1
0
Fork 0
forked from suyu/suyu
suyu/src/video_core/regs_lighting.h

321 lines
12 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/vector_math.h"
namespace Pica {
struct LightingRegs {
enum class LightingSampler {
Distribution0 = 0,
Distribution1 = 1,
Fresnel = 3,
ReflectBlue = 4,
ReflectGreen = 5,
ReflectRed = 6,
SpotlightAttenuation = 8,
DistanceAttenuation = 16,
};
static constexpr unsigned NumLightingSampler = 24;
static LightingSampler SpotlightAttenuationSampler(unsigned index) {
return static_cast<LightingSampler>(
static_cast<unsigned>(LightingSampler::SpotlightAttenuation) + index);
}
static LightingSampler DistanceAttenuationSampler(unsigned index) {
return static_cast<LightingSampler>(
static_cast<unsigned>(LightingSampler::DistanceAttenuation) + index);
}
/**
* Pica fragment lighting supports using different LUTs for each lighting component: Reflectance
* R, G, and B channels, distribution function for specular components 0 and 1, fresnel factor,
* and spotlight attenuation. Furthermore, which LUTs are used for each channel (or whether a
* channel is enabled at all) is specified by various pre-defined lighting configurations. With
* configurations that require more LUTs, more cycles are required on HW to perform lighting
* computations.
*/
enum class LightingConfig : u32 {
Config0 = 0, ///< Reflect Red, Distribution 0, Spotlight
Config1 = 1, ///< Reflect Red, Fresnel, Spotlight
Config2 = 2, ///< Reflect Red, Distribution 0/1
Config3 = 3, ///< Distribution 0/1, Fresnel
Config4 = 4, ///< Reflect Red/Green/Blue, Distribution 0/1, Spotlight
Config5 = 5, ///< Reflect Red/Green/Blue, Distribution 0, Fresnel, Spotlight
Config6 = 6, ///< Reflect Red, Distribution 0/1, Fresnel, Spotlight
Config7 = 8, ///< Reflect Red/Green/Blue, Distribution 0/1, Fresnel, Spotlight
///< NOTE: '8' is intentional, '7' does not appear to be a valid configuration
};
/// Selects which lighting components are affected by fresnel
enum class LightingFresnelSelector : u32 {
None = 0, ///< Fresnel is disabled
PrimaryAlpha = 1, ///< Primary (diffuse) lighting alpha is affected by fresnel
SecondaryAlpha = 2, ///< Secondary (specular) lighting alpha is affected by fresnel
Both =
PrimaryAlpha |
SecondaryAlpha, ///< Both primary and secondary lighting alphas are affected by fresnel
};
/// Factor used to scale the output of a lighting LUT
enum class LightingScale : u32 {
Scale1 = 0, ///< Scale is 1x
Scale2 = 1, ///< Scale is 2x
Scale4 = 2, ///< Scale is 4x
Scale8 = 3, ///< Scale is 8x
Scale1_4 = 6, ///< Scale is 0.25x
Scale1_2 = 7, ///< Scale is 0.5x
};
enum class LightingLutInput : u32 {
NH = 0, // Cosine of the angle between the normal and half-angle vectors
VH = 1, // Cosine of the angle between the view and half-angle vectors
NV = 2, // Cosine of the angle between the normal and the view vector
LN = 3, // Cosine of the angle between the light and the normal vectors
SP = 4, // Cosine of the angle between the light and the inverse spotlight vectors
CP = 5, // Cosine of the angle between the tangent and projection of half-angle vectors
};
enum class LightingBumpMode : u32 {
None = 0,
NormalMap = 1,
TangentMap = 2,
};
union LightColor {
BitField<0, 10, u32> b;
BitField<10, 10, u32> g;
BitField<20, 10, u32> r;
Math::Vec3f ToVec3f() const {
// These fields are 10 bits wide, however 255 corresponds to 1.0f for each color
// component
return Math::MakeVec((f32)r / 255.f, (f32)g / 255.f, (f32)b / 255.f);
}
};
/// Returns true if the specified lighting sampler is supported by the current Pica lighting
/// configuration
static bool IsLightingSamplerSupported(LightingConfig config, LightingSampler sampler) {
switch (sampler) {
case LightingSampler::Distribution0:
return (config != LightingConfig::Config1);
case LightingSampler::Distribution1:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config1) &&
(config != LightingConfig::Config5);
case LightingSampler::SpotlightAttenuation:
return (config != LightingConfig::Config2) && (config != LightingConfig::Config3);
case LightingSampler::Fresnel:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config2) &&
(config != LightingConfig::Config4);
case LightingSampler::ReflectRed:
return (config != LightingConfig::Config3);
case LightingSampler::ReflectGreen:
case LightingSampler::ReflectBlue:
return (config == LightingConfig::Config4) || (config == LightingConfig::Config5) ||
(config == LightingConfig::Config7);
default:
UNREACHABLE_MSG("Regs::IsLightingSamplerSupported: Reached unreachable section, "
"sampler should be one of Distribution0, Distribution1, "
"SpotlightAttenuation, Fresnel, ReflectRed, ReflectGreen or "
"ReflectBlue, instead got %i",
static_cast<int>(config));
}
}
struct LightSrc {
LightColor specular_0; // material.specular_0 * light.specular_0
LightColor specular_1; // material.specular_1 * light.specular_1
LightColor diffuse; // material.diffuse * light.diffuse
LightColor ambient; // material.ambient * light.ambient
// Encoded as 16-bit floating point
union {
BitField<0, 16, u32> x;
BitField<16, 16, u32> y;
};
union {
BitField<0, 16, u32> z;
};
// inverse spotlight direction vector, encoded as fixed1.1.11
union {
BitField<0, 13, s32> spot_x;
BitField<16, 13, s32> spot_y;
};
union {
BitField<0, 13, s32> spot_z;
};
INSERT_PADDING_WORDS(0x1);
union {
BitField<0, 1, u32> directional;
BitField<1, 1, u32> two_sided_diffuse; // When disabled, clamp dot-product to 0
BitField<2, 1, u32> geometric_factor_0;
BitField<3, 1, u32> geometric_factor_1;
} config;
BitField<0, 20, u32> dist_atten_bias;
BitField<0, 20, u32> dist_atten_scale;
INSERT_PADDING_WORDS(0x4);
};
static_assert(sizeof(LightSrc) == 0x10 * sizeof(u32), "LightSrc structure must be 0x10 words");
LightSrc light[8];
LightColor global_ambient; // Emission + (material.ambient * lighting.ambient)
INSERT_PADDING_WORDS(0x1);
BitField<0, 3, u32> max_light_index; // Number of enabled lights - 1
union {
BitField<2, 2, LightingFresnelSelector> fresnel_selector;
BitField<4, 4, LightingConfig> config;
BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2
BitField<27, 1, u32> clamp_highlights;
BitField<28, 2, LightingBumpMode> bump_mode;
BitField<30, 1, u32> disable_bump_renorm;
} config0;
union {
u32 raw;
// Each bit specifies whether spot light attenuation should be applied for the corresponding
// light.
