(size_t core_index);
/// Gets the current process
Kernel::SharedPtr<Kernel::Process>& CurrentProcess() { Kernel::SharedPtr<Kernel::Process>& CurrentProcess() {
return current_process; return current_process;
} }
@ -155,6 +168,9 @@ public:
} }
private: private:
/// Returns the currently running CPU core
Cpu& CurrentCpuCore();
/** /**
* Initialize the emulated system. * Initialize the emulated system.
* @param emu_window Pointer to the host-system window used for video output and keyboard input. * @param emu_window Pointer to the host-system window used for video output and keyboard input.
@ -163,22 +179,15 @@ private:
*/ */
ResultStatus Init(EmuWindow* emu_window, u32 system_mode); ResultStatus Init(EmuWindow* emu_window, u32 system_mode);
/// Reschedule the core emulation
void Reschedule();
/// AppLoader used to load the current executing application /// AppLoader used to load the current executing application
std::unique_ptr<Loader::AppLoader> app_loader; std::unique_ptr<Loader::AppLoader> app_loader;
std::shared_ptr<ARM_Interface> cpu_core;
std::unique_ptr<Kernel::Scheduler> scheduler;
std::unique_ptr<Tegra::GPU> gpu_core; std::unique_ptr<Tegra::GPU> gpu_core;
std::shared_ptr<Tegra::DebugContext> debug_context; std::shared_ptr<Tegra::DebugContext> debug_context;
Kernel::SharedPtr<Kernel::Process> current_process; Kernel::SharedPtr<Kernel::Process> current_process;
std::shared_ptr<CpuBarrier> cpu_barrier;
/// When true, signals that a reschedule should happen std::array<std::shared_ptr<Cpu>, NUM_CPU_CORES> cpu_cores;
bool reschedule_pending{}; std::array<std::unique_ptr<std::thread>, NUM_CPU_CORES - 1> cpu_core_threads;
size_t active_core{}; ///< Active core, only used in single thread mode
/// Service manager /// Service manager
std::shared_ptr<Service::SM::ServiceManager> service_manager; std::shared_ptr<Service::SM::ServiceManager> service_manager;
@ -190,10 +199,13 @@ private:
ResultStatus status = ResultStatus::Success; ResultStatus status = ResultStatus::Success;
std::string status_details = ""; std::string status_details = "";
/// Map of guest threads to CPU cores
std::map<std::thread::id, std::shared_ptr<Cpu>> thread_to_cpu;
}; };
inline ARM_Interface& CPU() { inline ARM_Interface& CurrentArmInterface() {
return System::GetInstance().CPU(); return System::GetInstance().CurrentArmInterface();
} }
inline TelemetrySession& Telemetry() { inline TelemetrySession& Telemetry() {

119
src/core/core_cpu.cpp Normal file
View file

@ -0,0 +1,119 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/settings.h"
namespace Core {
void CpuBarrier::NotifyEnd() {
std::unique_lock<std::mutex> lock(mutex);
end = true;
condition.notify_all();
}
bool CpuBarrier::Rendezvous() {
if (!Settings::values.use_multi_core) {
// Meaningless when running in single-core mode
return true;
}
if (!end) {
std::unique_lock<std::mutex> lock(mutex);
--cores_waiting;
if (!cores_waiting) {
cores_waiting = NUM_CPU_CORES;
condition.notify_all();
return true;
}
condition.wait(lock);
return true;
}
return false;
}
Cpu::Cpu(std::shared_ptr<CpuBarrier> cpu_barrier, size_t core_index)
: cpu_barrier{std::move(cpu_barrier)}, core_index{core_index} {
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
arm_interface = std::make_shared<ARM_Dynarmic>();
#else
cpu_core = std::make_shared<ARM_Unicorn>();
NGLOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
arm_interface = std::make_shared<ARM_Unicorn>();
}
scheduler = std::make_shared<Kernel::Scheduler>(arm_interface.get());
}
void Cpu::RunLoop(bool tight_loop) {
// Wait for all other CPU cores to complete the previous slice, such that they run in lock-step
if (!cpu_barrier->Rendezvous()) {
// If rendezvous failed, session has been killed
return;
}
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) {
NGLOG_TRACE(Core, "Core-{} idling", core_index);
if (IsMainCore()) {
CoreTiming::Idle();
CoreTiming::Advance();
}
PrepareReschedule();
} else {
if (IsMainCore()) {
CoreTiming::Advance();
}
if (tight_loop) {
arm_interface->Run();
} else {
arm_interface->Step();
}
}
Reschedule();
}
void Cpu::SingleStep() {
return RunLoop(false);
}
void Cpu::PrepareReschedule() {
arm_interface->PrepareReschedule();
reschedule_pending = true;
}
void Cpu::Reschedule() {
if (!reschedule_pending) {
return;
}
reschedule_pending = false;
scheduler->Reschedule();
}
} // namespace Core

