ec0ce96c56
* core_timing: Use better reference tracking for EventType. - Moves ownership of the event to the caller, ensuring we don't fire events for destroyed objects. - Removes need for unique names - we won't be using this for save states anyways.
156 lines
5.2 KiB
C++
156 lines
5.2 KiB
C++
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <catch2/catch.hpp>
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "common/file_util.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
|
|
|
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|
static u64 expected_callback = 0;
|
|
static s64 lateness = 0;
|
|
|
|
template <unsigned int IDX>
|
|
void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
|
callbacks_ran_flags.set(IDX);
|
|
REQUIRE(CB_IDS[IDX] == userdata);
|
|
REQUIRE(CB_IDS[IDX] == expected_callback);
|
|
REQUIRE(lateness == cycles_late);
|
|
}
|
|
|
|
static u64 callbacks_done = 0;
|
|
|
|
void EmptyCallback(u64 userdata, s64 cycles_late) {
|
|
++callbacks_done;
|
|
}
|
|
|
|
struct ScopeInit final {
|
|
ScopeInit() {
|
|
core_timing.Initialize();
|
|
}
|
|
~ScopeInit() {
|
|
core_timing.Shutdown();
|
|
}
|
|
|
|
Core::Timing::CoreTiming core_timing;
|
|
};
|
|
|
|
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
|
|
int expected_lateness = 0, int cpu_downcount = 0) {
|
|
callbacks_ran_flags = 0;
|
|
expected_callback = CB_IDS[idx];
|
|
lateness = expected_lateness;
|
|
|
|
// Pretend we executed X cycles of instructions.
|
|
core_timing.SwitchContext(context);
|
|
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
|
core_timing.Advance();
|
|
core_timing.SwitchContext((context + 1) % 4);
|
|
|
|
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
std::shared_ptr<Core::Timing::EventType> cb_a =
|
|
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
|
std::shared_ptr<Core::Timing::EventType> cb_b =
|
|
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
|
std::shared_ptr<Core::Timing::EventType> cb_c =
|
|
Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>);
|
|
std::shared_ptr<Core::Timing::EventType> cb_d =
|
|
Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>);
|
|
std::shared_ptr<Core::Timing::EventType> cb_e =
|
|
Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Enter slice 0
|
|
core_timing.ResetRun();
|
|
|
|
// D -> B -> C -> A -> E
|
|
core_timing.SwitchContext(0);
|
|
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
REQUIRE(1000 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
|
|
AdvanceAndCheck(core_timing, 3, 0);
|
|
AdvanceAndCheck(core_timing, 1, 1);
|
|
AdvanceAndCheck(core_timing, 2, 2);
|
|
AdvanceAndCheck(core_timing, 0, 3);
|
|
AdvanceAndCheck(core_timing, 4, 0);
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
|
|
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
std::shared_ptr<Core::Timing::EventType> empty_callback =
|
|
Core::Timing::CreateEvent("empty_callback", EmptyCallback);
|
|
|
|
callbacks_done = 0;
|
|
u64 MAX_CALLBACKS = 10;
|
|
for (std::size_t i = 0; i < 10; i++) {
|
|
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
|
|
}
|
|
|
|
const s64 advances = MAX_SLICE_LENGTH / 10;
|
|
core_timing.ResetRun();
|
|
u64 current_time = core_timing.GetTicks();
|
|
bool keep_running{};
|
|
do {
|
|
keep_running = false;
|
|
for (u32 active_core = 0; active_core < 4; ++active_core) {
|
|
core_timing.SwitchContext(active_core);
|
|
if (core_timing.CanCurrentContextRun()) {
|
|
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
|
|
core_timing.Advance();
|
|
}
|
|
keep_running |= core_timing.CanCurrentContextRun();
|
|
}
|
|
} while (keep_running);
|
|
u64 current_time_2 = core_timing.GetTicks();
|
|
|
|
REQUIRE(MAX_CALLBACKS == callbacks_done);
|
|
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
|
|
}
|
|
|
|
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
std::shared_ptr<Core::Timing::EventType> cb_a =
|
|
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
|
std::shared_ptr<Core::Timing::EventType> cb_b =
|
|
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
// Enter slice 0
|
|
core_timing.ResetRun();
|
|
|
|
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
|
|
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
|
|
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
|
|
}
|