1
0
Fork 0
forked from suyu/suyu

Merge branch 'yuzu-emu:master' into convert_legacy

This commit is contained in:
Feng Chen 2021-12-18 13:57:14 +08:00 committed by GitHub
commit e49184e606
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
360 changed files with 43056 additions and 27212 deletions

View file

@ -57,7 +57,7 @@ function(check_submodules_present)
string(REGEX REPLACE "path *= *" "" module ${module}) string(REGEX REPLACE "path *= *" "" module ${module})
if (NOT EXISTS "${PROJECT_SOURCE_DIR}/${module}/.git") if (NOT EXISTS "${PROJECT_SOURCE_DIR}/${module}/.git")
message(FATAL_ERROR "Git submodule ${module} not found. " message(FATAL_ERROR "Git submodule ${module} not found. "
"Please run: git submodule update --init --recursive") "Please run: \ngit submodule update --init --recursive")
endif() endif()
endforeach() endforeach()
endfunction() endfunction()
@ -131,7 +131,7 @@ add_definitions(-DBOOST_ASIO_DISABLE_CONCEPTS)
if (MSVC) if (MSVC)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/std:c++latest>) add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/std:c++latest>)
# cubeb and boost still make use of deprecated result_of. # boost still makes use of deprecated result_of.
add_definitions(-D_HAS_DEPRECATED_RESULT_OF) add_definitions(-D_HAS_DEPRECATED_RESULT_OF)
else() else()
set(CMAKE_CXX_STANDARD 20) set(CMAKE_CXX_STANDARD 20)
@ -167,7 +167,7 @@ macro(yuzu_find_packages)
set(REQUIRED_LIBS set(REQUIRED_LIBS
# Cmake Pkg Prefix Version Conan Pkg # Cmake Pkg Prefix Version Conan Pkg
"Catch2 2.13.7 catch2/2.13.7" "Catch2 2.13.7 catch2/2.13.7"
"fmt 8.0 fmt/8.0.0" "fmt 8.0.1 fmt/8.0.1"
"lz4 1.8 lz4/1.9.2" "lz4 1.8 lz4/1.9.2"
"nlohmann_json 3.8 nlohmann_json/3.8.0" "nlohmann_json 3.8 nlohmann_json/3.8.0"
"ZLIB 1.2 zlib/1.2.11" "ZLIB 1.2 zlib/1.2.11"
@ -370,7 +370,7 @@ if (ENABLE_SDL2)
if (YUZU_USE_BUNDLED_SDL2) if (YUZU_USE_BUNDLED_SDL2)
# Detect toolchain and platform # Detect toolchain and platform
if ((MSVC_VERSION GREATER_EQUAL 1920 AND MSVC_VERSION LESS 1940) AND ARCHITECTURE_x86_64) if ((MSVC_VERSION GREATER_EQUAL 1920 AND MSVC_VERSION LESS 1940) AND ARCHITECTURE_x86_64)
set(SDL2_VER "SDL2-2.0.16") set(SDL2_VER "SDL2-2.0.18")
else() else()
message(FATAL_ERROR "No bundled SDL2 binaries for your toolchain. Disable YUZU_USE_BUNDLED_SDL2 and provide your own.") message(FATAL_ERROR "No bundled SDL2 binaries for your toolchain. Disable YUZU_USE_BUNDLED_SDL2 and provide your own.")
endif() endif()
@ -390,7 +390,7 @@ if (ENABLE_SDL2)
elseif (YUZU_USE_EXTERNAL_SDL2) elseif (YUZU_USE_EXTERNAL_SDL2)
message(STATUS "Using SDL2 from externals.") message(STATUS "Using SDL2 from externals.")
else() else()
find_package(SDL2 2.0.16 REQUIRED) find_package(SDL2 2.0.18 REQUIRED)
# Some installations don't set SDL2_LIBRARIES # Some installations don't set SDL2_LIBRARIES
if("${SDL2_LIBRARIES}" STREQUAL "") if("${SDL2_LIBRARIES}" STREQUAL "")

View file

@ -17,7 +17,7 @@ It is written in C++ with portability in mind, and we actively maintain builds f
alt="Azure Mainline CI Build Status"> alt="Azure Mainline CI Build Status">
</a> </a>
<a href="https://discord.com/invite/u77vRWY"> <a href="https://discord.com/invite/u77vRWY">
<img src="https://img.shields.io/discord/398318088170242053?color=%237289DA&label=yuzu&logo=discord&logoColor=white" <img src="https://img.shields.io/discord/398318088170242053?color=5865F2&label=yuzu&logo=discord&logoColor=white"
alt="Discord"> alt="Discord">
</a> </a>
</p> </p>

1646
dist/languages/ca.ts vendored

File diff suppressed because it is too large Load diff

1664
dist/languages/cs.ts vendored

File diff suppressed because it is too large Load diff

1642
dist/languages/da.ts vendored

File diff suppressed because it is too large Load diff

1666
dist/languages/de.ts vendored

File diff suppressed because it is too large Load diff

2623
dist/languages/es.ts vendored

File diff suppressed because it is too large Load diff

1700
dist/languages/fr.ts vendored

File diff suppressed because it is too large Load diff

1678
dist/languages/it.ts vendored

File diff suppressed because it is too large Load diff

1676
dist/languages/ja_JP.ts vendored

File diff suppressed because it is too large Load diff

1682
dist/languages/ko_KR.ts vendored

File diff suppressed because it is too large Load diff

1634
dist/languages/nb.ts vendored

File diff suppressed because it is too large Load diff

1654
dist/languages/nl.ts vendored

File diff suppressed because it is too large Load diff

1650
dist/languages/pl.ts vendored

File diff suppressed because it is too large Load diff

1672
dist/languages/pt_BR.ts vendored

File diff suppressed because it is too large Load diff

1648
dist/languages/pt_PT.ts vendored

File diff suppressed because it is too large Load diff

1790
dist/languages/ru_RU.ts vendored

File diff suppressed because it is too large Load diff

1646
dist/languages/sv.ts vendored

File diff suppressed because it is too large Load diff

1797
dist/languages/tr_TR.ts vendored

File diff suppressed because it is too large Load diff

6044
dist/languages/vi_VN.ts vendored Normal file

File diff suppressed because it is too large Load diff

1674
dist/languages/zh_CN.ts vendored

File diff suppressed because it is too large Load diff

1852
dist/languages/zh_TW.ts vendored

File diff suppressed because it is too large Load diff

View file

@ -44,10 +44,6 @@ target_include_directories(mbedtls PUBLIC ./mbedtls/include)
add_library(microprofile INTERFACE) add_library(microprofile INTERFACE)
target_include_directories(microprofile INTERFACE ./microprofile) target_include_directories(microprofile INTERFACE ./microprofile)
# Unicorn
add_library(unicorn-headers INTERFACE)
target_include_directories(unicorn-headers INTERFACE ./unicorn/include)
# libusb # libusb
if (NOT LIBUSB_FOUND OR YUZU_USE_BUNDLED_LIBUSB) if (NOT LIBUSB_FOUND OR YUZU_USE_BUNDLED_LIBUSB)
add_subdirectory(libusb) add_subdirectory(libusb)

2
externals/SDL vendored

@ -1 +1 @@
Subproject commit 25f9ed87ff6947d9576fc9d79dee0784e638ac58 Subproject commit 2e9821423a237a1206e3c09020778faacfe430be

2
externals/cubeb vendored

@ -1 +1 @@
Subproject commit 1d66483ad2b93f0e00e175f9480c771af90003a7 Subproject commit 75d9d125ee655ef80f3bfcd97ae5a805931042b8

View file

@ -1,18 +0,0 @@
# Exports:
# LIBUNICORN_FOUND
# LIBUNICORN_INCLUDE_DIR
# LIBUNICORN_LIBRARY
find_path(LIBUNICORN_INCLUDE_DIR
unicorn/unicorn.h
HINTS $ENV{UNICORNDIR}
PATH_SUFFIXES include)
find_library(LIBUNICORN_LIBRARY
NAMES unicorn
HINTS $ENV{UNICORNDIR})
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(unicorn DEFAULT_MSG
LIBUNICORN_LIBRARY LIBUNICORN_INCLUDE_DIR)
mark_as_advanced(LIBUNICORN_INCLUDE_DIR LIBUNICORN_LIBRARY)

View file

@ -24,6 +24,7 @@ if (MSVC)
# /W3 - Level 3 warnings # /W3 - Level 3 warnings
# /MP - Multi-threaded compilation # /MP - Multi-threaded compilation
# /Zi - Output debugging information # /Zi - Output debugging information
# /Zm - Specifies the precompiled header memory allocation limit
# /Zo - Enhanced debug info for optimized builds # /Zo - Enhanced debug info for optimized builds
# /permissive- - Enables stricter C++ standards conformance checks # /permissive- - Enables stricter C++ standards conformance checks
# /EHsc - C++-only exception handling semantics # /EHsc - C++-only exception handling semantics
@ -36,6 +37,7 @@ if (MSVC)
add_compile_options( add_compile_options(
/MP /MP
/Zi /Zi
/Zm200
/Zo /Zo
/permissive- /permissive-
/EHsc /EHsc

View file

@ -1,3 +1,7 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring> #include <cstring>
#include "audio_core/delay_line.h" #include "audio_core/delay_line.h"

View file

@ -1,3 +1,7 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"

View file

@ -73,6 +73,7 @@ add_library(common STATIC
hex_util.h hex_util.h
host_memory.cpp host_memory.cpp
host_memory.h host_memory.h
input.h
intrusive_red_black_tree.h intrusive_red_black_tree.h
literals.h literals.h
logging/backend.cpp logging/backend.cpp

View file

@ -7,6 +7,7 @@
#include <bit> #include <bit>
#include <climits> #include <climits>
#include <cstddef> #include <cstddef>
#include <type_traits>
#include "common/common_types.h" #include "common/common_types.h"
@ -44,4 +45,10 @@ template <typename T>
return static_cast<u32>(log2_f + static_cast<u64>((value ^ (1ULL << log2_f)) != 0ULL)); return static_cast<u32>(log2_f + static_cast<u64>((value ^ (1ULL << log2_f)) != 0ULL));
} }
template <typename T>
requires std::is_integral_v<T>
[[nodiscard]] T NextPow2(T value) {
return static_cast<T>(1ULL << ((8U * sizeof(T)) - std::countl_zero(value - 1U)));
}
} // namespace Common } // namespace Common

View file

@ -1,3 +1,7 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#ifdef _WIN32 #ifdef _WIN32
#include <iterator> #include <iterator>

366
src/common/input.h Normal file
View file

@ -0,0 +1,366 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/uuid.h"
namespace Common::Input {
// Type of data that is expected to recieve or send
enum class InputType {
None,
Battery,
Button,
Stick,
Analog,
Trigger,
Motion,
Touch,
Color,
Vibration,
Nfc,
Ir,
};
// Internal battery charge level
enum class BatteryLevel : u32 {
None,
Empty,
Critical,
Low,
Medium,
Full,
Charging,
};
enum class PollingMode {
// Constant polling of buttons, analogs and motion data
Active,
// Only update on button change, digital analogs
Pasive,
// Enable near field communication polling
NFC,
// Enable infrared camera polling
IR,
};
// Vibration reply from the controller
enum class VibrationError {
None,
NotSupported,
Disabled,
Unknown,
};
// Polling mode reply from the controller
enum class PollingError {
None,
NotSupported,
Unknown,
};
// Hint for amplification curve to be used
enum class VibrationAmplificationType {
Linear,
Exponential,
};
// Analog properties for calibration
struct AnalogProperties {
// Anything below this value will be detected as zero
float deadzone{};
// Anyting above this values will be detected as one
float range{1.0f};
// Minimum value to be detected as active
float threshold{0.5f};
// Drift correction applied to the raw data
float offset{};
// Invert direction of the sensor data
bool inverted{};
};
// Single analog sensor data
struct AnalogStatus {
float value{};
float raw_value{};
AnalogProperties properties{};
};
// Button data
struct ButtonStatus {
Common::UUID uuid{};
bool value{};
bool inverted{};
bool toggle{};
bool locked{};
};
// Internal battery data
using BatteryStatus = BatteryLevel;
// Analog and digital joystick data
struct StickStatus {
Common::UUID uuid{};
AnalogStatus x{};
AnalogStatus y{};
bool left{};
bool right{};
bool up{};
bool down{};
};
// Analog and digital trigger data
struct TriggerStatus {
Common::UUID uuid{};
AnalogStatus analog{};
ButtonStatus pressed{};
};
// 3D vector representing motion input
struct MotionSensor {
AnalogStatus x{};
AnalogStatus y{};
AnalogStatus z{};
};
// Motion data used to calculate controller orientation
struct MotionStatus {
// Gyroscope vector measurement in radians/s.
MotionSensor gyro{};
// Acceleration vector measurement in G force
MotionSensor accel{};
// Time since last measurement in microseconds
u64 delta_timestamp{};
// Request to update after reading the value
bool force_update{};
};
// Data of a single point on a touch screen
struct TouchStatus {
ButtonStatus pressed{};
AnalogStatus x{};
AnalogStatus y{};
int id{};
};
// Physical controller color in RGB format
struct BodyColorStatus {
u32 body{};
u32 buttons{};
};
// HD rumble data
struct VibrationStatus {
f32 low_amplitude{};
f32 low_frequency{};
f32 high_amplitude{};
f32 high_frequency{};
VibrationAmplificationType type;
};
// Physical controller LED pattern
struct LedStatus {
bool led_1{};
bool led_2{};
bool led_3{};
bool led_4{};
};
// List of buttons to be passed to Qt that can be translated
enum class ButtonNames {
Undefined,
Invalid,
// This will display the engine name instead of the button name
Engine,
// This will display the button by value instead of the button name
Value,
ButtonLeft,
ButtonRight,
ButtonDown,
ButtonUp,
TriggerZ,
TriggerR,
TriggerL,
ButtonA,
ButtonB,
ButtonX,
ButtonY,
ButtonStart,
// DS4 button names
L1,
L2,
L3,
R1,
R2,
R3,
Circle,
Cross,
Square,
Triangle,
Share,
Options,
};
// Callback data consisting of an input type and the equivalent data status
struct CallbackStatus {
InputType type{InputType::None};
ButtonStatus button_status{};
StickStatus stick_status{};
AnalogStatus analog_status{};
TriggerStatus trigger_status{};
MotionStatus motion_status{};
TouchStatus touch_status{};
BodyColorStatus color_status{};
BatteryStatus battery_status{};
VibrationStatus vibration_status{};
};
// Triggered once every input change
struct InputCallback {
std::function<void(const CallbackStatus&)> on_change;
};
/// An abstract class template for an input device (a button, an analog input, etc.).
class InputDevice {
public:
virtual ~InputDevice() = default;
// Request input device to update if necessary
virtual void SoftUpdate() {}
// Force input device to update data regardless of the current state
virtual void ForceUpdate() {}
// Sets the function to be triggered when input changes
void SetCallback(InputCallback callback_) {
callback = std::move(callback_);
}
// Triggers the function set in the callback
void TriggerOnChange(const CallbackStatus& status) {
if (callback.on_change) {
callback.on_change(status);
}
}
private:
InputCallback callback;
};
/// An abstract class template for an output device (rumble, LED pattern, polling mode).
class OutputDevice {
public:
virtual ~OutputDevice() = default;
virtual void SetLED([[maybe_unused]] const LedStatus& led_status) {}
virtual VibrationError SetVibration([[maybe_unused]] const VibrationStatus& vibration_status) {
return VibrationError::NotSupported;
}
virtual PollingError SetPollingMode([[maybe_unused]] PollingMode polling_mode) {
return PollingError::NotSupported;
}
};
/// An abstract class template for a factory that can create input devices.
template <typename InputDeviceType>
class Factory {
public:
virtual ~Factory() = default;
virtual std::unique_ptr<InputDeviceType> Create(const Common::ParamPackage&) = 0;
};
namespace Impl {
template <typename InputDeviceType>
using FactoryListType = std::unordered_map<std::string, std::shared_ptr<Factory<InputDeviceType>>>;
template <typename InputDeviceType>
struct FactoryList {
static FactoryListType<InputDeviceType> list;
};
template <typename InputDeviceType>
FactoryListType<InputDeviceType> FactoryList<InputDeviceType>::list;
} // namespace Impl
/**
* Registers an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory. Will be used to match the "engine" parameter when creating
* a device
* @param factory the factory object to register
*/
template <typename InputDeviceType>
void RegisterFactory(const std::string& name, std::shared_ptr<Factory<InputDeviceType>> factory) {
auto pair = std::make_pair(name, std::move(factory));
if (!Impl::FactoryList<InputDeviceType>::list.insert(std::move(pair)).second) {
LOG_ERROR(Input, "Factory '{}' already registered", name);
}
}
/**
* Unregisters an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory to unregister
*/
template <typename InputDeviceType>
void UnregisterFactory(const std::string& name) {
if (Impl::FactoryList<InputDeviceType>::list.erase(name) == 0) {
LOG_ERROR(Input, "Factory '{}' not registered", name);
}
}
/**
* Create an input device from given paramters.
* @tparam InputDeviceType the type of input devices to create
* @param params a serialized ParamPackage string that contains all parameters for creating the
* device
*/
template <typename InputDeviceType>
std::unique_ptr<InputDeviceType> CreateDeviceFromString(const std::string& params) {
const Common::ParamPackage package(params);
const std::string engine = package.Get("engine", "null");
const auto& factory_list = Impl::FactoryList<InputDeviceType>::list;
const auto pair = factory_list.find(engine);
if (pair == factory_list.end()) {
if (engine != "null") {
LOG_ERROR(Input, "Unknown engine name: {}", engine);
}
return std::make_unique<InputDeviceType>();
}
return pair->second->Create(package);
}
/**
* Create an input device from given paramters.
* @tparam InputDeviceType the type of input devices to create
* @param A ParamPackage that contains all parameters for creating the device
*/
template <typename InputDeviceType>
std::unique_ptr<InputDeviceType> CreateDevice(const Common::ParamPackage package) {
const std::string engine = package.Get("engine", "null");
const auto& factory_list = Impl::FactoryList<InputDeviceType>::list;
const auto pair = factory_list.find(engine);
if (pair == factory_list.end()) {
if (engine != "null") {
LOG_ERROR(Input, "Unknown engine name: {}", engine);
}
return std::make_unique<InputDeviceType>();
}
return pair->second->Create(package);
}
} // namespace Common::Input