78
src/core/core_cpu.h Normal file
View file

@ -0,0 +1,78 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <string>
#include "common/common_types.h"
class ARM_Interface;
namespace Kernel {
class Scheduler;
}
namespace Core {
constexpr unsigned NUM_CPU_CORES{4};
class CpuBarrier {
public:
bool IsAlive() const {
return !end;
}
void NotifyEnd();
bool Rendezvous();
private:
unsigned cores_waiting{NUM_CPU_CORES};
std::mutex mutex;
std::condition_variable condition;
std::atomic<bool> end{};
};
class Cpu {
public:
Cpu(std::shared_ptr<CpuBarrier> cpu_barrier, size_t core_index);
void RunLoop(bool tight_loop = true);
void SingleStep();
void PrepareReschedule();
ARM_Interface& ArmInterface() {
return *arm_interface;
}
const ARM_Interface& ArmInterface() const {
return *arm_interface;
}
const std::shared_ptr<Kernel::Scheduler>& Scheduler() const {
return scheduler;
}
bool IsMainCore() const {
return core_index == 0;
}
private:
void Reschedule();
std::shared_ptr<ARM_Interface> arm_interface;
std::shared_ptr<CpuBarrier> cpu_barrier;
std::shared_ptr<Kernel::Scheduler> scheduler;
bool reschedule_pending{};
size_t core_index;
};
} // namespace Core

View file

@ -598,11 +598,11 @@ static void ReadRegister() {
} }
if (id <= SP_REGISTER) { if (id <= SP_REGISTER) {
LongToGdbHex(reply, Core::CPU().GetReg(static_cast<int>(id))); LongToGdbHex(reply, Core::CurrentArmInterface().GetReg(static_cast<int>(id)));
} else if (id == PC_REGISTER) { } else if (id == PC_REGISTER) {
LongToGdbHex(reply, Core::CPU().GetPC()); LongToGdbHex(reply, Core::CurrentArmInterface().GetPC());
} else if (id == CPSR_REGISTER) { } else if (id == CPSR_REGISTER) {
IntToGdbHex(reply, Core::CPU().GetCPSR()); IntToGdbHex(reply, Core::CurrentArmInterface().GetCPSR());
} else { } else {
return SendReply("E01"); return SendReply("E01");
} }
@ -618,16 +618,16 @@ static void ReadRegisters() {
u8* bufptr = buffer; u8* bufptr = buffer;
for (int reg = 0; reg <= SP_REGISTER; reg++) { for (int reg = 0; reg <= SP_REGISTER; reg++) {
LongToGdbHex(bufptr + reg * 16, Core::CPU().GetReg(reg)); LongToGdbHex(bufptr + reg * 16, Core::CurrentArmInterface().GetReg(reg));
} }
bufptr += (32 * 16); bufptr += (32 * 16);
LongToGdbHex(bufptr, Core::CPU().GetPC()); LongToGdbHex(bufptr, Core::CurrentArmInterface().GetPC());
bufptr += 16; bufptr += 16;
IntToGdbHex(bufptr, Core::CPU().GetCPSR()); IntToGdbHex(bufptr, Core::CurrentArmInterface().GetCPSR());
bufptr += 8; bufptr += 8;
@ -646,11 +646,11 @@ static void WriteRegister() {
} }
if (id <= SP_REGISTER) { if (id <= SP_REGISTER) {
Core::CPU().SetReg(id, GdbHexToLong(buffer_ptr)); Core::CurrentArmInterface().SetReg(id, GdbHexToLong(buffer_ptr));
} else if (id == PC_REGISTER) { } else if (id == PC_REGISTER) {
Core::CPU().SetPC(GdbHexToLong(buffer_ptr)); Core::CurrentArmInterface().SetPC(GdbHexToLong(buffer_ptr));
} else if (id == CPSR_REGISTER) { } else if (id == CPSR_REGISTER) {
Core::CPU().SetCPSR(GdbHexToInt(buffer_ptr)); Core::CurrentArmInterface().SetCPSR(GdbHexToInt(buffer_ptr));
} else { } else {
return SendReply("E01"); return SendReply("E01");
} }
@ -667,11 +667,11 @@ static void WriteRegisters() {
for (int i = 0, reg = 0; reg <= CPSR_REGISTER; i++, reg++) { for (int i = 0, reg = 0; reg <= CPSR_REGISTER; i++, reg++) {
if (reg <= SP_REGISTER) { if (reg <= SP_REGISTER) {
Core::CPU().SetReg(reg, GdbHexToLong(buffer_ptr + i * 16)); Core::CurrentArmInterface().SetReg(reg, GdbHexToLong(buffer_ptr + i * 16));
} else if (reg == PC_REGISTER) { } else if (reg == PC_REGISTER) {
Core::CPU().SetPC(GdbHexToLong(buffer_ptr + i * 16)); Core::CurrentArmInterface().SetPC(GdbHexToLong(buffer_ptr + i * 16));
} else if (reg == CPSR_REGISTER) { } else if (reg == CPSR_REGISTER) {
Core::CPU().SetCPSR(GdbHexToInt(buffer_ptr + i * 16)); Core::CurrentArmInterface().SetCPSR(GdbHexToInt(buffer_ptr + i * 16));
} else { } else {
UNIMPLEMENTED(); UNIMPLEMENTED();
} }