BitField<8, 8, u32> disable_spot_atten;
BitField<16, 1, u32> disable_lut_d0;
BitField<17, 1, u32> disable_lut_d1;
// Note: by intuition, BitField<18, 1, u32> should be disable_lut_sp, but it is actually a
// dummy bit which is always set as 1.
BitField<19, 1, u32> disable_lut_fr;
BitField<20, 1, u32> disable_lut_rr;
BitField<21, 1, u32> disable_lut_rg;
BitField<22, 1, u32> disable_lut_rb;
// Each bit specifies whether distance attenuation should be applied for the corresponding
// light.
BitField<24, 8, u32> disable_dist_atten;
} config1;
bool IsDistAttenDisabled(unsigned index) const {
return (config1.disable_dist_atten & (1 << index)) != 0;
}
bool IsSpotAttenDisabled(unsigned index) const {
return (config1.disable_spot_atten & (1 << index)) != 0;
}
union {
BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
BitField<8, 5, u32> type; ///< Type of LUT for which to set data
} lut_config;
BitField<0, 1, u32> disable;
INSERT_PADDING_WORDS(0x1);
// When data is written to any of these registers, it gets written to the lookup table of the
// selected type at the selected index, specified above in the `lut_config` register. With each
// write, `lut_config.index` is incremented. It does not matter which of these registers is
// written to, the behavior will be the same.
u32 lut_data[8];
// These are used to specify if absolute (abs) value should be used for each LUT index. When
// abs mode is disabled, LUT indexes are in the range of (-1.0, 1.0). Otherwise, they are in
// the range of (0.0, 1.0).
union {
BitField<1, 1, u32> disable_d0;
BitField<5, 1, u32> disable_d1;
BitField<9, 1, u32> disable_sp;
BitField<13, 1, u32> disable_fr;
BitField<17, 1, u32> disable_rb;
BitField<21, 1, u32> disable_rg;
BitField<25, 1, u32> disable_rr;
} abs_lut_input;
union {
BitField<0, 3, LightingLutInput> d0;
BitField<4, 3, LightingLutInput> d1;
BitField<8, 3, LightingLutInput> sp;
BitField<12, 3, LightingLutInput> fr;
BitField<16, 3, LightingLutInput> rb;
BitField<20, 3, LightingLutInput> rg;
BitField<24, 3, LightingLutInput> rr;
} lut_input;
union {
BitField<0, 3, LightingScale> d0;
BitField<4, 3, LightingScale> d1;
BitField<8, 3, LightingScale> sp;
BitField<12, 3, LightingScale> fr;
BitField<16, 3, LightingScale> rb;
BitField<20, 3, LightingScale> rg;
BitField<24, 3, LightingScale> rr;
static float GetScale(LightingScale scale) {
switch (scale) {
case LightingScale::Scale1:
return 1.0f;
case LightingScale::Scale2:
return 2.0f;
case LightingScale::Scale4:
return 4.0f;
case LightingScale::Scale8:
return 8.0f;
case LightingScale::Scale1_4:
return 0.25f;
case LightingScale::Scale1_2:
return 0.5f;
}
return 0.0f;
}
} lut_scale;
INSERT_PADDING_WORDS(0x6);
union {
// There are 8 light enable "slots", corresponding to the total number of lights supported
// by Pica. For N enabled lights (specified by register 0x1c2, or 'src_num' above), the
// first N slots below will be set to integers within the range of 0-7, corresponding to the
// actual light that is enabled for each slot.
BitField<0, 3, u32> slot_0;
BitField<4, 3, u32> slot_1;
BitField<8, 3, u32> slot_2;
BitField<12, 3, u32> slot_3;
BitField<16, 3, u32> slot_4;
BitField<20, 3, u32> slot_5;
BitField<24, 3, u32> slot_6;
BitField<28, 3, u32> slot_7;
unsigned GetNum(unsigned index) const {
const unsigned enable_slots[] = {slot_0, slot_1, slot_2, slot_3,
slot_4, slot_5, slot_6, slot_7};
return enable_slots[index];
}
} light_enable;
INSERT_PADDING_WORDS(0x26);
};
static_assert(sizeof(LightingRegs) == 0xC0 * sizeof(u32), "LightingRegs struct has incorrect size");
} // namespace Pica