View file

@ -114,6 +114,7 @@ bool ParseFilterRule(Filter& instance, Iterator begin, Iterator end) {
SUB(Service, NGCT) \ SUB(Service, NGCT) \
SUB(Service, NIFM) \ SUB(Service, NIFM) \
SUB(Service, NIM) \ SUB(Service, NIM) \
SUB(Service, NOTIF) \
SUB(Service, NPNS) \ SUB(Service, NPNS) \
SUB(Service, NS) \ SUB(Service, NS) \
SUB(Service, NVDRV) \ SUB(Service, NVDRV) \

View file

@ -82,6 +82,7 @@ enum class Class : u8 {
Service_NGCT, ///< The NGCT (No Good Content for Terra) service Service_NGCT, ///< The NGCT (No Good Content for Terra) service
Service_NIFM, ///< The NIFM (Network interface) service Service_NIFM, ///< The NIFM (Network interface) service
Service_NIM, ///< The NIM service Service_NIM, ///< The NIM service
Service_NOTIF, ///< The NOTIF (Notification) service
Service_NPNS, ///< The NPNS service Service_NPNS, ///< The NPNS service
Service_NS, ///< The NS services Service_NS, ///< The NS services
Service_NVDRV, ///< The NVDRV (Nvidia driver) service Service_NVDRV, ///< The NVDRV (Nvidia driver) service

View file

@ -183,6 +183,7 @@ void RestoreGlobalState(bool is_powered_on) {
values.max_anisotropy.SetGlobal(true); values.max_anisotropy.SetGlobal(true);
values.use_speed_limit.SetGlobal(true); values.use_speed_limit.SetGlobal(true);
values.speed_limit.SetGlobal(true); values.speed_limit.SetGlobal(true);
values.fps_cap.SetGlobal(true);
values.use_disk_shader_cache.SetGlobal(true); values.use_disk_shader_cache.SetGlobal(true);
values.gpu_accuracy.SetGlobal(true); values.gpu_accuracy.SetGlobal(true);
values.use_asynchronous_gpu_emulation.SetGlobal(true); values.use_asynchronous_gpu_emulation.SetGlobal(true);

View file

@ -6,7 +6,6 @@
#include <algorithm> #include <algorithm>
#include <array> #include <array>
#include <atomic>
#include <map> #include <map>
#include <optional> #include <optional>
#include <string> #include <string>
@ -525,7 +524,7 @@ struct Values {
Setting<NvdecEmulation> nvdec_emulation{NvdecEmulation::GPU, "nvdec_emulation"}; Setting<NvdecEmulation> nvdec_emulation{NvdecEmulation::GPU, "nvdec_emulation"};
Setting<bool> accelerate_astc{true, "accelerate_astc"}; Setting<bool> accelerate_astc{true, "accelerate_astc"};
Setting<bool> use_vsync{true, "use_vsync"}; Setting<bool> use_vsync{true, "use_vsync"};
BasicRangedSetting<u16> fps_cap{1000, 1, 1000, "fps_cap"}; RangedSetting<u16> fps_cap{1000, 1, 1000, "fps_cap"};
BasicSetting<bool> disable_fps_limit{false, "disable_fps_limit"}; BasicSetting<bool> disable_fps_limit{false, "disable_fps_limit"};
RangedSetting<ShaderBackend> shader_backend{ShaderBackend::GLASM, ShaderBackend::GLSL, RangedSetting<ShaderBackend> shader_backend{ShaderBackend::GLASM, ShaderBackend::GLSL,
ShaderBackend::SPIRV, "shader_backend"}; ShaderBackend::SPIRV, "shader_backend"};
@ -560,25 +559,19 @@ struct Values {
Setting<bool> enable_accurate_vibrations{false, "enable_accurate_vibrations"}; Setting<bool> enable_accurate_vibrations{false, "enable_accurate_vibrations"};
Setting<bool> motion_enabled{true, "motion_enabled"}; Setting<bool> motion_enabled{true, "motion_enabled"};
BasicSetting<std::string> motion_device{"engine:motion_emu,update_period:100,sensitivity:0.01",
"motion_device"};
BasicSetting<std::string> udp_input_servers{"127.0.0.1:26760", "udp_input_servers"}; BasicSetting<std::string> udp_input_servers{"127.0.0.1:26760", "udp_input_servers"};
BasicSetting<bool> enable_udp_controller{false, "enable_udp_controller"};
BasicSetting<bool> pause_tas_on_load{true, "pause_tas_on_load"}; BasicSetting<bool> pause_tas_on_load{true, "pause_tas_on_load"};
BasicSetting<bool> tas_enable{false, "tas_enable"}; BasicSetting<bool> tas_enable{false, "tas_enable"};
BasicSetting<bool> tas_loop{false, "tas_loop"}; BasicSetting<bool> tas_loop{false, "tas_loop"};
BasicSetting<bool> tas_swap_controllers{true, "tas_swap_controllers"};
BasicSetting<bool> mouse_panning{false, "mouse_panning"}; BasicSetting<bool> mouse_panning{false, "mouse_panning"};
BasicRangedSetting<u8> mouse_panning_sensitivity{10, 1, 100, "mouse_panning_sensitivity"}; BasicRangedSetting<u8> mouse_panning_sensitivity{10, 1, 100, "mouse_panning_sensitivity"};
BasicSetting<bool> mouse_enabled{false, "mouse_enabled"}; BasicSetting<bool> mouse_enabled{false, "mouse_enabled"};
std::string mouse_device;
MouseButtonsRaw mouse_buttons;
BasicSetting<bool> emulate_analog_keyboard{false, "emulate_analog_keyboard"}; BasicSetting<bool> emulate_analog_keyboard{false, "emulate_analog_keyboard"};
BasicSetting<bool> keyboard_enabled{false, "keyboard_enabled"}; BasicSetting<bool> keyboard_enabled{false, "keyboard_enabled"};
KeyboardKeysRaw keyboard_keys;
KeyboardModsRaw keyboard_mods;
BasicSetting<bool> debug_pad_enabled{false, "debug_pad_enabled"}; BasicSetting<bool> debug_pad_enabled{false, "debug_pad_enabled"};
ButtonsRaw debug_pad_buttons; ButtonsRaw debug_pad_buttons;
@ -586,14 +579,11 @@ struct Values {
TouchscreenInput touchscreen; TouchscreenInput touchscreen;
BasicSetting<bool> use_touch_from_button{false, "use_touch_from_button"};
BasicSetting<std::string> touch_device{"min_x:100,min_y:50,max_x:1800,max_y:850", BasicSetting<std::string> touch_device{"min_x:100,min_y:50,max_x:1800,max_y:850",
"touch_device"}; "touch_device"};
BasicSetting<int> touch_from_button_map_index{0, "touch_from_button_map"}; BasicSetting<int> touch_from_button_map_index{0, "touch_from_button_map"};
std::vector<TouchFromButtonMap> touch_from_button_maps; std::vector<TouchFromButtonMap> touch_from_button_maps;
std::atomic_bool is_device_reload_pending{true};
// Data Storage // Data Storage
BasicSetting<bool> use_virtual_sd{true, "use_virtual_sd"}; BasicSetting<bool> use_virtual_sd{true, "use_virtual_sd"};
BasicSetting<bool> gamecard_inserted{false, "gamecard_inserted"}; BasicSetting<bool> gamecard_inserted{false, "gamecard_inserted"};
@ -614,6 +604,7 @@ struct Values {
BasicSetting<bool> extended_logging{false, "extended_logging"}; BasicSetting<bool> extended_logging{false, "extended_logging"};
BasicSetting<bool> use_debug_asserts{false, "use_debug_asserts"}; BasicSetting<bool> use_debug_asserts{false, "use_debug_asserts"};
BasicSetting<bool> use_auto_stub{false, "use_auto_stub"}; BasicSetting<bool> use_auto_stub{false, "use_auto_stub"};
BasicSetting<bool> enable_all_controllers{false, "enable_all_controllers"};
// Miscellaneous // Miscellaneous
BasicSetting<std::string> log_filter{"*:Info", "log_filter"}; BasicSetting<std::string> log_filter{"*:Info", "log_filter"};

View file

@ -62,11 +62,22 @@ enum Values : int {
constexpr int STICK_HID_BEGIN = LStick; constexpr int STICK_HID_BEGIN = LStick;
constexpr int STICK_HID_END = NumAnalogs; constexpr int STICK_HID_END = NumAnalogs;
constexpr int NUM_STICKS_HID = NumAnalogs;
extern const std::array<const char*, NumAnalogs> mapping; extern const std::array<const char*, NumAnalogs> mapping;
} // namespace NativeAnalog } // namespace NativeAnalog
namespace NativeTrigger {
enum Values : int {
LTrigger,
RTrigger,
NumTriggers,
};
constexpr int TRIGGER_HID_BEGIN = LTrigger;
constexpr int TRIGGER_HID_END = NumTriggers;
} // namespace NativeTrigger
namespace NativeVibration { namespace NativeVibration {
enum Values : int { enum Values : int {
LeftVibrationDevice, LeftVibrationDevice,
@ -115,10 +126,20 @@ constexpr int NUM_MOUSE_HID = NumMouseButtons;
extern const std::array<const char*, NumMouseButtons> mapping; extern const std::array<const char*, NumMouseButtons> mapping;
} // namespace NativeMouseButton } // namespace NativeMouseButton
namespace NativeMouseWheel {
enum Values {
X,
Y,
NumMouseWheels,
};
extern const std::array<const char*, NumMouseWheels> mapping;
} // namespace NativeMouseWheel
namespace NativeKeyboard { namespace NativeKeyboard {
enum Keys { enum Keys {
None, None,
Error,
A = 4, A = 4,
B, B,
@ -156,22 +177,22 @@ enum Keys {
N8, N8,
N9, N9,
N0, N0,
Enter, Return,
Escape, Escape,
Backspace, Backspace,
Tab, Tab,
Space, Space,
Minus, Minus,
Equal, Plus,
LeftBrace, OpenBracket,
RightBrace, CloseBracket,
Backslash, Pipe,
Tilde, Tilde,
Semicolon, Semicolon,
Apostrophe, Quote,
Grave, Backquote,
Comma, Comma,
Dot, Period,
Slash, Slash,
CapsLockKey, CapsLockKey,
@ -188,7 +209,7 @@ enum Keys {
F11, F11,
F12, F12,
SystemRequest, PrintScreen,
ScrollLockKey, ScrollLockKey,
Pause, Pause,
Insert, Insert,
@ -257,8 +278,18 @@ enum Keys {
ScrollLockActive, ScrollLockActive,
KPComma, KPComma,
KPLeftParenthesis, Ro = 0x87,
KPRightParenthesis, KatakanaHiragana,
Yen,
Henkan,
Muhenkan,
NumPadCommaPc98,
HangulEnglish = 0x90,
Hanja,
KatakanaKey,
HiraganaKey,
ZenkakuHankaku,
LeftControlKey = 0xE0, LeftControlKey = 0xE0,
LeftShiftKey, LeftShiftKey,
@ -307,6 +338,8 @@ enum Modifiers {
CapsLock, CapsLock,
ScrollLock, ScrollLock,
NumLock, NumLock,
Katakana,
Hiragana,
NumKeyboardMods, NumKeyboardMods,
}; };
@ -324,11 +357,6 @@ constexpr int NUM_KEYBOARD_MODS_HID = NumKeyboardMods;
using AnalogsRaw = std::array<std::string, NativeAnalog::NumAnalogs>; using AnalogsRaw = std::array<std::string, NativeAnalog::NumAnalogs>;
using ButtonsRaw = std::array<std::string, NativeButton::NumButtons>; using ButtonsRaw = std::array<std::string, NativeButton::NumButtons>;
using MotionsRaw = std::array<std::string, NativeMotion::NumMotions>; using MotionsRaw = std::array<std::string, NativeMotion::NumMotions>;
using VibrationsRaw = std::array<std::string, NativeVibration::NumVibrations>;
using MouseButtonsRaw = std::array<std::string, NativeMouseButton::NumMouseButtons>;
using KeyboardKeysRaw = std::array<std::string, NativeKeyboard::NumKeyboardKeys>;
using KeyboardModsRaw = std::array<std::string, NativeKeyboard::NumKeyboardMods>;
constexpr u32 JOYCON_BODY_NEON_RED = 0xFF3C28; constexpr u32 JOYCON_BODY_NEON_RED = 0xFF3C28;
constexpr u32 JOYCON_BUTTONS_NEON_RED = 0x1E0A0A; constexpr u32 JOYCON_BUTTONS_NEON_RED = 0x1E0A0A;
@ -342,6 +370,11 @@ enum class ControllerType {
RightJoycon, RightJoycon,
Handheld, Handheld,
GameCube, GameCube,
Pokeball,
NES,
SNES,
N64,
SegaGenesis,
}; };
struct PlayerInput { struct PlayerInput {
@ -349,7 +382,6 @@ struct PlayerInput {
ControllerType controller_type; ControllerType controller_type;
ButtonsRaw buttons; ButtonsRaw buttons;
AnalogsRaw analogs; AnalogsRaw analogs;
VibrationsRaw vibrations;
MotionsRaw motions; MotionsRaw motions;
bool vibration_enabled; bool vibration_enabled;

View file

@ -71,9 +71,6 @@ static CPUCaps Detect() {
else else
caps.manufacturer = Manufacturer::Unknown; caps.manufacturer = Manufacturer::Unknown;
u32 family = {};
u32 model = {};
__cpuid(cpu_id, 0x80000000); __cpuid(cpu_id, 0x80000000);
u32 max_ex_fn = cpu_id[0]; u32 max_ex_fn = cpu_id[0];
@ -84,15 +81,6 @@ static CPUCaps Detect() {
// Detect family and other miscellaneous features // Detect family and other miscellaneous features
if (max_std_fn >= 1) { if (max_std_fn >= 1) {
__cpuid(cpu_id, 0x00000001); __cpuid(cpu_id, 0x00000001);
family = (cpu_id[0] >> 8) & 0xf;
model = (cpu_id[0] >> 4) & 0xf;
if (family == 0xf) {
family += (cpu_id[0] >> 20) & 0xff;
}
if (family >= 6) {
model += ((cpu_id[0] >> 16) & 0xf) << 4;
}
if ((cpu_id[3] >> 25) & 1) if ((cpu_id[3] >> 25) & 1)
caps.sse = true; caps.sse = true;
if ((cpu_id[3] >> 26) & 1) if ((cpu_id[3] >> 26) & 1)