View file

@ -9,6 +9,8 @@
namespace Kernel { namespace Kernel {
std::mutex Scheduler::scheduler_mutex;
Scheduler::Scheduler(ARM_Interface* cpu_core) : cpu_core(cpu_core) {} Scheduler::Scheduler(ARM_Interface* cpu_core) : cpu_core(cpu_core) {}
Scheduler::~Scheduler() { Scheduler::~Scheduler() {
@ -18,6 +20,7 @@ Scheduler::~Scheduler() {
} }
bool Scheduler::HaveReadyThreads() { bool Scheduler::HaveReadyThreads() {
std::lock_guard<std::mutex> lock(scheduler_mutex);
return ready_queue.get_first() != nullptr; return ready_queue.get_first() != nullptr;
} }
@ -90,6 +93,8 @@ void Scheduler::SwitchContext(Thread* new_thread) {
} }
void Scheduler::Reschedule() { void Scheduler::Reschedule() {
std::lock_guard<std::mutex> lock(scheduler_mutex);
Thread* cur = GetCurrentThread(); Thread* cur = GetCurrentThread();
Thread* next = PopNextReadyThread(); Thread* next = PopNextReadyThread();
@ -105,26 +110,36 @@ void Scheduler::Reschedule() {
} }
void Scheduler::AddThread(SharedPtr<Thread> thread, u32 priority) { void Scheduler::AddThread(SharedPtr<Thread> thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex);
thread_list.push_back(thread); thread_list.push_back(thread);
ready_queue.prepare(priority); ready_queue.prepare(priority);
} }
void Scheduler::RemoveThread(Thread* thread) { void Scheduler::RemoveThread(Thread* thread) {
std::lock_guard<std::mutex> lock(scheduler_mutex);
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread), thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end()); thread_list.end());
} }
void Scheduler::ScheduleThread(Thread* thread, u32 priority) { void Scheduler::ScheduleThread(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex);
ASSERT(thread->status == THREADSTATUS_READY); ASSERT(thread->status == THREADSTATUS_READY);
ready_queue.push_back(priority, thread); ready_queue.push_back(priority, thread);
} }
void Scheduler::UnscheduleThread(Thread* thread, u32 priority) { void Scheduler::UnscheduleThread(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex);
ASSERT(thread->status == THREADSTATUS_READY); ASSERT(thread->status == THREADSTATUS_READY);
ready_queue.remove(priority, thread); ready_queue.remove(priority, thread);
} }
void Scheduler::SetThreadPriority(Thread* thread, u32 priority) { void Scheduler::SetThreadPriority(Thread* thread, u32 priority) {
std::lock_guard<std::mutex> lock(scheduler_mutex);
// If thread was ready, adjust queues // If thread was ready, adjust queues
if (thread->status == THREADSTATUS_READY) if (thread->status == THREADSTATUS_READY)
ready_queue.move(thread, thread->current_priority, priority); ready_queue.move(thread, thread->current_priority, priority);

View file

@ -4,6 +4,7 @@
#pragma once #pragma once
#include <mutex>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/thread_queue_list.h" #include "common/thread_queue_list.h"
@ -68,6 +69,8 @@ private:
SharedPtr<Thread> current_thread = nullptr; SharedPtr<Thread> current_thread = nullptr;
ARM_Interface* cpu_core; ARM_Interface* cpu_core;
static std::mutex scheduler_mutex;
}; };
} // namespace Kernel } // namespace Kernel

View file

@ -401,8 +401,8 @@ static ResultCode SetThreadPriority(Handle handle, u32 priority) {
/// Get which CPU core is executing the current thread /// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber() { static u32 GetCurrentProcessorNumber() {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, defaulting to processor 0"); NGLOG_TRACE(Kernel_SVC, "called");
return 0; return GetCurrentThread()->processor_id;
} }
static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size, static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size,
@ -485,22 +485,28 @@ static void ExitProcess() {
Core::CurrentProcess()->status = ProcessStatus::Exited; Core::CurrentProcess()->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects. auto stop_threads = [](const std::vector<SharedPtr<Thread>>& thread_list) {
auto& thread_list = Core::System::GetInstance().Scheduler().GetThreadList(); for (auto& thread : thread_list) {
for (auto& thread : thread_list) { if (thread->owner_process != Core::CurrentProcess())
if (thread->owner_process != Core::CurrentProcess()) continue;
continue;
if (thread == GetCurrentThread()) if (thread == GetCurrentThread())
continue; continue;
// TODO(Subv): When are the other running/ready threads terminated? // TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->status == THREADSTATUS_WAIT_SYNCH_ANY || ASSERT_MSG(thread->status == THREADSTATUS_WAIT_SYNCH_ANY ||
thread->status == THREADSTATUS_WAIT_SYNCH_ALL, thread->status == THREADSTATUS_WAIT_SYNCH_ALL,
"Exiting processes with non-waiting threads is currently unimplemented"); "Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop(); thread->Stop();
} }
};
auto& system = Core::System::GetInstance();
stop_threads(system.Scheduler(0)->GetThreadList());
stop_threads(system.Scheduler(1)->GetThreadList());
stop_threads(system.Scheduler(2)->GetThreadList());
stop_threads(system.Scheduler(3)->GetThreadList());
// Kill the current thread // Kill the current thread
GetCurrentThread()->Stop(); GetCurrentThread()->Stop();
@ -530,14 +536,9 @@ static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, V
switch (processor_id) { switch (processor_id) {
case THREADPROCESSORID_0: case THREADPROCESSORID_0:
break;
case THREADPROCESSORID_1: case THREADPROCESSORID_1:
case THREADPROCESSORID_2: case THREADPROCESSORID_2:
case THREADPROCESSORID_3: case THREADPROCESSORID_3:
// TODO(bunnei): Implement support for other processor IDs
NGLOG_ERROR(Kernel_SVC,
"Newly created thread must run in another thread ({}), unimplemented.",
processor_id);
break; break;
default: default:
ASSERT_MSG(false, "Unsupported thread processor ID: {}", processor_id); ASSERT_MSG(false, "Unsupported thread processor ID: {}", processor_id);
@ -576,7 +577,7 @@ static ResultCode StartThread(Handle thread_handle) {
/// Called when a thread exits /// Called when a thread exits
static void ExitThread() { static void ExitThread() {
NGLOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CPU().GetPC()); NGLOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CurrentArmInterface().GetPC());
ExitCurrentThread(); ExitCurrentThread();
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
@ -588,7 +589,7 @@ static void SleepThread(s64 nanoseconds) {
// Don't attempt to yield execution if there are no available threads to run, // Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread. // this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !Core::System::GetInstance().Scheduler().HaveReadyThreads()) if (nanoseconds == 0 && !Core::System::GetInstance().CurrentScheduler().HaveReadyThreads())
return; return;
// Sleep current thread and check for next thread to schedule // Sleep current thread and check for next thread to schedule
@ -624,7 +625,7 @@ static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr condition_var
// Note: Deliberately don't attempt to inherit the lock owner's priority. // Note: Deliberately don't attempt to inherit the lock owner's priority.
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().CpuCore(current_thread->processor_id).PrepareReschedule();
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -634,53 +635,60 @@ static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target
condition_variable_addr, target); condition_variable_addr, target);
u32 processed = 0; u32 processed = 0;
auto& thread_list = Core::System::GetInstance().Scheduler().GetThreadList();
for (auto& thread : thread_list) { auto signal_process_wide_key = [&](size_t core_index) {
if (thread->condvar_wait_address != condition_variable_addr) const auto& scheduler = Core::System::GetInstance().Scheduler(core_index);
continue; for (auto& thread : scheduler->GetThreadList()) {
if (thread->condvar_wait_address != condition_variable_addr)
continue;
// Only process up to 'target' threads, unless 'target' is -1, in which case process // Only process up to 'target' threads, unless 'target' is -1, in which case process
// them all. // them all.
if (target != -1 && processed >= target) if (target != -1 && processed >= target)
break; break;
// If the mutex is not yet acquired, acquire it. // If the mutex is not yet acquired, acquire it.
u32 mutex_val = Memory::Read32(thread->mutex_wait_address); u32 mutex_val = Memory::Read32(thread->mutex_wait_address);
if (mutex_val == 0) { if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread. // We were able to acquire the mutex, resume this thread.
Memory::Write32(thread->mutex_wait_address, thread->wait_handle); Memory::Write32(thread->mutex_wait_address, thread->wait_handle);
ASSERT(thread->status == THREADSTATUS_WAIT_MUTEX); ASSERT(thread->status == THREADSTATUS_WAIT_MUTEX);
thread->ResumeFromWait(); thread->ResumeFromWait();
auto lock_owner = thread->lock_owner; auto lock_owner = thread->lock_owner;
if (lock_owner) if (lock_owner)
lock_owner->RemoveMutexWaiter(thread); lock_owner->RemoveMutexWaiter(thread);
thread->lock_owner = nullptr; thread->lock_owner = nullptr;
thread->mutex_wait_address = 0; thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0; thread->condvar_wait_address = 0;
thread->wait_handle = 0; thread->wait_handle = 0;
} else { } else {
// Couldn't acquire the mutex, block the thread. // Couldn't acquire the mutex, block the thread.
Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask); Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
auto owner = g_handle_table.Get<Thread>(owner_handle); auto owner = g_handle_table.Get<Thread>(owner_handle);
ASSERT(owner); ASSERT(owner);
ASSERT(thread->status != THREADSTATUS_RUNNING); ASSERT(thread->status != THREADSTATUS_RUNNING);
thread->status = THREADSTATUS_WAIT_MUTEX; thread->status = THREADSTATUS_WAIT_MUTEX;
thread->wakeup_callback = nullptr; thread->wakeup_callback = nullptr;
// Signal that the mutex now has a waiting thread. // Signal that the mutex now has a waiting thread.
Memory::Write32(thread->mutex_wait_address, mutex_val | Mutex::MutexHasWaitersFlag); Memory::Write32(thread->mutex_wait_address, mutex_val | Mutex::MutexHasWaitersFlag);
owner->AddMutexWaiter(thread); owner->AddMutexWaiter(thread);
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().CpuCore(thread->processor_id).PrepareReschedule();
}
++processed;
} }
};
++processed; signal_process_wide_key(0);
} signal_process_wide_key(1);
signal_process_wide_key(2);
signal_process_wide_key(3);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -718,16 +726,31 @@ static ResultCode CreateTransferMemory(Handle* handle, VAddr addr, u64 size, u32
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
static ResultCode GetThreadCoreMask(Handle handle, u32* mask, u64* unknown) { static ResultCode GetThreadCoreMask(Handle thread_handle, u32* core, u64* mask) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}", handle); NGLOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);
*mask = 0x0;
*unknown = 0xf; const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
*core = thread->ideal_core;
*mask = thread->affinity_mask;
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
static ResultCode SetThreadCoreMask(Handle handle, u32 mask, u64 unknown) { static ResultCode SetThreadCoreMask(Handle thread_handle, u32 core, u64 mask) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, mask=0x{:08X}, unknown=0x{:X}", NGLOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}, mask=0x{:08X}, core=0x{:X}", thread_handle,
handle, mask, unknown); mask, core);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
thread->ChangeCore(core, mask);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }

View file

@ -13,14 +13,14 @@
namespace Kernel { namespace Kernel {
#define PARAM(n) Core::CPU().GetReg(n) #define PARAM(n) Core::CurrentArmInterface().GetReg(n)
/** /**
* HLE a function return from the current ARM userland process * HLE a function return from the current ARM userland process
* @param res Result to return * @param res Result to return
*/ */
static inline void FuncReturn(u64 res) { static inline void FuncReturn(u64 res) {
Core::CPU().SetReg(0, res); Core::CurrentArmInterface().SetReg(0, res);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -45,7 +45,7 @@ template <ResultCode func(u32*, u32)>
void SvcWrap() { void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, (u32)PARAM(1)).raw; u32 retval = func(&param_1, (u32)PARAM(1)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -53,7 +53,7 @@ template <ResultCode func(u32*, u64)>
void SvcWrap() { void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)).raw; u32 retval = func(&param_1, PARAM(1)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -66,7 +66,7 @@ template <ResultCode func(u64*, u64)>
void SvcWrap() { void SvcWrap() {
u64 param_1 = 0; u64 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)).raw; u32 retval = func(&param_1, PARAM(1)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -85,8 +85,8 @@ void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
u64 param_2 = 0; u64 param_2 = 0;
ResultCode retval = func((u32)(PARAM(2) & 0xFFFFFFFF), &param_1, &param_2); ResultCode retval = func((u32)(PARAM(2) & 0xFFFFFFFF), &param_1, &param_2);
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
Core::CPU().SetReg(2, param_2); Core::CurrentArmInterface().SetReg(2, param_2);
FuncReturn(retval.raw); FuncReturn(retval.raw);
} }
@ -120,7 +120,7 @@ template <ResultCode func(u32*, u64, u64, s64)>
void SvcWrap() { void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
ResultCode retval = func(&param_1, PARAM(1), (u32)(PARAM(2) & 0xFFFFFFFF), (s64)PARAM(3)); ResultCode retval = func(&param_1, PARAM(1), (u32)(PARAM(2) & 0xFFFFFFFF), (s64)PARAM(3));
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval.raw); FuncReturn(retval.raw);
} }
@ -133,7 +133,7 @@ template <ResultCode func(u64*, u64, u64, u64)>
void SvcWrap() { void SvcWrap() {
u64 param_1 = 0; u64 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3)).raw; u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -143,7 +143,7 @@ void SvcWrap() {
u32 retval = u32 retval =
func(&param_1, PARAM(1), PARAM(2), PARAM(3), (u32)PARAM(4), (s32)(PARAM(5) & 0xFFFFFFFF)) func(&param_1, PARAM(1), PARAM(2), PARAM(3), (u32)PARAM(4), (s32)(PARAM(5) & 0xFFFFFFFF))
.raw; .raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -166,7 +166,7 @@ template <ResultCode func(u32*, u64, u64, u32)>
void SvcWrap() { void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2), (u32)(PARAM(3) & 0xFFFFFFFF)).raw; u32 retval = func(&param_1, PARAM(1), PARAM(2), (u32)(PARAM(3) & 0xFFFFFFFF)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
@ -175,7 +175,7 @@ void SvcWrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = u32 retval =
func(&param_1, PARAM(1), (u32)(PARAM(2) & 0xFFFFFFFF), (u32)(PARAM(3) & 0xFFFFFFFF)).raw; func(&param_1, PARAM(1), (u32)(PARAM(2) & 0xFFFFFFFF), (u32)(PARAM(3) & 0xFFFFFFFF)).raw;
Core::CPU().SetReg(1, param_1); Core::CurrentArmInterface().SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }

View file

@ -64,7 +64,7 @@ void Thread::Stop() {
// Clean up thread from ready queue // Clean up thread from ready queue
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess) // This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
if (status == THREADSTATUS_READY) { if (status == THREADSTATUS_READY) {
Core::System::GetInstance().Scheduler().UnscheduleThread(this, current_priority); scheduler->UnscheduleThread(this, current_priority);
} }
status = THREADSTATUS_DEAD; status = THREADSTATUS_DEAD;
@ -92,7 +92,7 @@ void WaitCurrentThread_Sleep() {
void ExitCurrentThread() { void ExitCurrentThread() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->Stop(); thread->Stop();
Core::System::GetInstance().Scheduler().RemoveThread(thread); Core::System::GetInstance().CurrentScheduler().RemoveThread(thread);
} }
/** /**
@ -154,6 +154,18 @@ void Thread::CancelWakeupTimer() {
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
} }
static boost::optional<s32> GetNextProcessorId(u64 mask) {
for (s32 index = 0; index < Core::NUM_CPU_CORES; ++index) {
if (mask & (1ULL << index)) {
if (!Core::System().GetInstance().Scheduler(index)->GetCurrentThread()) {
// Core is enabled and not running any threads, use this one
return index;
}
}
}
return {};
}
void Thread::ResumeFromWait() { void Thread::ResumeFromWait() {
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects"); ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
@ -188,8 +200,37 @@ void Thread::ResumeFromWait() {
wakeup_callback = nullptr; wakeup_callback = nullptr;
status = THREADSTATUS_READY; status = THREADSTATUS_READY;
Core::System::GetInstance().Scheduler().ScheduleThread(this, current_priority);
Core::System::GetInstance().PrepareReschedule(); boost::optional<s32> new_processor_id = GetNextProcessorId(affinity_mask);
if (!new_processor_id) {
new_processor_id = processor_id;
}
if (ideal_core != -1 &&
Core::System().GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
new_processor_id = ideal_core;
}
ASSERT(*new_processor_id < 4);
// Add thread to new core's scheduler
auto& next_scheduler = Core::System().GetInstance().Scheduler(*new_processor_id);
if (*new_processor_id != processor_id) {
// Remove thread from previous core's scheduler
scheduler->RemoveThread(this);
next_scheduler->AddThread(this, current_priority);
}
processor_id = *new_processor_id;
// If the thread was ready, unschedule from the previous core and schedule on the new core
scheduler->UnscheduleThread(this, current_priority);
next_scheduler->ScheduleThread(this, current_priority);
// Change thread's scheduler
scheduler = next_scheduler;
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
} }
/** /**
@ -259,8 +300,6 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
SharedPtr<Thread> thread(new Thread); SharedPtr<Thread> thread(new Thread);
Core::System::GetInstance().Scheduler().AddThread(thread, priority);
thread->thread_id = NewThreadId(); thread->thread_id = NewThreadId();
thread->status = THREADSTATUS_DORMANT; thread->status = THREADSTATUS_DORMANT;
thread->entry_point = entry_point; thread->entry_point = entry_point;
@ -268,6 +307,8 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
thread->nominal_priority = thread->current_priority = priority; thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = CoreTiming::GetTicks(); thread->last_running_ticks = CoreTiming::GetTicks();
thread->processor_id = processor_id; thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask = 1ULL << processor_id;
thread->wait_objects.clear(); thread->wait_objects.clear();
thread->mutex_wait_address = 0; thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0; thread->condvar_wait_address = 0;
@ -275,6 +316,8 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
thread->name = std::move(name); thread->name = std::move(name);
thread->callback_handle = wakeup_callback_handle_table.Create(thread).Unwrap(); thread->callback_handle = wakeup_callback_handle_table.Create(thread).Unwrap();
thread->owner_process = owner_process; thread->owner_process = owner_process;
thread->scheduler = Core::System().GetInstance().Scheduler(processor_id);
thread->scheduler->AddThread(thread, priority);
// Find the next available TLS index, and mark it as used // Find the next available TLS index, and mark it as used
auto& tls_slots = owner_process->tls_slots; auto& tls_slots = owner_process->tls_slots;
@ -337,7 +380,7 @@ void Thread::SetPriority(u32 priority) {
} }
void Thread::BoostPriority(u32 priority) { void Thread::BoostPriority(u32 priority) {
Core::System::GetInstance().Scheduler().SetThreadPriority(this, priority); scheduler->SetThreadPriority(this, priority);
current_priority = priority; current_priority = priority;
} }
@ -406,7 +449,7 @@ void Thread::UpdatePriority() {
if (new_priority == current_priority) if (new_priority == current_priority)
return; return;
Core::System::GetInstance().Scheduler().SetThreadPriority(this, new_priority); scheduler->SetThreadPriority(this, new_priority);
current_priority = new_priority; current_priority = new_priority;
@ -415,13 +458,54 @@ void Thread::UpdatePriority() {
lock_owner->UpdatePriority(); lock_owner->UpdatePriority();
} }
void Thread::ChangeCore(u32 core, u64 mask) {
ideal_core = core;
mask = mask;
if (status != THREADSTATUS_READY) {
return;
}
boost::optional<s32> new_processor_id{GetNextProcessorId(mask)};
if (!new_processor_id) {
new_processor_id = processor_id;
}
if (ideal_core != -1 &&
Core::System().GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
new_processor_id = ideal_core;
}
ASSERT(new_processor_id < 4);
// Add thread to new core's scheduler
auto& next_scheduler = Core::System().GetInstance().Scheduler(*new_processor_id);
if (*new_processor_id != processor_id) {
// Remove thread from previous core's scheduler
scheduler->RemoveThread(this);
next_scheduler->AddThread(this, current_priority);
}
processor_id = *new_processor_id;
// If the thread was ready, unschedule from the previous core and schedule on the new core
scheduler->UnscheduleThread(this, current_priority);
next_scheduler->ScheduleThread(this, current_priority);
// Change thread's scheduler
scheduler = next_scheduler;
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
}
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
/** /**
* Gets the current thread * Gets the current thread
*/ */
Thread* GetCurrentThread() { Thread* GetCurrentThread() {
return Core::System::GetInstance().Scheduler().GetCurrentThread(); return Core::System::GetInstance().CurrentScheduler().GetCurrentThread();
} }
void ThreadingInit() { void ThreadingInit() {

View file

@ -4,6 +4,7 @@
#pragma once #pragma once
#include <memory>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
@ -56,6 +57,7 @@ enum class ThreadWakeupReason {
namespace Kernel { namespace Kernel {
class Process; class Process;
class Scheduler;
class Thread final : public WaitObject { class Thread final : public WaitObject {
public: public:
@ -118,6 +120,9 @@ public:
/// Recalculates the current priority taking into account priority inheritance. /// Recalculates the current priority taking into account priority inheritance.
void UpdatePriority(); void UpdatePriority();
/// Changes the core that the thread is running or scheduled to run on.
void ChangeCore(u32 core, u64 mask);
/** /**
* Gets the thread's thread ID * Gets the thread's thread ID
* @return The thread's ID * @return The thread's ID
@ -240,6 +245,11 @@ public:
// available. In case of a timeout, the object will be nullptr. // available. In case of a timeout, the object will be nullptr.
std::function<WakeupCallback> wakeup_callback; std::function<WakeupCallback> wakeup_callback;
std::shared_ptr<Scheduler> scheduler;
u32 ideal_core{0xFFFFFFFF};
u64 affinity_mask{0x1};
private: private:
Thread(); Thread();
~Thread() override; ~Thread() override;