View file

@ -15,26 +15,26 @@
namespace Common { namespace Common {
u64 EstimateRDTSCFrequency() { u64 EstimateRDTSCFrequency() {
const auto milli_10 = std::chrono::milliseconds{10}; // Discard the first result measuring the rdtsc.
// get current time
_mm_mfence(); _mm_mfence();
const u64 tscStart = __rdtsc(); __rdtsc();
const auto startTime = std::chrono::high_resolution_clock::now(); std::this_thread::sleep_for(std::chrono::milliseconds{1});
// wait roughly 3 seconds
while (true) {
auto milli = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - startTime);
if (milli.count() >= 3000)
break;
std::this_thread::sleep_for(milli_10);
}
const auto endTime = std::chrono::high_resolution_clock::now();
_mm_mfence(); _mm_mfence();
const u64 tscEnd = __rdtsc(); __rdtsc();
// calculate difference
const u64 timer_diff = // Get the current time.
std::chrono::duration_cast<std::chrono::nanoseconds>(endTime - startTime).count(); const auto start_time = std::chrono::steady_clock::now();
const u64 tsc_diff = tscEnd - tscStart; _mm_mfence();
const u64 tsc_start = __rdtsc();
// Wait for 200 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{200});
const auto end_time = std::chrono::steady_clock::now();
_mm_mfence();
const u64 tsc_end = __rdtsc();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff); const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return tsc_freq; return tsc_freq;
} }

View file

@ -132,11 +132,23 @@ add_library(core STATIC
frontend/emu_window.h frontend/emu_window.h
frontend/framebuffer_layout.cpp frontend/framebuffer_layout.cpp
frontend/framebuffer_layout.h frontend/framebuffer_layout.h
frontend/input_interpreter.cpp
frontend/input_interpreter.h
frontend/input.h
hardware_interrupt_manager.cpp hardware_interrupt_manager.cpp
hardware_interrupt_manager.h hardware_interrupt_manager.h
hid/emulated_console.cpp
hid/emulated_console.h
hid/emulated_controller.cpp
hid/emulated_controller.h
hid/emulated_devices.cpp
hid/emulated_devices.h
hid/hid_core.cpp
hid/hid_core.h
hid/hid_types.h
hid/input_converter.cpp
hid/input_converter.h
hid/input_interpreter.cpp
hid/input_interpreter.h
hid/motion_input.cpp
hid/motion_input.h
hle/api_version.h hle/api_version.h
hle/ipc.h hle/ipc.h
hle/ipc_helpers.h hle/ipc_helpers.h
@ -167,12 +179,15 @@ add_library(core STATIC
hle/kernel/k_client_port.h hle/kernel/k_client_port.h
hle/kernel/k_client_session.cpp hle/kernel/k_client_session.cpp
hle/kernel/k_client_session.h hle/kernel/k_client_session.h
hle/kernel/k_code_memory.cpp
hle/kernel/k_code_memory.h
hle/kernel/k_condition_variable.cpp hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h hle/kernel/k_condition_variable.h
hle/kernel/k_event.cpp hle/kernel/k_event.cpp
hle/kernel/k_event.h hle/kernel/k_event.h
hle/kernel/k_handle_table.cpp hle/kernel/k_handle_table.cpp
hle/kernel/k_handle_table.h hle/kernel/k_handle_table.h
hle/kernel/k_light_condition_variable.cpp
hle/kernel/k_light_condition_variable.h hle/kernel/k_light_condition_variable.h
hle/kernel/k_light_lock.cpp hle/kernel/k_light_lock.cpp
hle/kernel/k_light_lock.h hle/kernel/k_light_lock.h
@ -225,6 +240,7 @@ add_library(core STATIC
hle/kernel/k_system_control.h hle/kernel/k_system_control.h
hle/kernel/k_thread.cpp hle/kernel/k_thread.cpp
hle/kernel/k_thread.h hle/kernel/k_thread.h
hle/kernel/k_thread_queue.cpp
hle/kernel/k_thread_queue.h hle/kernel/k_thread_queue.h
hle/kernel/k_trace.h hle/kernel/k_trace.h
hle/kernel/k_transfer_memory.cpp hle/kernel/k_transfer_memory.cpp
@ -396,12 +412,15 @@ add_library(core STATIC
hle/service/glue/glue.h hle/service/glue/glue.h
hle/service/glue/glue_manager.cpp hle/service/glue/glue_manager.cpp
hle/service/glue/glue_manager.h hle/service/glue/glue_manager.h
hle/service/glue/notif.cpp
hle/service/glue/notif.h
hle/service/grc/grc.cpp hle/service/grc/grc.cpp
hle/service/grc/grc.h hle/service/grc/grc.h
hle/service/hid/hid.cpp hle/service/hid/hid.cpp
hle/service/hid/hid.h hle/service/hid/hid.h
hle/service/hid/irs.cpp hle/service/hid/irs.cpp
hle/service/hid/irs.h hle/service/hid/irs.h
hle/service/hid/ring_lifo.h
hle/service/hid/xcd.cpp hle/service/hid/xcd.cpp
hle/service/hid/xcd.h hle/service/hid/xcd.h
hle/service/hid/errors.h hle/service/hid/errors.h
@ -466,6 +485,8 @@ add_library(core STATIC
hle/service/ns/language.h hle/service/ns/language.h
hle/service/ns/ns.cpp hle/service/ns/ns.cpp
hle/service/ns/ns.h hle/service/ns/ns.h
hle/service/ns/pdm_qry.cpp
hle/service/ns/pdm_qry.h
hle/service/ns/pl_u.cpp hle/service/ns/pl_u.cpp
hle/service/ns/pl_u.h hle/service/ns/pl_u.h
hle/service/nvdrv/devices/nvdevice.h hle/service/nvdrv/devices/nvdevice.h

View file

@ -86,6 +86,26 @@ public:
num_instructions, MemoryReadCode(pc)); num_instructions, MemoryReadCode(pc));
} }
void InstructionCacheOperationRaised(Dynarmic::A64::InstructionCacheOperation op,
VAddr value) override {
switch (op) {
case Dynarmic::A64::InstructionCacheOperation::InvalidateByVAToPoU: {
static constexpr u64 ICACHE_LINE_SIZE = 64;
const u64 cache_line_start = value & ~(ICACHE_LINE_SIZE - 1);
parent.InvalidateCacheRange(cache_line_start, ICACHE_LINE_SIZE);
break;
}
case Dynarmic::A64::InstructionCacheOperation::InvalidateAllToPoU:
parent.ClearInstructionCache();
break;
case Dynarmic::A64::InstructionCacheOperation::InvalidateAllToPoUInnerSharable:
default:
LOG_DEBUG(Core_ARM, "Unprocesseed instruction cache operation: {}", op);
break;
}
}
void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override { void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
switch (exception) { switch (exception) {
case Dynarmic::A64::Exception::WaitForInterrupt: case Dynarmic::A64::Exception::WaitForInterrupt:

View file

@ -27,6 +27,7 @@
#include "core/file_sys/vfs_concat.h" #include "core/file_sys/vfs_concat.h"
#include "core/file_sys/vfs_real.h" #include "core/file_sys/vfs_real.h"
#include "core/hardware_interrupt_manager.h" #include "core/hardware_interrupt_manager.h"
#include "core/hid/hid_core.h"
#include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
@ -126,7 +127,7 @@ FileSys::VirtualFile GetGameFileFromPath(const FileSys::VirtualFilesystem& vfs,
struct System::Impl { struct System::Impl {
explicit Impl(System& system) explicit Impl(System& system)
: kernel{system}, fs_controller{system}, memory{system}, : kernel{system}, fs_controller{system}, memory{system}, hid_core{},
cpu_manager{system}, reporter{system}, applet_manager{system}, time_manager{system} {} cpu_manager{system}, reporter{system}, applet_manager{system}, time_manager{system} {}
SystemResultStatus Run() { SystemResultStatus Run() {
@ -391,6 +392,7 @@ struct System::Impl {
std::unique_ptr<Hardware::InterruptManager> interrupt_manager; std::unique_ptr<Hardware::InterruptManager> interrupt_manager;
std::unique_ptr<Core::DeviceMemory> device_memory; std::unique_ptr<Core::DeviceMemory> device_memory;
Core::Memory::Memory memory; Core::Memory::Memory memory;
Core::HID::HIDCore hid_core;
CpuManager cpu_manager; CpuManager cpu_manager;
std::atomic_bool is_powered_on{}; std::atomic_bool is_powered_on{};
bool exit_lock = false; bool exit_lock = false;
@ -519,12 +521,6 @@ const ARM_Interface& System::CurrentArmInterface() const {
return impl->kernel.CurrentPhysicalCore().ArmInterface(); return impl->kernel.CurrentPhysicalCore().ArmInterface();
} }
std::size_t System::CurrentCoreIndex() const {
std::size_t core = impl->kernel.GetCurrentHostThreadID();
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
return core;
}
Kernel::PhysicalCore& System::CurrentPhysicalCore() { Kernel::PhysicalCore& System::CurrentPhysicalCore() {
return impl->kernel.CurrentPhysicalCore(); return impl->kernel.CurrentPhysicalCore();
} }
@ -615,6 +611,14 @@ const Kernel::KernelCore& System::Kernel() const {
return impl->kernel; return impl->kernel;
} }
HID::HIDCore& System::HIDCore() {
return impl->hid_core;
}
const HID::HIDCore& System::HIDCore() const {
return impl->hid_core;
}
Timing::CoreTiming& System::CoreTiming() { Timing::CoreTiming& System::CoreTiming() {
return impl->core_timing; return impl->core_timing;
} }
@ -825,8 +829,6 @@ void System::ApplySettings() {
if (IsPoweredOn()) { if (IsPoweredOn()) {
Renderer().RefreshBaseSettings(); Renderer().RefreshBaseSettings();
} }
Service::HID::ReloadInputDevices();
} }
} // namespace Core } // namespace Core

View file

@ -89,6 +89,10 @@ namespace Core::Hardware {
class InterruptManager; class InterruptManager;
} }
namespace Core::HID {
class HIDCore;
}
namespace Core { namespace Core {
class ARM_Interface; class ARM_Interface;
@ -204,9 +208,6 @@ public:
/// Gets an ARM interface to the CPU core that is currently running /// Gets an ARM interface to the CPU core that is currently running
[[nodiscard]] const ARM_Interface& CurrentArmInterface() const; [[nodiscard]] const ARM_Interface& CurrentArmInterface() const;
/// Gets the index of the currently running CPU core
[[nodiscard]] std::size_t CurrentCoreIndex() const;
/// Gets the physical core for the CPU core that is currently running /// Gets the physical core for the CPU core that is currently running
[[nodiscard]] Kernel::PhysicalCore& CurrentPhysicalCore(); [[nodiscard]] Kernel::PhysicalCore& CurrentPhysicalCore();
@ -285,6 +286,12 @@ public:
/// Provides a constant reference to the kernel instance. /// Provides a constant reference to the kernel instance.
[[nodiscard]] const Kernel::KernelCore& Kernel() const; [[nodiscard]] const Kernel::KernelCore& Kernel() const;
/// Gets a mutable reference to the HID interface.
[[nodiscard]] HID::HIDCore& HIDCore();
/// Gets an immutable reference to the HID interface.
[[nodiscard]] const HID::HIDCore& HIDCore() const;
/// Provides a reference to the internal PerfStats instance. /// Provides a reference to the internal PerfStats instance.
[[nodiscard]] Core::PerfStats& GetPerfStats(); [[nodiscard]] Core::PerfStats& GetPerfStats();

View file

@ -117,17 +117,18 @@ void CpuManager::MultiCoreRunGuestLoop() {
physical_core = &kernel.CurrentPhysicalCore(); physical_core = &kernel.CurrentPhysicalCore();
} }
system.ExitDynarmicProfile(); system.ExitDynarmicProfile();
{
Kernel::KScopedDisableDispatch dd(kernel);
physical_core->ArmInterface().ClearExclusiveState(); physical_core->ArmInterface().ClearExclusiveState();
kernel.CurrentScheduler()->RescheduleCurrentCore(); }
} }
} }
void CpuManager::MultiCoreRunIdleThread() { void CpuManager::MultiCoreRunIdleThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
while (true) { while (true) {
auto& physical_core = kernel.CurrentPhysicalCore(); Kernel::KScopedDisableDispatch dd(kernel);
physical_core.Idle(); kernel.CurrentPhysicalCore().Idle();
kernel.CurrentScheduler()->RescheduleCurrentCore();
} }
} }
@ -135,12 +136,12 @@ void CpuManager::MultiCoreRunSuspendThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.CurrentScheduler()->OnThreadStart(); kernel.CurrentScheduler()->OnThreadStart();
while (true) { while (true) {
auto core = kernel.GetCurrentHostThreadID(); auto core = kernel.CurrentPhysicalCoreIndex();
auto& scheduler = *kernel.CurrentScheduler(); auto& scheduler = *kernel.CurrentScheduler();
Kernel::KThread* current_thread = scheduler.GetCurrentThread(); Kernel::KThread* current_thread = scheduler.GetCurrentThread();
Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context); Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context);
ASSERT(scheduler.ContextSwitchPending()); ASSERT(scheduler.ContextSwitchPending());
ASSERT(core == kernel.GetCurrentHostThreadID()); ASSERT(core == kernel.CurrentPhysicalCoreIndex());
scheduler.RescheduleCurrentCore(); scheduler.RescheduleCurrentCore();
} }
} }
@ -346,13 +347,9 @@ void CpuManager::RunThread(std::stop_token stop_token, std::size_t core) {
sc_sync_first_use = false; sc_sync_first_use = false;
} }
// Abort if emulation was killed before the session really starts // Emulation was stopped
if (!system.IsPoweredOn()) {
return;
}
if (stop_token.stop_requested()) { if (stop_token.stop_requested()) {
break; return;
} }
auto current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread(); auto current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread();