View file

@ -104,8 +104,15 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
VirtualMemoryArea& final_vma = vma_handle->second; VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size); ASSERT(final_vma.size == size);
Core::CPU().MapBackingMemory(target, size, block->data() + offset, auto& system = Core::System::GetInstance();
VMAPermission::ReadWriteExecute); system.ArmInterface(0).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::AllocatedMemoryBlock; final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite; final_vma.permissions = VMAPermission::ReadWrite;
@ -126,7 +133,11 @@ ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* me
VirtualMemoryArea& final_vma = vma_handle->second; VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size); ASSERT(final_vma.size == size);
Core::CPU().MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute); auto& system = Core::System::GetInstance();
system.ArmInterface(0).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::BackingMemory; final_vma.type = VMAType::BackingMemory;
final_vma.permissions = VMAPermission::ReadWrite; final_vma.permissions = VMAPermission::ReadWrite;
@ -184,7 +195,11 @@ ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
ASSERT(FindVMA(target)->second.size >= size); ASSERT(FindVMA(target)->second.size >= size);
Core::CPU().UnmapMemory(target, size); auto& system = Core::System::GetInstance();
system.ArmInterface(0).UnmapMemory(target, size);
system.ArmInterface(1).UnmapMemory(target, size);
system.ArmInterface(2).UnmapMemory(target, size);
system.ArmInterface(3).UnmapMemory(target, size);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }

View file

@ -28,8 +28,13 @@ static PageTable* current_page_table = nullptr;
void SetCurrentPageTable(PageTable* page_table) { void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table; current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged(); auto& system = Core::System::GetInstance();
if (system.IsPoweredOn()) {
system.ArmInterface(0).PageTableChanged();
system.ArmInterface(1).PageTableChanged();
system.ArmInterface(2).PageTableChanged();
system.ArmInterface(3).PageTableChanged();
} }
} }

View file

@ -121,6 +121,7 @@ struct Values {
// Core // Core
bool use_cpu_jit; bool use_cpu_jit;
bool use_multi_core;
// Data Storage // Data Storage
bool use_virtual_sd; bool use_virtual_sd;

View file

@ -155,6 +155,8 @@ TelemetrySession::TelemetrySession() {
// Log user configuration information // Log user configuration information
AddField(Telemetry::FieldType::UserConfig, "Core_UseCpuJit", Settings::values.use_cpu_jit); AddField(Telemetry::FieldType::UserConfig, "Core_UseCpuJit", Settings::values.use_cpu_jit);
AddField(Telemetry::FieldType::UserConfig, "Core_UseMultiCore",
Settings::values.use_multi_core);
AddField(Telemetry::FieldType::UserConfig, "Renderer_ResolutionFactor", AddField(Telemetry::FieldType::UserConfig, "Renderer_ResolutionFactor",
Settings::values.resolution_factor); Settings::values.resolution_factor);
AddField(Telemetry::FieldType::UserConfig, "Renderer_ToggleFramelimit", AddField(Telemetry::FieldType::UserConfig, "Renderer_ToggleFramelimit",

View file

@ -78,6 +78,7 @@ void Config::ReadValues() {
qt_config->beginGroup("Core"); qt_config->beginGroup("Core");
Settings::values.use_cpu_jit = qt_config->value("use_cpu_jit", true).toBool(); Settings::values.use_cpu_jit = qt_config->value("use_cpu_jit", true).toBool();
Settings::values.use_multi_core = qt_config->value("use_multi_core", false).toBool();
qt_config->endGroup(); qt_config->endGroup();
qt_config->beginGroup("Renderer"); qt_config->beginGroup("Renderer");
@ -177,6 +178,7 @@ void Config::SaveValues() {
qt_config->beginGroup("Core"); qt_config->beginGroup("Core");
qt_config->setValue("use_cpu_jit", Settings::values.use_cpu_jit); qt_config->setValue("use_cpu_jit", Settings::values.use_cpu_jit);
qt_config->setValue("use_multi_core", Settings::values.use_multi_core);
qt_config->endGroup(); qt_config->endGroup();
qt_config->beginGroup("Renderer"); qt_config->beginGroup("Renderer");

View file

@ -20,6 +20,7 @@ ConfigureGeneral::ConfigureGeneral(QWidget* parent)
this->setConfiguration(); this->setConfiguration();
ui->use_cpu_jit->setEnabled(!Core::System::GetInstance().IsPoweredOn()); ui->use_cpu_jit->setEnabled(!Core::System::GetInstance().IsPoweredOn());
ui->use_multi_core->setEnabled(!Core::System::GetInstance().IsPoweredOn());
ui->use_docked_mode->setEnabled(!Core::System::GetInstance().IsPoweredOn()); ui->use_docked_mode->setEnabled(!Core::System::GetInstance().IsPoweredOn());
} }
@ -30,6 +31,7 @@ void ConfigureGeneral::setConfiguration() {
ui->toggle_check_exit->setChecked(UISettings::values.confirm_before_closing); ui->toggle_check_exit->setChecked(UISettings::values.confirm_before_closing);
ui->theme_combobox->setCurrentIndex(ui->theme_combobox->findData(UISettings::values.theme)); ui->theme_combobox->setCurrentIndex(ui->theme_combobox->findData(UISettings::values.theme));
ui->use_cpu_jit->setChecked(Settings::values.use_cpu_jit); ui->use_cpu_jit->setChecked(Settings::values.use_cpu_jit);
ui->use_multi_core->setChecked(Settings::values.use_multi_core);
ui->use_docked_mode->setChecked(Settings::values.use_docked_mode); ui->use_docked_mode->setChecked(Settings::values.use_docked_mode);
} }
@ -40,6 +42,7 @@ void ConfigureGeneral::applyConfiguration() {
ui->theme_combobox->itemData(ui->theme_combobox->currentIndex()).toString(); ui->theme_combobox->itemData(ui->theme_combobox->currentIndex()).toString();
Settings::values.use_cpu_jit = ui->use_cpu_jit->isChecked(); Settings::values.use_cpu_jit = ui->use_cpu_jit->isChecked();
Settings::values.use_multi_core = ui->use_multi_core->isChecked();
Settings::values.use_docked_mode = ui->use_docked_mode->isChecked(); Settings::values.use_docked_mode = ui->use_docked_mode->isChecked();
Settings::Apply(); Settings::Apply();
} }

View file

@ -58,6 +58,13 @@
</property> </property>
</widget> </widget>
</item> </item>
<item>
<widget class="QCheckBox" name="use_multi_core">
<property name="text">
<string>Enable multi-core</string>
</property>
</widget>
</item>
</layout> </layout>
</item> </item>
</layout> </layout>

View file

@ -63,7 +63,7 @@ void RegistersWidget::OnDebugModeEntered() {
for (int i = 0; i < core_registers->childCount(); ++i) for (int i = 0; i < core_registers->childCount(); ++i)
core_registers->child(i)->setText( core_registers->child(i)->setText(
1, QString("0x%1").arg(Core::CPU().GetReg(i), 8, 16, QLatin1Char('0'))); 1, QString("0x%1").arg(Core::CurrentArmInterface().GetReg(i), 8, 16, QLatin1Char('0')));
UpdateCPSRValues(); UpdateCPSRValues();
} }
@ -122,7 +122,7 @@ void RegistersWidget::CreateCPSRChildren() {
} }
void RegistersWidget::UpdateCPSRValues() { void RegistersWidget::UpdateCPSRValues() {
const u32 cpsr_val = Core::CPU().GetCPSR(); const u32 cpsr_val = Core::CurrentArmInterface().GetCPSR();
cpsr->setText(1, QString("0x%1").arg(cpsr_val, 8, 16, QLatin1Char('0'))); cpsr->setText(1, QString("0x%1").arg(cpsr_val, 8, 16, QLatin1Char('0')));
cpsr->child(0)->setText( cpsr->child(0)->setText(

View file

@ -51,13 +51,21 @@ std::size_t WaitTreeItem::Row() const {
} }
std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() { std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() {
const auto& threads = Core::System::GetInstance().Scheduler().GetThreadList();
std::vector<std::unique_ptr<WaitTreeThread>> item_list; std::vector<std::unique_ptr<WaitTreeThread>> item_list;
item_list.reserve(threads.size()); std::size_t row = 0;
for (std::size_t i = 0; i < threads.size(); ++i) { auto add_threads = [&](const std::vector<Kernel::SharedPtr<Kernel::Thread>>& threads) {
item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i])); for (std::size_t i = 0; i < threads.size(); ++i) {
item_list.back()->row = i; item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i]));
} item_list.back()->row = row;
++row;
}
};
add_threads(Core::System::GetInstance().Scheduler(0)->GetThreadList());
add_threads(Core::System::GetInstance().Scheduler(1)->GetThreadList());
add_threads(Core::System::GetInstance().Scheduler(2)->GetThreadList());
add_threads(Core::System::GetInstance().Scheduler(3)->GetThreadList());
return item_list; return item_list;
} }
@ -240,6 +248,9 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
} }
list.push_back(std::make_unique<WaitTreeText>(tr("processor = %1").arg(processor))); list.push_back(std::make_unique<WaitTreeText>(tr("processor = %1").arg(processor)));
list.push_back(std::make_unique<WaitTreeText>(tr("ideal core = %1").arg(thread.ideal_core)));
list.push_back(
std::make_unique<WaitTreeText>(tr("affinity mask = %1").arg(thread.affinity_mask)));
list.push_back(std::make_unique<WaitTreeText>(tr("thread id = %1").arg(thread.GetThreadId()))); list.push_back(std::make_unique<WaitTreeText>(tr("thread id = %1").arg(thread.GetThreadId())));
list.push_back(std::make_unique<WaitTreeText>(tr("priority = %1(current) / %2(normal)") list.push_back(std::make_unique<WaitTreeText>(tr("priority = %1(current) / %2(normal)")
.arg(thread.current_priority) .arg(thread.current_priority)

View file

@ -91,6 +91,7 @@ void Config::ReadValues() {
// Core // Core
Settings::values.use_cpu_jit = sdl2_config->GetBoolean("Core", "use_cpu_jit", true); Settings::values.use_cpu_jit = sdl2_config->GetBoolean("Core", "use_cpu_jit", true);
Settings::values.use_multi_core = sdl2_config->GetBoolean("Core", "use_multi_core", false);
// Renderer // Renderer
Settings::values.resolution_factor = Settings::values.resolution_factor =

View file

@ -80,6 +80,10 @@ touch_device=
# 0: Interpreter (slow), 1 (default): JIT (fast) # 0: Interpreter (slow), 1 (default): JIT (fast)
use_cpu_jit = use_cpu_jit =
# Whether to use multi-core for CPU emulation
# 0 (default): Disabled, 1: Enabled
use_multi_core=
[Renderer] [Renderer]
# Whether to use software or hardware rendering. # Whether to use software or hardware rendering.
# 0: Software, 1 (default): Hardware # 0: Software, 1 (default): Hardware