View file

@ -5,16 +5,15 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "core/frontend/applets/controller.h" #include "core/frontend/applets/controller.h"
#include "core/hle/service/hid/controllers/npad.h" #include "core/hid/emulated_controller.h"
#include "core/hle/service/hid/hid.h" #include "core/hid/hid_core.h"
#include "core/hle/service/sm/sm.h" #include "core/hid/hid_types.h"
namespace Core::Frontend { namespace Core::Frontend {
ControllerApplet::~ControllerApplet() = default; ControllerApplet::~ControllerApplet() = default;
DefaultControllerApplet::DefaultControllerApplet(Service::SM::ServiceManager& service_manager_) DefaultControllerApplet::DefaultControllerApplet(HID::HIDCore& hid_core_) : hid_core{hid_core_} {}
: service_manager{service_manager_} {}
DefaultControllerApplet::~DefaultControllerApplet() = default; DefaultControllerApplet::~DefaultControllerApplet() = default;
@ -22,24 +21,20 @@ void DefaultControllerApplet::ReconfigureControllers(std::function<void()> callb
const ControllerParameters& parameters) const { const ControllerParameters& parameters) const {
LOG_INFO(Service_HID, "called, deducing the best configuration based on the given parameters!"); LOG_INFO(Service_HID, "called, deducing the best configuration based on the given parameters!");
auto& npad =
service_manager.GetService<Service::HID::Hid>("hid")
->GetAppletResource()
->GetController<Service::HID::Controller_NPad>(Service::HID::HidController::NPad);
auto& players = Settings::values.players.GetValue();
const std::size_t min_supported_players = const std::size_t min_supported_players =
parameters.enable_single_mode ? 1 : parameters.min_players; parameters.enable_single_mode ? 1 : parameters.min_players;
// Disconnect Handheld first. // Disconnect Handheld first.
npad.DisconnectNpadAtIndex(8); auto* handheld = hid_core.GetEmulatedController(Core::HID::NpadIdType::Handheld);
handheld->Disconnect();
// Deduce the best configuration based on the input parameters. // Deduce the best configuration based on the input parameters.
for (std::size_t index = 0; index < players.size() - 2; ++index) { for (std::size_t index = 0; index < hid_core.available_controllers - 2; ++index) {
auto* controller = hid_core.GetEmulatedControllerByIndex(index);
// First, disconnect all controllers regardless of the value of keep_controllers_connected. // First, disconnect all controllers regardless of the value of keep_controllers_connected.
// This makes it easy to connect the desired controllers. // This makes it easy to connect the desired controllers.
npad.DisconnectNpadAtIndex(index); controller->Disconnect();
// Only connect the minimum number of required players. // Only connect the minimum number of required players.
if (index >= min_supported_players) { if (index >= min_supported_players) {
@ -49,27 +44,27 @@ void DefaultControllerApplet::ReconfigureControllers(std::function<void()> callb
// Connect controllers based on the following priority list from highest to lowest priority: // Connect controllers based on the following priority list from highest to lowest priority:
// Pro Controller -> Dual Joycons -> Left Joycon/Right Joycon -> Handheld // Pro Controller -> Dual Joycons -> Left Joycon/Right Joycon -> Handheld
if (parameters.allow_pro_controller) { if (parameters.allow_pro_controller) {
npad.AddNewControllerAt( controller->SetNpadStyleIndex(Core::HID::NpadStyleIndex::ProController);
npad.MapSettingsTypeToNPad(Settings::ControllerType::ProController), index); controller->Connect();
} else if (parameters.allow_dual_joycons) { } else if (parameters.allow_dual_joycons) {
npad.AddNewControllerAt( controller->SetNpadStyleIndex(Core::HID::NpadStyleIndex::JoyconDual);
npad.MapSettingsTypeToNPad(Settings::ControllerType::DualJoyconDetached), index); controller->Connect();
} else if (parameters.allow_left_joycon && parameters.allow_right_joycon) { } else if (parameters.allow_left_joycon && parameters.allow_right_joycon) {
// Assign left joycons to even player indices and right joycons to odd player indices. // Assign left joycons to even player indices and right joycons to odd player indices.
// We do this since Captain Toad Treasure Tracker expects a left joycon for Player 1 and // We do this since Captain Toad Treasure Tracker expects a left joycon for Player 1 and
// a right Joycon for Player 2 in 2 Player Assist mode. // a right Joycon for Player 2 in 2 Player Assist mode.
if (index % 2 == 0) { if (index % 2 == 0) {
npad.AddNewControllerAt( controller->SetNpadStyleIndex(Core::HID::NpadStyleIndex::JoyconLeft);
npad.MapSettingsTypeToNPad(Settings::ControllerType::LeftJoycon), index); controller->Connect();
} else { } else {
npad.AddNewControllerAt( controller->SetNpadStyleIndex(Core::HID::NpadStyleIndex::JoyconRight);
npad.MapSettingsTypeToNPad(Settings::ControllerType::RightJoycon), index); controller->Connect();
} }
} else if (index == 0 && parameters.enable_single_mode && parameters.allow_handheld && } else if (index == 0 && parameters.enable_single_mode && parameters.allow_handheld &&
!Settings::values.use_docked_mode.GetValue()) { !Settings::values.use_docked_mode.GetValue()) {
// We should *never* reach here under any normal circumstances. // We should *never* reach here under any normal circumstances.
npad.AddNewControllerAt(npad.MapSettingsTypeToNPad(Settings::ControllerType::Handheld), controller->SetNpadStyleIndex(Core::HID::NpadStyleIndex::Handheld);
index); controller->Connect();
} else { } else {
UNREACHABLE_MSG("Unable to add a new controller based on the given parameters!"); UNREACHABLE_MSG("Unable to add a new controller based on the given parameters!");
} }

View file

@ -8,8 +8,8 @@
#include "common/common_types.h" #include "common/common_types.h"
namespace Service::SM { namespace Core::HID {
class ServiceManager; class HIDCore;
} }
namespace Core::Frontend { namespace Core::Frontend {
@ -44,14 +44,14 @@ public:
class DefaultControllerApplet final : public ControllerApplet { class DefaultControllerApplet final : public ControllerApplet {
public: public:
explicit DefaultControllerApplet(Service::SM::ServiceManager& service_manager_); explicit DefaultControllerApplet(HID::HIDCore& hid_core_);
~DefaultControllerApplet() override; ~DefaultControllerApplet() override;
void ReconfigureControllers(std::function<void()> callback, void ReconfigureControllers(std::function<void()> callback,
const ControllerParameters& parameters) const override; const ControllerParameters& parameters) const override;
private: private:
Service::SM::ServiceManager& service_manager; HID::HIDCore& hid_core;
}; };
} // namespace Core::Frontend } // namespace Core::Frontend

View file

@ -3,66 +3,31 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <mutex> #include <mutex>
#include "common/settings.h"
#include "core/frontend/emu_window.h" #include "core/frontend/emu_window.h"
#include "core/frontend/input.h"
namespace Core::Frontend { namespace Core::Frontend {
GraphicsContext::~GraphicsContext() = default; GraphicsContext::~GraphicsContext() = default;
class EmuWindow::TouchState : public Input::Factory<Input::TouchDevice>,
public std::enable_shared_from_this<TouchState> {
public:
std::unique_ptr<Input::TouchDevice> Create(const Common::ParamPackage&) override {
return std::make_unique<Device>(shared_from_this());
}
std::mutex mutex;
Input::TouchStatus status;
private:
class Device : public Input::TouchDevice {
public:
explicit Device(std::weak_ptr<TouchState>&& touch_state_) : touch_state(touch_state_) {}
Input::TouchStatus GetStatus() const override {
if (auto state = touch_state.lock()) {
std::lock_guard guard{state->mutex};
return state->status;
}
return {};
}
private:
std::weak_ptr<TouchState> touch_state;
};
};
EmuWindow::EmuWindow() { EmuWindow::EmuWindow() {
// TODO: Find a better place to set this. // TODO: Find a better place to set this.
config.min_client_area_size = config.min_client_area_size =
std::make_pair(Layout::MinimumSize::Width, Layout::MinimumSize::Height); std::make_pair(Layout::MinimumSize::Width, Layout::MinimumSize::Height);
active_config = config; active_config = config;
touch_state = std::make_shared<TouchState>();
Input::RegisterFactory<Input::TouchDevice>("emu_window", touch_state);
} }
EmuWindow::~EmuWindow() { EmuWindow::~EmuWindow() {}
Input::UnregisterFactory<Input::TouchDevice>("emu_window");
}
/** std::pair<f32, f32> EmuWindow::MapToTouchScreen(u32 framebuffer_x, u32 framebuffer_y) const {
* Check if the given x/y coordinates are within the touchpad specified by the framebuffer layout std::tie(framebuffer_x, framebuffer_y) = ClipToTouchScreen(framebuffer_x, framebuffer_y);
* @param layout FramebufferLayout object describing the framebuffer size and screen positions const float x =
* @param framebuffer_x Framebuffer x-coordinate to check static_cast<float>(framebuffer_x - framebuffer_layout.screen.left) /
* @param framebuffer_y Framebuffer y-coordinate to check static_cast<float>(framebuffer_layout.screen.right - framebuffer_layout.screen.left);
* @return True if the coordinates are within the touchpad, otherwise false const float y =
*/ static_cast<float>(framebuffer_y - framebuffer_layout.screen.top) /
static bool IsWithinTouchscreen(const Layout::FramebufferLayout& layout, u32 framebuffer_x, static_cast<float>(framebuffer_layout.screen.bottom - framebuffer_layout.screen.top);
u32 framebuffer_y) {
return (framebuffer_y >= layout.screen.top && framebuffer_y < layout.screen.bottom && return std::make_pair(x, y);
framebuffer_x >= layout.screen.left && framebuffer_x < layout.screen.right);
} }
std::pair<u32, u32> EmuWindow::ClipToTouchScreen(u32 new_x, u32 new_y) const { std::pair<u32, u32> EmuWindow::ClipToTouchScreen(u32 new_x, u32 new_y) const {
@ -75,49 +40,6 @@ std::pair<u32, u32> EmuWindow::ClipToTouchScreen(u32 new_x, u32 new_y) const {
return std::make_pair(new_x, new_y); return std::make_pair(new_x, new_y);
} }
void EmuWindow::TouchPressed(u32 framebuffer_x, u32 framebuffer_y, size_t id) {
if (!IsWithinTouchscreen(framebuffer_layout, framebuffer_x, framebuffer_y)) {
return;
}
if (id >= touch_state->status.size()) {
return;
}
std::lock_guard guard{touch_state->mutex};
const float x =
static_cast<float>(framebuffer_x - framebuffer_layout.screen.left) /
static_cast<float>(framebuffer_layout.screen.right - framebuffer_layout.screen.left);
const float y =
static_cast<float>(framebuffer_y - framebuffer_layout.screen.top) /
static_cast<float>(framebuffer_layout.screen.bottom - framebuffer_layout.screen.top);
touch_state->status[id] = std::make_tuple(x, y, true);
}
void EmuWindow::TouchReleased(size_t id) {
if (id >= touch_state->status.size()) {
return;
}
std::lock_guard guard{touch_state->mutex};
touch_state->status[id] = std::make_tuple(0.0f, 0.0f, false);
}
void EmuWindow::TouchMoved(u32 framebuffer_x, u32 framebuffer_y, size_t id) {
if (id >= touch_state->status.size()) {
return;
}
if (!std::get<2>(touch_state->status[id])) {
return;
}
if (!IsWithinTouchscreen(framebuffer_layout, framebuffer_x, framebuffer_y)) {
std::tie(framebuffer_x, framebuffer_y) = ClipToTouchScreen(framebuffer_x, framebuffer_y);
}
TouchPressed(framebuffer_x, framebuffer_y, id);
}
void EmuWindow::UpdateCurrentFramebufferLayout(u32 width, u32 height) { void EmuWindow::UpdateCurrentFramebufferLayout(u32 width, u32 height) {
NotifyFramebufferLayoutChanged(Layout::DefaultFrameLayout(width, height)); NotifyFramebufferLayoutChanged(Layout::DefaultFrameLayout(width, height));
} }

View file

@ -112,28 +112,6 @@ public:
/// Returns if window is shown (not minimized) /// Returns if window is shown (not minimized)
virtual bool IsShown() const = 0; virtual bool IsShown() const = 0;
/**
* Signal that a touch pressed event has occurred (e.g. mouse click pressed)
* @param framebuffer_x Framebuffer x-coordinate that was pressed
* @param framebuffer_y Framebuffer y-coordinate that was pressed
* @param id Touch event ID
*/
void TouchPressed(u32 framebuffer_x, u32 framebuffer_y, size_t id);
/**
* Signal that a touch released event has occurred (e.g. mouse click released)
* @param id Touch event ID
*/
void TouchReleased(size_t id);
/**
* Signal that a touch movement event has occurred (e.g. mouse was moved over the emu window)
* @param framebuffer_x Framebuffer x-coordinate
* @param framebuffer_y Framebuffer y-coordinate
* @param id Touch event ID
*/
void TouchMoved(u32 framebuffer_x, u32 framebuffer_y, size_t id);
/** /**
* Returns currently active configuration. * Returns currently active configuration.
* @note Accesses to the returned object need not be consistent because it may be modified in * @note Accesses to the returned object need not be consistent because it may be modified in
@ -212,6 +190,11 @@ protected:
client_area_height = size.second; client_area_height = size.second;
} }
/**
* Converts a screen postion into the equivalent touchscreen position.
*/
std::pair<f32, f32> MapToTouchScreen(u32 framebuffer_x, u32 framebuffer_y) const;
WindowSystemInfo window_info; WindowSystemInfo window_info;
private: private:
@ -237,9 +220,6 @@ private:
WindowConfig config; ///< Internal configuration (changes pending for being applied in WindowConfig config; ///< Internal configuration (changes pending for being applied in
/// ProcessConfigurationChanges) /// ProcessConfigurationChanges)
WindowConfig active_config; ///< Internal active configuration WindowConfig active_config; ///< Internal active configuration
class TouchState;
std::shared_ptr<TouchState> touch_state;
}; };
} // namespace Core::Frontend } // namespace Core::Frontend

View file

@ -25,7 +25,12 @@ FramebufferLayout DefaultFrameLayout(u32 width, u32 height) {
ASSERT(height > 0); ASSERT(height > 0);
// The drawing code needs at least somewhat valid values for both screens // The drawing code needs at least somewhat valid values for both screens
// so just calculate them both even if the other isn't showing. // so just calculate them both even if the other isn't showing.
FramebufferLayout res{width, height, false, {}}; FramebufferLayout res{
.width = width,
.height = height,
.screen = {},
.is_srgb = false,
};
const float window_aspect_ratio = static_cast<float>(height) / static_cast<float>(width); const float window_aspect_ratio = static_cast<float>(height) / static_cast<float>(width);
const float emulation_aspect_ratio = EmulationAspectRatio( const float emulation_aspect_ratio = EmulationAspectRatio(

View file

@ -35,17 +35,8 @@ enum class AspectRatio {
struct FramebufferLayout { struct FramebufferLayout {
u32 width{ScreenUndocked::Width}; u32 width{ScreenUndocked::Width};
u32 height{ScreenUndocked::Height}; u32 height{ScreenUndocked::Height};
bool is_srgb{};
Common::Rectangle<u32> screen; Common::Rectangle<u32> screen;
bool is_srgb{};
/**
* Returns the ration of pixel size of the screen, compared to the native size of the undocked
* Switch screen.
*/
float GetScalingRatio() const {
return static_cast<float>(screen.GetWidth()) / ScreenUndocked::Width;
}
}; };
/** /**

View file

@ -1,217 +0,0 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/quaternion.h"
#include "common/vector_math.h"
namespace Input {
enum class AnalogDirection : u8 {
RIGHT,
LEFT,
UP,
DOWN,
};
struct AnalogProperties {
float deadzone;
float range;
float threshold;
};
template <typename StatusType>
struct InputCallback {
std::function<void(StatusType)> on_change;
};
/// An abstract class template for an input device (a button, an analog input, etc.).
template <typename StatusType>
class InputDevice {
public:
virtual ~InputDevice() = default;
virtual StatusType GetStatus() const {
return {};
}
virtual StatusType GetRawStatus() const {
return GetStatus();
}
virtual AnalogProperties GetAnalogProperties() const {
return {};
}
virtual bool GetAnalogDirectionStatus([[maybe_unused]] AnalogDirection direction) const {
return {};
}
virtual bool SetRumblePlay([[maybe_unused]] f32 amp_low, [[maybe_unused]] f32 freq_low,
[[maybe_unused]] f32 amp_high,
[[maybe_unused]] f32 freq_high) const {
return {};
}
void SetCallback(InputCallback<StatusType> callback_) {
callback = std::move(callback_);
}
void TriggerOnChange() {
if (callback.on_change) {
callback.on_change(GetStatus());
}
}
private:
InputCallback<StatusType> callback;
};
/// An abstract class template for a factory that can create input devices.
template <typename InputDeviceType>
class Factory {
public:
virtual ~Factory() = default;
virtual std::unique_ptr<InputDeviceType> Create(const Common::ParamPackage&) = 0;
};
namespace Impl {
template <typename InputDeviceType>
using FactoryListType = std::unordered_map<std::string, std::shared_ptr<Factory<InputDeviceType>>>;
template <typename InputDeviceType>
struct FactoryList {
static FactoryListType<InputDeviceType> list;
};
template <typename InputDeviceType>
FactoryListType<InputDeviceType> FactoryList<InputDeviceType>::list;
} // namespace Impl
/**
* Registers an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory. Will be used to match the "engine" parameter when creating
* a device
* @param factory the factory object to register
*/
template <typename InputDeviceType>
void RegisterFactory(const std::string& name, std::shared_ptr<Factory<InputDeviceType>> factory) {
auto pair = std::make_pair(name, std::move(factory));
if (!Impl::FactoryList<InputDeviceType>::list.insert(std::move(pair)).second) {
LOG_ERROR(Input, "Factory '{}' already registered", name);
}
}
/**
* Unregisters an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory to unregister
*/
template <typename InputDeviceType>
void UnregisterFactory(const std::string& name) {
if (Impl::FactoryList<InputDeviceType>::list.erase(name) == 0) {
LOG_ERROR(Input, "Factory '{}' not registered", name);
}
}
/**
* Create an input device from given paramters.
* @tparam InputDeviceType the type of input devices to create
* @param params a serialized ParamPackage string contains all parameters for creating the device
*/
template <typename InputDeviceType>
std::unique_ptr<InputDeviceType> CreateDevice(const std::string& params) {
const Common::ParamPackage package(params);
const std::string engine = package.Get("engine", "null");
const auto& factory_list = Impl::FactoryList<InputDeviceType>::list;
const auto pair = factory_list.find(engine);
if (pair == factory_list.end()) {
if (engine != "null") {
LOG_ERROR(Input, "Unknown engine name: {}", engine);
}
return std::make_unique<InputDeviceType>();
}
return pair->second->Create(package);
}
/**
* A button device is an input device that returns bool as status.
* true for pressed; false for released.
*/
using ButtonDevice = InputDevice<bool>;
/**
* An analog device is an input device that returns a tuple of x and y coordinates as status. The
* coordinates are within the unit circle. x+ is defined as right direction, and y+ is defined as up
* direction
*/
using AnalogDevice = InputDevice<std::tuple<float, float>>;
/**
* A vibration device is an input device that returns an unsigned byte as status.
* It represents whether the vibration device supports vibration or not.
* If the status returns 1, it supports vibration. Otherwise, it does not support vibration.
*/
using VibrationDevice = InputDevice<u8>;
/**
* A motion status is an object that returns a tuple of accelerometer state vector,
* gyroscope state vector, rotation state vector, orientation state matrix and quaterion state
* vector.
*
* For both 3D vectors:
* x+ is the same direction as RIGHT on D-pad.
* y+ is normal to the touch screen, pointing outward.
* z+ is the same direction as UP on D-pad.
*
* For accelerometer state vector
* Units: g (gravitational acceleration)
*
* For gyroscope state vector:
* Orientation is determined by right-hand rule.
* Units: deg/sec
*
* For rotation state vector
* Units: rotations
*
* For orientation state matrix
* x vector
* y vector
* z vector
*
* For quaternion state vector
* xyz vector
* w float
*/
using MotionStatus = std::tuple<Common::Vec3<float>, Common::Vec3<float>, Common::Vec3<float>,
std::array<Common::Vec3f, 3>, Common::Quaternion<f32>>;
/**
* A motion device is an input device that returns a motion status object
*/
using MotionDevice = InputDevice<MotionStatus>;
/**
* A touch status is an object that returns an array of 16 tuple elements of two floats and a bool.
* The floats are x and y coordinates in the range 0.0 - 1.0, and the bool indicates whether it is
* pressed.
*/
using TouchStatus = std::array<std::tuple<float, float, bool>, 16>;
/**
* A touch device is an input device that returns a touch status object
*/
using TouchDevice = InputDevice<TouchStatus>;
/**
* A mouse device is an input device that returns a tuple of two floats and four ints.
* The first two floats are X and Y device coordinates of the mouse (from 0-1).
* The s32s are the mouse wheel.
*/
using MouseDevice = InputDevice<std::tuple<float, float, s32, s32>>;
} // namespace Input

View file

@ -0,0 +1,232 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included
#include "common/settings.h"
#include "core/hid/emulated_console.h"
#include "core/hid/input_converter.h"
namespace Core::HID {
EmulatedConsole::EmulatedConsole() = default;
EmulatedConsole::~EmulatedConsole() = default;
void EmulatedConsole::ReloadFromSettings() {
// Using first motion device from player 1. No need to assign any unique config at the moment
const auto& player = Settings::values.players.GetValue()[0];
motion_params = Common::ParamPackage(player.motions[0]);
ReloadInput();
}
void EmulatedConsole::SetTouchParams() {
// TODO(german77): Support any number of fingers
std::size_t index = 0;
// Hardcode mouse, touchscreen and cemuhook parameters
if (!Settings::values.mouse_enabled) {
// We can't use mouse as touch if native mouse is enabled
touch_params[index++] = Common::ParamPackage{"engine:mouse,axis_x:10,axis_y:11,button:0"};
}
touch_params[index++] = Common::ParamPackage{"engine:touch,axis_x:0,axis_y:1,button:0"};
touch_params[index++] = Common::ParamPackage{"engine:touch,axis_x:2,axis_y:3,button:1"};
touch_params[index++] =
Common::ParamPackage{"engine:cemuhookudp,axis_x:17,axis_y:18,button:65536"};
touch_params[index++] =
Common::ParamPackage{"engine:cemuhookudp,axis_x:19,axis_y:20,button:131072"};
const auto button_index =
static_cast<u64>(Settings::values.touch_from_button_map_index.GetValue());
const auto& touch_buttons = Settings::values.touch_from_button_maps[button_index].buttons;
// Map the rest of the fingers from touch from button configuration
for (const auto& config_entry : touch_buttons) {
if (index >= touch_params.size()) {
continue;
}
Common::ParamPackage params{config_entry};
Common::ParamPackage touch_button_params;
const int x = params.Get("x", 0);
const int y = params.Get("y", 0);
params.Erase("x");
params.Erase("y");
touch_button_params.Set("engine", "touch_from_button");
touch_button_params.Set("button", params.Serialize());
touch_button_params.Set("x", x);
touch_button_params.Set("y", y);
touch_button_params.Set("touch_id", static_cast<int>(index));
touch_params[index] = touch_button_params;
index++;
}
}
void EmulatedConsole::ReloadInput() {
// If you load any device here add the equivalent to the UnloadInput() function
SetTouchParams();
motion_devices = Common::Input::CreateDevice<Common::Input::InputDevice>(motion_params);
if (motion_devices) {
motion_devices->SetCallback({
.on_change =
[this](const Common::Input::CallbackStatus& callback) { SetMotion(callback); },
});
}
// Unique index for identifying touch device source
std::size_t index = 0;
for (auto& touch_device : touch_devices) {
touch_device = Common::Input::CreateDevice<Common::Input::InputDevice>(touch_params[index]);
if (!touch_device) {
continue;
}
touch_device->SetCallback({
.on_change =
[this, index](const Common::Input::CallbackStatus& callback) {
SetTouch(callback, index);
},
});
index++;
}
}
void EmulatedConsole::UnloadInput() {
motion_devices.reset();
for (auto& touch : touch_devices) {
touch.reset();
}
}
void EmulatedConsole::EnableConfiguration() {
is_configuring = true;
SaveCurrentConfig();
}
void EmulatedConsole::DisableConfiguration() {
is_configuring = false;
}
bool EmulatedConsole::IsConfiguring() const {
return is_configuring;
}
void EmulatedConsole::SaveCurrentConfig() {
if (!is_configuring) {
return;
}
}
void EmulatedConsole::RestoreConfig() {
if (!is_configuring) {
return;
}
ReloadFromSettings();
}
Common::ParamPackage EmulatedConsole::GetMotionParam() const {
return motion_params;
}
void EmulatedConsole::SetMotionParam(Common::ParamPackage param) {
motion_params = param;
ReloadInput();
}
void EmulatedConsole::SetMotion(const Common::Input::CallbackStatus& callback) {
std::lock_guard lock{mutex};
auto& raw_status = console.motion_values.raw_status;
auto& emulated = console.motion_values.emulated;
raw_status = TransformToMotion(callback);
emulated.SetAcceleration(Common::Vec3f{
raw_status.accel.x.value,
raw_status.accel.y.value,
raw_status.accel.z.value,
});
emulated.SetGyroscope(Common::Vec3f{
raw_status.gyro.x.value,
raw_status.gyro.y.value,
raw_status.gyro.z.value,
});
emulated.UpdateRotation(raw_status.delta_timestamp);
emulated.UpdateOrientation(raw_status.delta_timestamp);
if (is_configuring) {
TriggerOnChange(ConsoleTriggerType::Motion);
return;
}
auto& motion = console.motion_state;
motion.accel = emulated.GetAcceleration();
motion.gyro = emulated.GetGyroscope();
motion.rotation = emulated.GetGyroscope();
motion.orientation = emulated.GetOrientation();
motion.quaternion = emulated.GetQuaternion();
motion.is_at_rest = !emulated.IsMoving(motion_sensitivity);
TriggerOnChange(ConsoleTriggerType::Motion);
}
void EmulatedConsole::SetTouch(const Common::Input::CallbackStatus& callback, std::size_t index) {
if (index >= console.touch_values.size()) {
return;
}
std::lock_guard lock{mutex};
console.touch_values[index] = TransformToTouch(callback);
if (is_configuring) {
TriggerOnChange(ConsoleTriggerType::Touch);
return;
}
// TODO(german77): Remap touch id in sequential order
console.touch_state[index] = {
.position = {console.touch_values[index].x.value, console.touch_values[index].y.value},
.id = static_cast<u32>(console.touch_values[index].id),
.pressed = console.touch_values[index].pressed.value,
};
TriggerOnChange(ConsoleTriggerType::Touch);
}
ConsoleMotionValues EmulatedConsole::GetMotionValues() const {
return console.motion_values;
}
TouchValues EmulatedConsole::GetTouchValues() const {
return console.touch_values;
}
ConsoleMotion EmulatedConsole::GetMotion() const {
return console.motion_state;
}
TouchFingerState EmulatedConsole::GetTouch() const {
return console.touch_state;
}
void EmulatedConsole::TriggerOnChange(ConsoleTriggerType type) {
for (const auto& poller_pair : callback_list) {
const ConsoleUpdateCallback& poller = poller_pair.second;
if (poller.on_change) {
poller.on_change(type);
}
}
}
int EmulatedConsole::SetCallback(ConsoleUpdateCallback update_callback) {
std::lock_guard lock{mutex};
callback_list.insert_or_assign(last_callback_key, update_callback);
return last_callback_key++;
}
void EmulatedConsole::DeleteCallback(int key) {
std::lock_guard lock{mutex};
const auto& iterator = callback_list.find(key);
if (iterator == callback_list.end()) {
LOG_ERROR(Input, "Tried to delete non-existent callback {}", key);
return;
}
callback_list.erase(iterator);
}
} // namespace Core::HID

View file

@ -0,0 +1,190 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <mutex>
#include <unordered_map>
#include "common/common_types.h"
#include "common/input.h"
#include "common/param_package.h"
#include "common/point.h"
#include "common/quaternion.h"
#include "common/vector_math.h"
#include "core/hid/hid_types.h"
#include "core/hid/motion_input.h"
namespace Core::HID {
struct ConsoleMotionInfo {
Common::Input::MotionStatus raw_status{};
MotionInput emulated{};
};
using ConsoleMotionDevices = std::unique_ptr<Common::Input::InputDevice>;
using TouchDevices = std::array<std::unique_ptr<Common::Input::InputDevice>, 16>;
using ConsoleMotionParams = Common::ParamPackage;
using TouchParams = std::array<Common::ParamPackage, 16>;
using ConsoleMotionValues = ConsoleMotionInfo;
using TouchValues = std::array<Common::Input::TouchStatus, 16>;
struct TouchFinger {
u64 last_touch{};
Common::Point<float> position{};
u32 id{};
TouchAttribute attribute{};
bool pressed{};
};
// Contains all motion related data that is used on the services
struct ConsoleMotion {
Common::Vec3f accel{};
Common::Vec3f gyro{};
Common::Vec3f rotation{};
std::array<Common::Vec3f, 3> orientation{};
Common::Quaternion<f32> quaternion{};
bool is_at_rest{};
};
using TouchFingerState = std::array<TouchFinger, 16>;
struct ConsoleStatus {
// Data from input_common
ConsoleMotionValues motion_values{};
TouchValues touch_values{};
// Data for HID services
ConsoleMotion motion_state{};
TouchFingerState touch_state{};
};
enum class ConsoleTriggerType {
Motion,
Touch,
All,
};
struct ConsoleUpdateCallback {
std::function<void(ConsoleTriggerType)> on_change;
};
class EmulatedConsole {
public:
/**
* Contains all input data within the emulated switch console tablet such as touch and motion
*/
explicit EmulatedConsole();
~EmulatedConsole();
YUZU_NON_COPYABLE(EmulatedConsole);
YUZU_NON_MOVEABLE(EmulatedConsole);
/// Removes all callbacks created from input devices
void UnloadInput();
/**
* Sets the emulated console into configuring mode
* This prevents the modification of the HID state of the emulated console by input commands
*/
void EnableConfiguration();
/// Returns the emulated console into normal mode, allowing the modification of the HID state
void DisableConfiguration();
/// Returns true if the emulated console is in configuring mode
bool IsConfiguring() const;
/// Reload all input devices
void ReloadInput();
/// Overrides current mapped devices with the stored configuration and reloads all input devices
void ReloadFromSettings();
/// Saves the current mapped configuration
void SaveCurrentConfig();
/// Reverts any mapped changes made that weren't saved
void RestoreConfig();
// Returns the current mapped motion device
Common::ParamPackage GetMotionParam() const;
/**
* Updates the current mapped motion device
* @param param ParamPackage with controller data to be mapped
*/
void SetMotionParam(Common::ParamPackage param);
/// Returns the latest status of motion input from the console with parameters
ConsoleMotionValues GetMotionValues() const;
/// Returns the latest status of touch input from the console with parameters
TouchValues GetTouchValues() const;
/// Returns the latest status of motion input from the console
ConsoleMotion GetMotion() const;
/// Returns the latest status of touch input from the console
TouchFingerState GetTouch() const;
/**
* Adds a callback to the list of events
* @param update_callback A ConsoleUpdateCallback that will be triggered
* @return an unique key corresponding to the callback index in the list
*/
int SetCallback(ConsoleUpdateCallback update_callback);
/**
* Removes a callback from the list stopping any future events to this object
* @param key Key corresponding to the callback index in the list
*/
void DeleteCallback(int key);
private:
/// Creates and stores the touch params
void SetTouchParams();
/**
* Updates the motion status of the console
* @param callback A CallbackStatus containing gyro and accelerometer data
*/
void SetMotion(const Common::Input::CallbackStatus& callback);
/**
* Updates the touch status of the console
* @param callback A CallbackStatus containing the touch position
* @param index Finger ID to be updated
*/
void SetTouch(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Triggers a callback that something has changed on the console status
* @param type Input type of the event to trigger
*/
void TriggerOnChange(ConsoleTriggerType type);
bool is_configuring{false};
f32 motion_sensitivity{0.01f};
ConsoleMotionParams motion_params;
TouchParams touch_params;
ConsoleMotionDevices motion_devices;
TouchDevices touch_devices;
mutable std::mutex mutex;
std::unordered_map<int, ConsoleUpdateCallback> callback_list;
int last_callback_key = 0;
// Stores the current status of all console input
ConsoleStatus console;
};
} // namespace Core::HID

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,411 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <mutex>
#include <unordered_map>
#include "common/common_types.h"
#include "common/input.h"
#include "common/param_package.h"
#include "common/point.h"
#include "common/quaternion.h"
#include "common/settings.h"
#include "common/vector_math.h"
#include "core/hid/hid_types.h"
#include "core/hid/motion_input.h"
namespace Core::HID {
const std::size_t max_emulated_controllers = 2;
struct ControllerMotionInfo {
Common::Input::MotionStatus raw_status{};
MotionInput emulated{};
};
using ButtonDevices =
std::array<std::unique_ptr<Common::Input::InputDevice>, Settings::NativeButton::NumButtons>;
using StickDevices =
std::array<std::unique_ptr<Common::Input::InputDevice>, Settings::NativeAnalog::NumAnalogs>;
using ControllerMotionDevices =
std::array<std::unique_ptr<Common::Input::InputDevice>, Settings::NativeMotion::NumMotions>;
using TriggerDevices =
std::array<std::unique_ptr<Common::Input::InputDevice>, Settings::NativeTrigger::NumTriggers>;
using BatteryDevices =
std::array<std::unique_ptr<Common::Input::InputDevice>, max_emulated_controllers>;
using OutputDevices =
std::array<std::unique_ptr<Common::Input::OutputDevice>, max_emulated_controllers>;
using ButtonParams = std::array<Common::ParamPackage, Settings::NativeButton::NumButtons>;
using StickParams = std::array<Common::ParamPackage, Settings::NativeAnalog::NumAnalogs>;
using ControllerMotionParams = std::array<Common::ParamPackage, Settings::NativeMotion::NumMotions>;
using TriggerParams = std::array<Common::ParamPackage, Settings::NativeTrigger::NumTriggers>;
using BatteryParams = std::array<Common::ParamPackage, max_emulated_controllers>;
using OutputParams = std::array<Common::ParamPackage, max_emulated_controllers>;
using ButtonValues = std::array<Common::Input::ButtonStatus, Settings::NativeButton::NumButtons>;
using SticksValues = std::array<Common::Input::StickStatus, Settings::NativeAnalog::NumAnalogs>;
using TriggerValues =
std::array<Common::Input::TriggerStatus, Settings::NativeTrigger::NumTriggers>;
using ControllerMotionValues = std::array<ControllerMotionInfo, Settings::NativeMotion::NumMotions>;
using ColorValues = std::array<Common::Input::BodyColorStatus, max_emulated_controllers>;
using BatteryValues = std::array<Common::Input::BatteryStatus, max_emulated_controllers>;
using VibrationValues = std::array<Common::Input::VibrationStatus, max_emulated_controllers>;
struct AnalogSticks {
AnalogStickState left{};
AnalogStickState right{};
};
struct ControllerColors {
NpadControllerColor fullkey{};
NpadControllerColor left{};
NpadControllerColor right{};
};
struct BatteryLevelState {
NpadPowerInfo dual{};
NpadPowerInfo left{};
NpadPowerInfo right{};
};
struct ControllerMotion {
Common::Vec3f accel{};
Common::Vec3f gyro{};
Common::Vec3f rotation{};
std::array<Common::Vec3f, 3> orientation{};
bool is_at_rest{};
};
enum EmulatedDeviceIndex : u8 {
LeftIndex,
RightIndex,
DualIndex,
AllDevices,
};
using MotionState = std::array<ControllerMotion, 2>;
struct ControllerStatus {
// Data from input_common
ButtonValues button_values{};
SticksValues stick_values{};
ControllerMotionValues motion_values{};
TriggerValues trigger_values{};
ColorValues color_values{};
BatteryValues battery_values{};
VibrationValues vibration_values{};
// Data for HID serices
NpadButtonState npad_button_state{};
DebugPadButton debug_pad_button_state{};
AnalogSticks analog_stick_state{};
MotionState motion_state{};
NpadGcTriggerState gc_trigger_state{};
ControllerColors colors_state{};
BatteryLevelState battery_state{};
};
enum class ControllerTriggerType {
Button,
Stick,
Trigger,
Motion,
Color,
Battery,
Vibration,
Connected,
Disconnected,
Type,
All,
};
struct ControllerUpdateCallback {
std::function<void(ControllerTriggerType)> on_change;
bool is_npad_service;
};
class EmulatedController {
public:
/**
* Contains all input data (buttons, joysticks, vibration, and motion) within this controller.
* @param npad_id_type npad id type for this specific controller
*/
explicit EmulatedController(NpadIdType npad_id_type_);
~EmulatedController();
YUZU_NON_COPYABLE(EmulatedController);
YUZU_NON_MOVEABLE(EmulatedController);
/// Converts the controller type from settings to npad type
static NpadStyleIndex MapSettingsTypeToNPad(Settings::ControllerType type);
/// Converts npad type to the equivalent of controller type from settings
static Settings::ControllerType MapNPadToSettingsType(NpadStyleIndex type);
/// Gets the NpadIdType for this controller
NpadIdType GetNpadIdType() const;
/// Sets the NpadStyleIndex for this controller
void SetNpadStyleIndex(NpadStyleIndex npad_type_);
/**
* Gets the NpadStyleIndex for this controller
* @param get_temporary_value If true tmp_npad_type will be returned
* @return NpadStyleIndex set on the controller
*/
NpadStyleIndex GetNpadStyleIndex(bool get_temporary_value = false) const;
/**
* Sets the supported controller types. Disconnects the controller if current type is not
* supported
* @param supported_styles bitflag with supported types
*/
void SetSupportedNpadStyleTag(NpadStyleTag supported_styles);
/// Sets the connected status to true
void Connect();
/// Sets the connected status to false
void Disconnect();
/**
* Is the emulated connected
* @param get_temporary_value If true tmp_is_connected will be returned
* @return true if the controller has the connected status
*/
bool IsConnected(bool get_temporary_value = false) const;
/// Returns true if vibration is enabled
bool IsVibrationEnabled() const;
/// Removes all callbacks created from input devices
void UnloadInput();
/**
* Sets the emulated controller into configuring mode
* This prevents the modification of the HID state of the emulated controller by input commands
*/
void EnableConfiguration();
/// Returns the emulated controller into normal mode, allowing the modification of the HID state
void DisableConfiguration();
/// Returns true if the emulated controller is in configuring mode
bool IsConfiguring() const;
/// Reload all input devices
void ReloadInput();
/// Overrides current mapped devices with the stored configuration and reloads all input devices
void ReloadFromSettings();
/// Saves the current mapped configuration
void SaveCurrentConfig();
/// Reverts any mapped changes made that weren't saved
void RestoreConfig();
/// Returns a vector of mapped devices from the mapped button and stick parameters
std::vector<Common::ParamPackage> GetMappedDevices(EmulatedDeviceIndex device_index) const;
// Returns the current mapped button device
Common::ParamPackage GetButtonParam(std::size_t index) const;
// Returns the current mapped stick device
Common::ParamPackage GetStickParam(std::size_t index) const;
// Returns the current mapped motion device
Common::ParamPackage GetMotionParam(std::size_t index) const;
/**
* Updates the current mapped button device
* @param param ParamPackage with controller data to be mapped
*/
void SetButtonParam(std::size_t index, Common::ParamPackage param);
/**
* Updates the current mapped stick device
* @param param ParamPackage with controller data to be mapped
*/
void SetStickParam(std::size_t index, Common::ParamPackage param);
/**
* Updates the current mapped motion device
* @param param ParamPackage with controller data to be mapped
*/
void SetMotionParam(std::size_t index, Common::ParamPackage param);
/// Returns the latest button status from the controller with parameters
ButtonValues GetButtonsValues() const;
/// Returns the latest analog stick status from the controller with parameters
SticksValues GetSticksValues() const;
/// Returns the latest trigger status from the controller with parameters
TriggerValues GetTriggersValues() const;
/// Returns the latest motion status from the controller with parameters
ControllerMotionValues GetMotionValues() const;
/// Returns the latest color status from the controller with parameters
ColorValues GetColorsValues() const;
/// Returns the latest battery status from the controller with parameters
BatteryValues GetBatteryValues() const;
/// Returns the latest status of button input for the npad service
NpadButtonState GetNpadButtons() const;
/// Returns the latest status of button input for the debug pad service
DebugPadButton GetDebugPadButtons() const;
/// Returns the latest status of stick input from the mouse
AnalogSticks GetSticks() const;
/// Returns the latest status of trigger input from the mouse
NpadGcTriggerState GetTriggers() const;
/// Returns the latest status of motion input from the mouse
MotionState GetMotions() const;
/// Returns the latest color value from the controller
ControllerColors GetColors() const;
/// Returns the latest battery status from the controller
BatteryLevelState GetBattery() const;
/**
* Sends a specific vibration to the output device
* @return returns true if vibration had no errors
*/
bool SetVibration(std::size_t device_index, VibrationValue vibration);
/**
* Sends a small vibration to the output device
* @return returns true if SetVibration was successfull
*/
bool TestVibration(std::size_t device_index);
/// Returns the led pattern corresponding to this emulated controller
LedPattern GetLedPattern() const;
/// Asks the output device to change the player led pattern
void SetLedPattern();
/**
* Adds a callback to the list of events
* @param update_callback A ConsoleUpdateCallback that will be triggered
* @return an unique key corresponding to the callback index in the list
*/
int SetCallback(ControllerUpdateCallback update_callback);
/**
* Removes a callback from the list stopping any future events to this object
* @param key Key corresponding to the callback index in the list
*/
void DeleteCallback(int key);
private:
/// creates input devices from params
void LoadDevices();
/// Set the params for TAS devices
void LoadTASParams();
/**
* Checks the current controller type against the supported_style_tag
* @return true if the controller is supported
*/
bool IsControllerSupported() const;
/**
* Updates the button status of the controller
* @param callback A CallbackStatus containing the button status
* @param index Button ID of the to be updated
*/
void SetButton(const Common::Input::CallbackStatus& callback, std::size_t index,
Common::UUID uuid);
/**
* Updates the analog stick status of the controller
* @param callback A CallbackStatus containing the analog stick status
* @param index stick ID of the to be updated
*/
void SetStick(const Common::Input::CallbackStatus& callback, std::size_t index,
Common::UUID uuid);
/**
* Updates the trigger status of the controller
* @param callback A CallbackStatus containing the trigger status
* @param index trigger ID of the to be updated
*/
void SetTrigger(const Common::Input::CallbackStatus& callback, std::size_t index,
Common::UUID uuid);
/**
* Updates the motion status of the controller
* @param callback A CallbackStatus containing gyro and accelerometer data
* @param index motion ID of the to be updated
*/
void SetMotion(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Updates the battery status of the controller
* @param callback A CallbackStatus containing the battery status
* @param index Button ID of the to be updated
*/
void SetBattery(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Triggers a callback that something has changed on the controller status
* @param type Input type of the event to trigger
* @param is_service_update indicates if this event should only be sent to HID services
*/
void TriggerOnChange(ControllerTriggerType type, bool is_service_update);
NpadIdType npad_id_type;
NpadStyleIndex npad_type{NpadStyleIndex::None};
NpadStyleTag supported_style_tag{NpadStyleSet::All};
bool is_connected{false};
bool is_configuring{false};
f32 motion_sensitivity{0.01f};
bool force_update_motion{false};
// Temporary values to avoid doing changes while the controller is in configuring mode
NpadStyleIndex tmp_npad_type{NpadStyleIndex::None};
bool tmp_is_connected{false};
ButtonParams button_params;
StickParams stick_params;
ControllerMotionParams motion_params;
TriggerParams trigger_params;
BatteryParams battery_params;
OutputParams output_params;
ButtonDevices button_devices;
StickDevices stick_devices;
ControllerMotionDevices motion_devices;
TriggerDevices trigger_devices;
BatteryDevices battery_devices;
OutputDevices output_devices;
// TAS related variables
ButtonParams tas_button_params;
StickParams tas_stick_params;
ButtonDevices tas_button_devices;
StickDevices tas_stick_devices;
mutable std::mutex mutex;
std::unordered_map<int, ControllerUpdateCallback> callback_list;
int last_callback_key = 0;
// Stores the current status of all controller input
ControllerStatus controller;
};
} // namespace Core::HID

View file

@ -0,0 +1,459 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included
#include <algorithm>
#include <fmt/format.h>
#include "core/hid/emulated_devices.h"
#include "core/hid/input_converter.h"
namespace Core::HID {
EmulatedDevices::EmulatedDevices() = default;
EmulatedDevices::~EmulatedDevices() = default;
void EmulatedDevices::ReloadFromSettings() {
ReloadInput();
}
void EmulatedDevices::ReloadInput() {
// If you load any device here add the equivalent to the UnloadInput() function
std::size_t key_index = 0;
for (auto& mouse_device : mouse_button_devices) {
Common::ParamPackage mouse_params;
mouse_params.Set("engine", "mouse");
mouse_params.Set("button", static_cast<int>(key_index));
mouse_device = Common::Input::CreateDevice<Common::Input::InputDevice>(mouse_params);
key_index++;
}
mouse_stick_device = Common::Input::CreateDeviceFromString<Common::Input::InputDevice>(
"engine:mouse,axis_x:0,axis_y:1");
// First two axis are reserved for mouse position
key_index = 2;
for (auto& mouse_device : mouse_analog_devices) {
Common::ParamPackage mouse_params;
mouse_params.Set("engine", "mouse");
mouse_params.Set("axis", static_cast<int>(key_index));
mouse_device = Common::Input::CreateDevice<Common::Input::InputDevice>(mouse_params);
key_index++;
}
key_index = 0;
for (auto& keyboard_device : keyboard_devices) {
// Keyboard keys are only mapped on port 1, pad 0
Common::ParamPackage keyboard_params;
keyboard_params.Set("engine", "keyboard");
keyboard_params.Set("button", static_cast<int>(key_index));
keyboard_params.Set("port", 1);
keyboard_params.Set("pad", 0);
keyboard_device = Common::Input::CreateDevice<Common::Input::InputDevice>(keyboard_params);
key_index++;
}
key_index = 0;
for (auto& keyboard_device : keyboard_modifier_devices) {
// Keyboard moddifiers are only mapped on port 1, pad 1
Common::ParamPackage keyboard_params;
keyboard_params.Set("engine", "keyboard");
keyboard_params.Set("button", static_cast<int>(key_index));
keyboard_params.Set("port", 1);
keyboard_params.Set("pad", 1);
keyboard_device = Common::Input::CreateDevice<Common::Input::InputDevice>(keyboard_params);
key_index++;
}
for (std::size_t index = 0; index < mouse_button_devices.size(); ++index) {
if (!mouse_button_devices[index]) {
continue;
}
mouse_button_devices[index]->SetCallback({
.on_change =
[this, index](const Common::Input::CallbackStatus& callback) {
SetMouseButton(callback, index);
},
});
}
for (std::size_t index = 0; index < mouse_analog_devices.size(); ++index) {
if (!mouse_analog_devices[index]) {
continue;
}
mouse_analog_devices[index]->SetCallback({
.on_change =
[this, index](const Common::Input::CallbackStatus& callback) {
SetMouseAnalog(callback, index);
},
});
}
if (mouse_stick_device) {
mouse_stick_device->SetCallback({
.on_change =
[this](const Common::Input::CallbackStatus& callback) { SetMouseStick(callback); },
});
}
for (std::size_t index = 0; index < keyboard_devices.size(); ++index) {
if (!keyboard_devices[index]) {
continue;
}
keyboard_devices[index]->SetCallback({
.on_change =
[this, index](const Common::Input::CallbackStatus& callback) {
SetKeyboardButton(callback, index);
},
});
}
for (std::size_t index = 0; index < keyboard_modifier_devices.size(); ++index) {
if (!keyboard_modifier_devices[index]) {
continue;
}
keyboard_modifier_devices[index]->SetCallback({
.on_change =
[this, index](const Common::Input::CallbackStatus& callback) {
SetKeyboardModifier(callback, index);
},
});
}
}
void EmulatedDevices::UnloadInput() {
for (auto& button : mouse_button_devices) {
button.reset();
}
for (auto& analog : mouse_analog_devices) {
analog.reset();
}
mouse_stick_device.reset();
for (auto& button : keyboard_devices) {
button.reset();
}
for (auto& button : keyboard_modifier_devices) {
button.reset();
}
}
void EmulatedDevices::EnableConfiguration() {
is_configuring = true;
SaveCurrentConfig();
}
void EmulatedDevices::DisableConfiguration() {
is_configuring = false;
}
bool EmulatedDevices::IsConfiguring() const {
return is_configuring;
}
void EmulatedDevices::SaveCurrentConfig() {
if (!is_configuring) {
return;
}
}
void EmulatedDevices::RestoreConfig() {
if (!is_configuring) {
return;
}
ReloadFromSettings();
}
void EmulatedDevices::SetKeyboardButton(const Common::Input::CallbackStatus& callback,
std::size_t index) {
if (index >= device_status.keyboard_values.size()) {
return;
}
std::lock_guard lock{mutex};
bool value_changed = false;
const auto new_status = TransformToButton(callback);
auto& current_status = device_status.keyboard_values[index];
current_status.toggle = new_status.toggle;
// Update button status with current status
if (!current_status.toggle) {
current_status.locked = false;
if (current_status.value != new_status.value) {
current_status.value = new_status.value;
value_changed = true;
}
} else {
// Toggle button and lock status
if (new_status.value && !current_status.locked) {
current_status.locked = true;
current_status.value = !current_status.value;
value_changed = true;
}
// Unlock button, ready for next press
if (!new_status.value && current_status.locked) {
current_status.locked = false;
}
}
if (!value_changed) {
return;
}
if (is_configuring) {
TriggerOnChange(DeviceTriggerType::Keyboard);
return;
}
// Index should be converted from NativeKeyboard to KeyboardKeyIndex
UpdateKey(index, current_status.value);
TriggerOnChange(DeviceTriggerType::Keyboard);
}
void EmulatedDevices::UpdateKey(std::size_t key_index, bool status) {
constexpr std::size_t KEYS_PER_BYTE = 8;
auto& entry = device_status.keyboard_state.key[key_index / KEYS_PER_BYTE];
const u8 mask = static_cast<u8>(1 << (key_index % KEYS_PER_BYTE));
if (status) {
entry = entry | mask;
} else {
entry = static_cast<u8>(entry & ~mask);
}
}
void EmulatedDevices::SetKeyboardModifier(const Common::Input::CallbackStatus& callback,
std::size_t index) {
if (index >= device_status.keyboard_moddifier_values.size()) {
return;
}
std::lock_guard lock{mutex};
bool value_changed = false;
const auto new_status = TransformToButton(callback);
auto& current_status = device_status.keyboard_moddifier_values[index];
current_status.toggle = new_status.toggle;
// Update button status with current
if (!current_status.toggle) {
current_status.locked = false;
if (current_status.value != new_status.value) {
current_status.value = new_status.value;
value_changed = true;
}
} else {
// Toggle button and lock status
if (new_status.value && !current_status.locked) {
current_status.locked = true;
current_status.value = !current_status.value;
value_changed = true;
}
// Unlock button ready for next press
if (!new_status.value && current_status.locked) {
current_status.locked = false;
}
}
if (!value_changed) {
return;
}
if (is_configuring) {
TriggerOnChange(DeviceTriggerType::KeyboardModdifier);
return;
}
switch (index) {
case Settings::NativeKeyboard::LeftControl:
case Settings::NativeKeyboard::RightControl:
device_status.keyboard_moddifier_state.control.Assign(current_status.value);
break;
case Settings::NativeKeyboard::LeftShift:
case Settings::NativeKeyboard::RightShift:
device_status.keyboard_moddifier_state.shift.Assign(current_status.value);
break;
case Settings::NativeKeyboard::LeftAlt:
device_status.keyboard_moddifier_state.left_alt.Assign(current_status.value);
break;
case Settings::NativeKeyboard::RightAlt:
device_status.keyboard_moddifier_state.right_alt.Assign(current_status.value);
break;
case Settings::NativeKeyboard::CapsLock:
device_status.keyboard_moddifier_state.caps_lock.Assign(current_status.value);
break;
case Settings::NativeKeyboard::ScrollLock:
device_status.keyboard_moddifier_state.scroll_lock.Assign(current_status.value);
break;
case Settings::NativeKeyboard::NumLock:
device_status.keyboard_moddifier_state.num_lock.Assign(current_status.value);
break;
}
TriggerOnChange(DeviceTriggerType::KeyboardModdifier);
}
void EmulatedDevices::SetMouseButton(const Common::Input::CallbackStatus& callback,
std::size_t index) {
if (index >= device_status.mouse_button_values.size()) {
return;
}
std::lock_guard lock{mutex};
bool value_changed = false;
const auto new_status = TransformToButton(callback);
auto& current_status = device_status.mouse_button_values[index];
current_status.toggle = new_status.toggle;
// Update button status with current
if (!current_status.toggle) {
current_status.locked = false;
if (current_status.value != new_status.value) {
current_status.value = new_status.value;
value_changed = true;
}
} else {
// Toggle button and lock status
if (new_status.value && !current_status.locked) {
current_status.locked = true;
current_status.value = !current_status.value;
value_changed = true;
}
// Unlock button ready for next press
if (!new_status.value && current_status.locked) {
current_status.locked = false;
}
}
if (!value_changed) {
return;
}
if (is_configuring) {
TriggerOnChange(DeviceTriggerType::Mouse);
return;
}
switch (index) {
case Settings::NativeMouseButton::Left:
device_status.mouse_button_state.left.Assign(current_status.value);
break;
case Settings::NativeMouseButton::Right:
device_status.mouse_button_state.right.Assign(current_status.value);
break;
case Settings::NativeMouseButton::Middle:
device_status.mouse_button_state.middle.Assign(current_status.value);
break;
case Settings::NativeMouseButton::Forward:
device_status.mouse_button_state.forward.Assign(current_status.value);
break;
case Settings::NativeMouseButton::Back:
device_status.mouse_button_state.back.Assign(current_status.value);
break;
}
TriggerOnChange(DeviceTriggerType::Mouse);
}
void EmulatedDevices::SetMouseAnalog(const Common::Input::CallbackStatus& callback,
std::size_t index) {
if (index >= device_status.mouse_analog_values.size()) {
return;
}
std::lock_guard lock{mutex};
const auto analog_value = TransformToAnalog(callback);
device_status.mouse_analog_values[index] = analog_value;
if (is_configuring) {
device_status.mouse_position_state = {};
TriggerOnChange(DeviceTriggerType::Mouse);
return;
}
switch (index) {
case Settings::NativeMouseWheel::X:
device_status.mouse_wheel_state.x = static_cast<s32>(analog_value.value);
break;
case Settings::NativeMouseWheel::Y:
device_status.mouse_wheel_state.y = static_cast<s32>(analog_value.value);
break;
}
TriggerOnChange(DeviceTriggerType::Mouse);
}
void EmulatedDevices::SetMouseStick(const Common::Input::CallbackStatus& callback) {
std::lock_guard lock{mutex};
const auto touch_value = TransformToTouch(callback);
device_status.mouse_stick_value = touch_value;
if (is_configuring) {
device_status.mouse_position_state = {};
TriggerOnChange(DeviceTriggerType::Mouse);
return;
}
device_status.mouse_position_state.x = touch_value.x.value;
device_status.mouse_position_state.y = touch_value.y.value;
TriggerOnChange(DeviceTriggerType::Mouse);
}
KeyboardValues EmulatedDevices::GetKeyboardValues() const {
return device_status.keyboard_values;
}
KeyboardModifierValues EmulatedDevices::GetKeyboardModdifierValues() const {
return device_status.keyboard_moddifier_values;
}
MouseButtonValues EmulatedDevices::GetMouseButtonsValues() const {
return device_status.mouse_button_values;
}
KeyboardKey EmulatedDevices::GetKeyboard() const {
return device_status.keyboard_state;
}
KeyboardModifier EmulatedDevices::GetKeyboardModifier() const {
return device_status.keyboard_moddifier_state;
}
MouseButton EmulatedDevices::GetMouseButtons() const {
return device_status.mouse_button_state;
}
MousePosition EmulatedDevices::GetMousePosition() const {
return device_status.mouse_position_state;
}
AnalogStickState EmulatedDevices::GetMouseWheel() const {
return device_status.mouse_wheel_state;
}
void EmulatedDevices::TriggerOnChange(DeviceTriggerType type) {
for (const auto& poller_pair : callback_list) {
const InterfaceUpdateCallback& poller = poller_pair.second;
if (poller.on_change) {
poller.on_change(type);
}
}
}
int EmulatedDevices::SetCallback(InterfaceUpdateCallback update_callback) {
std::lock_guard lock{mutex};
callback_list.insert_or_assign(last_callback_key, std::move(update_callback));
return last_callback_key++;
}
void EmulatedDevices::DeleteCallback(int key) {
std::lock_guard lock{mutex};
const auto& iterator = callback_list.find(key);
if (iterator == callback_list.end()) {
LOG_ERROR(Input, "Tried to delete non-existent callback {}", key);
return;
}
callback_list.erase(iterator);
}
} // namespace Core::HID

View file

@ -0,0 +1,210 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <mutex>
#include <unordered_map>
#include "common/common_types.h"
#include "common/input.h"
#include "common/param_package.h"
#include "common/settings.h"
#include "core/hid/hid_types.h"
namespace Core::HID {
using KeyboardDevices = std::array<std::unique_ptr<Common::Input::InputDevice>,
Settings::NativeKeyboard::NumKeyboardKeys>;
using KeyboardModifierDevices = std::array<std::unique_ptr<Common::Input::InputDevice>,
Settings::NativeKeyboard::NumKeyboardMods>;
using MouseButtonDevices = std::array<std::unique_ptr<Common::Input::InputDevice>,
Settings::NativeMouseButton::NumMouseButtons>;
using MouseAnalogDevices = std::array<std::unique_ptr<Common::Input::InputDevice>,
Settings::NativeMouseWheel::NumMouseWheels>;
using MouseStickDevice = std::unique_ptr<Common::Input::InputDevice>;
using MouseButtonParams =
std::array<Common::ParamPackage, Settings::NativeMouseButton::NumMouseButtons>;
using KeyboardValues =
std::array<Common::Input::ButtonStatus, Settings::NativeKeyboard::NumKeyboardKeys>;
using KeyboardModifierValues =
std::array<Common::Input::ButtonStatus, Settings::NativeKeyboard::NumKeyboardMods>;
using MouseButtonValues =
std::array<Common::Input::ButtonStatus, Settings::NativeMouseButton::NumMouseButtons>;
using MouseAnalogValues =
std::array<Common::Input::AnalogStatus, Settings::NativeMouseWheel::NumMouseWheels>;
using MouseStickValue = Common::Input::TouchStatus;
struct MousePosition {
f32 x;
f32 y;
};
struct DeviceStatus {
// Data from input_common
KeyboardValues keyboard_values{};
KeyboardModifierValues keyboard_moddifier_values{};
MouseButtonValues mouse_button_values{};
MouseAnalogValues mouse_analog_values{};
MouseStickValue mouse_stick_value{};
// Data for HID serices
KeyboardKey keyboard_state{};
KeyboardModifier keyboard_moddifier_state{};
MouseButton mouse_button_state{};
MousePosition mouse_position_state{};
AnalogStickState mouse_wheel_state{};
};
enum class DeviceTriggerType {
Keyboard,
KeyboardModdifier,
Mouse,
};
struct InterfaceUpdateCallback {
std::function<void(DeviceTriggerType)> on_change;
};
class EmulatedDevices {
public:
/**
* Contains all input data related to external devices that aren't necesarily a controller
* This includes devices such as the keyboard or mouse
*/
explicit EmulatedDevices();
~EmulatedDevices();
YUZU_NON_COPYABLE(EmulatedDevices);
YUZU_NON_MOVEABLE(EmulatedDevices);
/// Removes all callbacks created from input devices
void UnloadInput();
/**
* Sets the emulated devices into configuring mode
* This prevents the modification of the HID state of the emulated devices by input commands
*/
void EnableConfiguration();
/// Returns the emulated devices into normal mode, allowing the modification of the HID state
void DisableConfiguration();
/// Returns true if the emulated device is in configuring mode
bool IsConfiguring() const;
/// Reload all input devices
void ReloadInput();
/// Overrides current mapped devices with the stored configuration and reloads all input devices
void ReloadFromSettings();
/// Saves the current mapped configuration
void SaveCurrentConfig();
/// Reverts any mapped changes made that weren't saved
void RestoreConfig();
/// Returns the latest status of button input from the keyboard with parameters
KeyboardValues GetKeyboardValues() const;
/// Returns the latest status of button input from the keyboard modifiers with parameters
KeyboardModifierValues GetKeyboardModdifierValues() const;
/// Returns the latest status of button input from the mouse with parameters
MouseButtonValues GetMouseButtonsValues() const;
/// Returns the latest status of button input from the keyboard
KeyboardKey GetKeyboard() const;
/// Returns the latest status of button input from the keyboard modifiers
KeyboardModifier GetKeyboardModifier() const;
/// Returns the latest status of button input from the mouse
MouseButton GetMouseButtons() const;
/// Returns the latest mouse coordinates
MousePosition GetMousePosition() const;
/// Returns the latest mouse wheel change
AnalogStickState GetMouseWheel() const;
/**
* Adds a callback to the list of events
* @param update_callback InterfaceUpdateCallback that will be triggered
* @return an unique key corresponding to the callback index in the list
*/
int SetCallback(InterfaceUpdateCallback update_callback);
/**
* Removes a callback from the list stopping any future events to this object
* @param key Key corresponding to the callback index in the list
*/
void DeleteCallback(int key);
private:
/// Helps assigning a value to keyboard_state
void UpdateKey(std::size_t key_index, bool status);
/**
* Updates the touch status of the keyboard device
* @param callback A CallbackStatus containing the key status
* @param index key ID to be updated
*/
void SetKeyboardButton(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Updates the keyboard status of the keyboard device
* @param callback A CallbackStatus containing the modifier key status
* @param index modifier key ID to be updated
*/
void SetKeyboardModifier(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Updates the mouse button status of the mouse device
* @param callback A CallbackStatus containing the button status
* @param index Button ID to be updated
*/
void SetMouseButton(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Updates the mouse wheel status of the mouse device
* @param callback A CallbackStatus containing the wheel status
* @param index wheel ID to be updated
*/
void SetMouseAnalog(const Common::Input::CallbackStatus& callback, std::size_t index);
/**
* Updates the mouse position status of the mouse device
* @param callback A CallbackStatus containing the position status
*/
void SetMouseStick(const Common::Input::CallbackStatus& callback);
/**
* Triggers a callback that something has changed on the device status
* @param type Input type of the event to trigger
*/
void TriggerOnChange(DeviceTriggerType type);
bool is_configuring{false};
KeyboardDevices keyboard_devices;
KeyboardModifierDevices keyboard_modifier_devices;
MouseButtonDevices mouse_button_devices;
MouseAnalogDevices mouse_analog_devices;
MouseStickDevice mouse_stick_device;
mutable std::mutex mutex;
std::unordered_map<int, InterfaceUpdateCallback> callback_list;
int last_callback_key = 0;
// Stores the current status of all external device input
DeviceStatus device_status;
};
} // namespace Core::HID

214
src/core/hid/hid_core.cpp Normal file
View file

@ -0,0 +1,214 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/hid/emulated_console.h"
#include "core/hid/emulated_controller.h"
#include "core/hid/emulated_devices.h"
#include "core/hid/hid_core.h"
namespace Core::HID {
HIDCore::HIDCore()
: player_1{std::make_unique<EmulatedController>(NpadIdType::Player1)},
player_2{std::make_unique<EmulatedController>(NpadIdType::Player2)},
player_3{std::make_unique<EmulatedController>(NpadIdType::Player3)},
player_4{std::make_unique<EmulatedController>(NpadIdType::Player4)},
player_5{std::make_unique<EmulatedController>(NpadIdType::Player5)},
player_6{std::make_unique<EmulatedController>(NpadIdType::Player6)},
player_7{std::make_unique<EmulatedController>(NpadIdType::Player7)},
player_8{std::make_unique<EmulatedController>(NpadIdType::Player8)},
other{std::make_unique<EmulatedController>(NpadIdType::Other)},
handheld{std::make_unique<EmulatedController>(NpadIdType::Handheld)},
console{std::make_unique<EmulatedConsole>()}, devices{std::make_unique<EmulatedDevices>()} {}
HIDCore::~HIDCore() = default;
EmulatedController* HIDCore::GetEmulatedController(NpadIdType npad_id_type) {
switch (npad_id_type) {
case NpadIdType::Player1:
return player_1.get();
case NpadIdType::Player2:
return player_2.get();
case NpadIdType::Player3:
return player_3.get();
case NpadIdType::Player4:
return player_4.get();
case NpadIdType::Player5:
return player_5.get();
case NpadIdType::Player6:
return player_6.get();
case NpadIdType::Player7:
return player_7.get();
case NpadIdType::Player8:
return player_8.get();
case NpadIdType::Other:
return other.get();
case NpadIdType::Handheld:
return handheld.get();
case NpadIdType::Invalid:
default:
UNREACHABLE_MSG("Invalid NpadIdType={}", npad_id_type);
return nullptr;
}
}
const EmulatedController* HIDCore::GetEmulatedController(NpadIdType npad_id_type) const {
switch (npad_id_type) {
case NpadIdType::Player1:
return player_1.get();
case NpadIdType::Player2:
return player_2.get();
case NpadIdType::Player3:
return player_3.get();
case NpadIdType::Player4:
return player_4.get();
case NpadIdType::Player5:
return player_5.get();
case NpadIdType::Player6:
return player_6.get();
case NpadIdType::Player7:
return player_7.get();
case NpadIdType::Player8:
return player_8.get();
case NpadIdType::Other:
return other.get();
case NpadIdType::Handheld:
return handheld.get();
case NpadIdType::Invalid:
default:
UNREACHABLE_MSG("Invalid NpadIdType={}", npad_id_type);
return nullptr;
}
}
EmulatedConsole* HIDCore::GetEmulatedConsole() {
return console.get();
}
const EmulatedConsole* HIDCore::GetEmulatedConsole() const {
return console.get();
}
EmulatedDevices* HIDCore::GetEmulatedDevices() {
return devices.get();
}
const EmulatedDevices* HIDCore::GetEmulatedDevices() const {
return devices.get();
}
EmulatedController* HIDCore::GetEmulatedControllerByIndex(std::size_t index) {
return GetEmulatedController(IndexToNpadIdType(index));
}
const EmulatedController* HIDCore::GetEmulatedControllerByIndex(std::size_t index) const {
return GetEmulatedController(IndexToNpadIdType(index));
}
void HIDCore::SetSupportedStyleTag(NpadStyleTag style_tag) {
supported_style_tag.raw = style_tag.raw;
player_1->SetSupportedNpadStyleTag(supported_style_tag);
player_2->SetSupportedNpadStyleTag(supported_style_tag);
player_3->SetSupportedNpadStyleTag(supported_style_tag);
player_4->SetSupportedNpadStyleTag(supported_style_tag);
player_5->SetSupportedNpadStyleTag(supported_style_tag);
player_6->SetSupportedNpadStyleTag(supported_style_tag);
player_7->SetSupportedNpadStyleTag(supported_style_tag);
player_8->SetSupportedNpadStyleTag(supported_style_tag);
other->SetSupportedNpadStyleTag(supported_style_tag);
handheld->SetSupportedNpadStyleTag(supported_style_tag);
}
NpadStyleTag HIDCore::GetSupportedStyleTag() const {
return supported_style_tag;
}
s8 HIDCore::GetPlayerCount() const {
s8 active_players = 0;
for (std::size_t player_index = 0; player_index < available_controllers - 2; ++player_index) {
const auto* const controller = GetEmulatedControllerByIndex(player_index);
if (controller->IsConnected()) {
active_players++;
}
}
return active_players;
}
NpadIdType HIDCore::GetFirstNpadId() const {
for (std::size_t player_index = 0; player_index < available_controllers; ++player_index) {
const auto* const controller = GetEmulatedControllerByIndex(player_index);
if (controller->IsConnected()) {
return controller->GetNpadIdType();
}
}
return NpadIdType::Player1;
}
NpadIdType HIDCore::GetFirstDisconnectedNpadId() const {
for (std::size_t player_index = 0; player_index < available_controllers; ++player_index) {
const auto* const controller = GetEmulatedControllerByIndex(player_index);
if (!controller->IsConnected()) {
return controller->GetNpadIdType();
}
}
return NpadIdType::Player1;
}
void HIDCore::EnableAllControllerConfiguration() {
player_1->EnableConfiguration();
player_2->EnableConfiguration();
player_3->EnableConfiguration();
player_4->EnableConfiguration();
player_5->EnableConfiguration();
player_6->EnableConfiguration();
player_7->EnableConfiguration();
player_8->EnableConfiguration();
other->EnableConfiguration();
handheld->EnableConfiguration();
}
void HIDCore::DisableAllControllerConfiguration() {
player_1->DisableConfiguration();
player_2->DisableConfiguration();
player_3->DisableConfiguration();
player_4->DisableConfiguration();
player_5->DisableConfiguration();
player_6->DisableConfiguration();
player_7->DisableConfiguration();
player_8->DisableConfiguration();
other->DisableConfiguration();
handheld->DisableConfiguration();
}
void HIDCore::ReloadInputDevices() {
player_1->ReloadFromSettings();
player_2->ReloadFromSettings();
player_3->ReloadFromSettings();
player_4->ReloadFromSettings();
player_5->ReloadFromSettings();
player_6->ReloadFromSettings();
player_7->ReloadFromSettings();
player_8->ReloadFromSettings();
other->ReloadFromSettings();
handheld->ReloadFromSettings();
console->ReloadFromSettings();
devices->ReloadFromSettings();
}
void HIDCore::UnloadInputDevices() {
player_1->UnloadInput();
player_2->UnloadInput();
player_3->UnloadInput();
player_4->UnloadInput();
player_5->UnloadInput();
player_6->UnloadInput();
player_7->UnloadInput();
player_8->UnloadInput();
other->UnloadInput();
handheld->UnloadInput();
console->UnloadInput();
devices->UnloadInput();
}
} // namespace Core::HID

82
src/core/hid/hid_core.h Normal file
View file

@ -0,0 +1,82 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include "core/hid/hid_types.h"
namespace Core::HID {
class EmulatedConsole;
class EmulatedController;
class EmulatedDevices;
} // namespace Core::HID
namespace Core::HID {
class HIDCore {
public:
explicit HIDCore();
~HIDCore();
YUZU_NON_COPYABLE(HIDCore);
YUZU_NON_MOVEABLE(HIDCore);
EmulatedController* GetEmulatedController(NpadIdType npad_id_type);
const EmulatedController* GetEmulatedController(NpadIdType npad_id_type) const;
EmulatedController* GetEmulatedControllerByIndex(std::size_t index);
const EmulatedController* GetEmulatedControllerByIndex(std::size_t index) const;
EmulatedConsole* GetEmulatedConsole();
const EmulatedConsole* GetEmulatedConsole() const;
EmulatedDevices* GetEmulatedDevices();
const EmulatedDevices* GetEmulatedDevices() const;
void SetSupportedStyleTag(NpadStyleTag style_tag);
NpadStyleTag GetSupportedStyleTag() const;
/// Counts the connected players from P1-P8
s8 GetPlayerCount() const;
/// Returns the first connected npad id
NpadIdType GetFirstNpadId() const;
/// Returns the first disconnected npad id
NpadIdType GetFirstDisconnectedNpadId() const;
/// Sets all emulated controllers into configuring mode.
void EnableAllControllerConfiguration();
/// Sets all emulated controllers into normal mode.
void DisableAllControllerConfiguration();
/// Reloads all input devices from settings
void ReloadInputDevices();
/// Removes all callbacks from input common
void UnloadInputDevices();
/// Number of emulated controllers
static constexpr std::size_t available_controllers{10};
private:
std::unique_ptr<EmulatedController> player_1;
std::unique_ptr<EmulatedController> player_2;
std::unique_ptr<EmulatedController> player_3;
std::unique_ptr<EmulatedController> player_4;
std::unique_ptr<EmulatedController> player_5;
std::unique_ptr<EmulatedController> player_6;
std::unique_ptr<EmulatedController> player_7;
std::unique_ptr<EmulatedController> player_8;
std::unique_ptr<EmulatedController> other;
std::unique_ptr<EmulatedController> handheld;
std::unique_ptr<EmulatedConsole> console;
std::unique_ptr<EmulatedDevices> devices;
NpadStyleTag supported_style_tag{NpadStyleSet::All};
};
} // namespace Core::HID

635
src/core/hid/hid_types.h Normal file
View file

@ -0,0 +1,635 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/point.h"
#include "common/uuid.h"
namespace Core::HID {
enum class DeviceIndex : u8 {
Left = 0,
Right = 1,
None = 2,
MaxDeviceIndex = 3,
};
// This is nn::hid::NpadButton
enum class NpadButton : u64 {
None = 0,
A = 1U << 0,
B = 1U << 1,
X = 1U << 2,
Y = 1U << 3,
StickL = 1U << 4,
StickR = 1U << 5,
L = 1U << 6,
R = 1U << 7,
ZL = 1U << 8,
ZR = 1U << 9,
Plus = 1U << 10,
Minus = 1U << 11,
Left = 1U << 12,
Up = 1U << 13,
Right = 1U << 14,
Down = 1U << 15,
StickLLeft = 1U << 16,
StickLUp = 1U << 17,
StickLRight = 1U << 18,
StickLDown = 1U << 19,
StickRLeft = 1U << 20,
StickRUp = 1U << 21,
StickRRight = 1U << 22,
StickRDown = 1U << 23,
LeftSL = 1U << 24,
LeftSR = 1U << 25,
RightSL = 1U << 26,
RightSR = 1U << 27,
Palma = 1U << 28,
Verification = 1U << 29,
HandheldLeftB = 1U << 30,
LagonCLeft = 1U << 31,
LagonCUp = 1ULL << 32,
LagonCRight = 1ULL << 33,
LagonCDown = 1ULL << 34,
All = 0xFFFFFFFFFFFFFFFFULL,
};
DECLARE_ENUM_FLAG_OPERATORS(NpadButton);
enum class KeyboardKeyIndex : u32 {
A = 4,
B = 5,
C = 6,
D = 7,
E = 8,
F = 9,
G = 10,
H = 11,
I = 12,
J = 13,
K = 14,
L = 15,
M = 16,
N = 17,
O = 18,
P = 19,
Q = 20,
R = 21,
S = 22,
T = 23,
U = 24,
V = 25,
W = 26,
X = 27,
Y = 28,
Z = 29,
D1 = 30,
D2 = 31,
D3 = 32,
D4 = 33,
D5 = 34,
D6 = 35,
D7 = 36,
D8 = 37,
D9 = 38,
D0 = 39,
Return = 40,
Escape = 41,
Backspace = 42,
Tab = 43,
Space = 44,
Minus = 45,
Plus = 46,
OpenBracket = 47,
CloseBracket = 48,
Pipe = 49,
Tilde = 50,
Semicolon = 51,
Quote = 52,
Backquote = 53,
Comma = 54,
Period = 55,
Slash = 56,
CapsLock = 57,
F1 = 58,
F2 = 59,
F3 = 60,
F4 = 61,
F5 = 62,
F6 = 63,
F7 = 64,
F8 = 65,
F9 = 66,
F10 = 67,
F11 = 68,
F12 = 69,
PrintScreen = 70,
ScrollLock = 71,
Pause = 72,
Insert = 73,
Home = 74,
PageUp = 75,
Delete = 76,
End = 77,
PageDown = 78,
RightArrow = 79,
LeftArrow = 80,
DownArrow = 81,
UpArrow = 82,
NumLock = 83,
NumPadDivide = 84,
NumPadMultiply = 85,
NumPadSubtract = 86,
NumPadAdd = 87,
NumPadEnter = 88,
NumPad1 = 89,
NumPad2 = 90,
NumPad3 = 91,
NumPad4 = 92,
NumPad5 = 93,
NumPad6 = 94,
NumPad7 = 95,
NumPad8 = 96,
NumPad9 = 97,
NumPad0 = 98,
NumPadDot = 99,
Backslash = 100,
Application = 101,
Power = 102,
NumPadEquals = 103,
F13 = 104,
F14 = 105,
F15 = 106,
F16 = 107,
F17 = 108,
F18 = 109,
F19 = 110,
F20 = 111,
F21 = 112,
F22 = 113,
F23 = 114,
F24 = 115,
NumPadComma = 133,
Ro = 135,
KatakanaHiragana = 136,
Yen = 137,
Henkan = 138,
Muhenkan = 139,
NumPadCommaPc98 = 140,
HangulEnglish = 144,
Hanja = 145,
Katakana = 146,
Hiragana = 147,
ZenkakuHankaku = 148,
LeftControl = 224,
LeftShift = 225,
LeftAlt = 226,
LeftGui = 227,
RightControl = 228,
RightShift = 229,
RightAlt = 230,
RightGui = 231,
};
// This is nn::hid::NpadIdType
enum class NpadIdType : u32 {
Player1 = 0x0,
Player2 = 0x1,
Player3 = 0x2,
Player4 = 0x3,
Player5 = 0x4,
Player6 = 0x5,
Player7 = 0x6,
Player8 = 0x7,
Other = 0x10,
Handheld = 0x20,
Invalid = 0xFFFFFFFF,
};
// This is nn::hid::NpadStyleIndex
enum class NpadStyleIndex : u8 {
None = 0,
ProController = 3,
Handheld = 4,
HandheldNES = 4,
JoyconDual = 5,
JoyconLeft = 6,
JoyconRight = 7,
GameCube = 8,
Pokeball = 9,
NES = 10,
SNES = 12,
N64 = 13,
SegaGenesis = 14,
SystemExt = 32,
System = 33,
MaxNpadType = 34,
};
// This is nn::hid::NpadStyleSet
enum class NpadStyleSet : u32 {
None = 0,
Fullkey = 1U << 0,
Handheld = 1U << 1,
JoyDual = 1U << 2,
JoyLeft = 1U << 3,
JoyRight = 1U << 4,
Gc = 1U << 5,
Palma = 1U << 6,
Lark = 1U << 7,
HandheldLark = 1U << 8,
Lucia = 1U << 9,
Lagoon = 1U << 10,
Lager = 1U << 11,
SystemExt = 1U << 29,
System = 1U << 30,
All = 0xFFFFFFFFU,
};
static_assert(sizeof(NpadStyleSet) == 4, "NpadStyleSet is an invalid size");
// This is nn::hid::VibrationDevicePosition
enum class VibrationDevicePosition : u32 {
None = 0,
Left = 1,
Right = 2,
};
// This is nn::hid::VibrationDeviceType
enum class VibrationDeviceType : u32 {
Unknown = 0,
LinearResonantActuator = 1,
GcErm = 2,
};
// This is nn::hid::VibrationGcErmCommand
enum class VibrationGcErmCommand : u64 {
Stop = 0,
Start = 1,
StopHard = 2,
};
// This is nn::hid::NpadStyleTag
struct NpadStyleTag {
union {
NpadStyleSet raw{};
BitField<0, 1, u32> fullkey;
BitField<1, 1, u32> handheld;
BitField<2, 1, u32> joycon_dual;
BitField<3, 1, u32> joycon_left;
BitField<4, 1, u32> joycon_right;
BitField<5, 1, u32> gamecube;
BitField<6, 1, u32> palma;
BitField<7, 1, u32> lark;
BitField<8, 1, u32> handheld_lark;
BitField<9, 1, u32> lucia;
BitField<10, 1, u32> lagoon;
BitField<11, 1, u32> lager;
BitField<29, 1, u32> system_ext;
BitField<30, 1, u32> system;
};
};
static_assert(sizeof(NpadStyleTag) == 4, "NpadStyleTag is an invalid size");
// This is nn::hid::TouchAttribute
struct TouchAttribute {
union {
u32 raw{};
BitField<0, 1, u32> start_touch;
BitField<1, 1, u32> end_touch;
};
};
static_assert(sizeof(TouchAttribute) == 0x4, "TouchAttribute is an invalid size");
// This is nn::hid::TouchState
struct TouchState {
u64 delta_time;
TouchAttribute attribute;
u32 finger;
Common::Point<u32> position;
u32 diameter_x;
u32 diameter_y;
u32 rotation_angle;
};
static_assert(sizeof(TouchState) == 0x28, "Touchstate is an invalid size");
// This is nn::hid::NpadControllerColor
struct NpadControllerColor {
u32 body;
u32 button;
};
static_assert(sizeof(NpadControllerColor) == 8, "NpadControllerColor is an invalid size");
// This is nn::hid::AnalogStickState
struct AnalogStickState {
s32 x;
s32 y;
};
static_assert(sizeof(AnalogStickState) == 8, "AnalogStickState is an invalid size");
// This is nn::hid::server::NpadGcTriggerState
struct NpadGcTriggerState {
s64 sampling_number{};
s32 left{};
s32 right{};
};
static_assert(sizeof(NpadGcTriggerState) == 0x10, "NpadGcTriggerState is an invalid size");
// This is nn::hid::system::NpadBatteryLevel
using NpadBatteryLevel = u32;
static_assert(sizeof(NpadBatteryLevel) == 0x4, "NpadBatteryLevel is an invalid size");
// This is nn::hid::system::NpadPowerInfo
struct NpadPowerInfo {
bool is_powered;
bool is_charging;
INSERT_PADDING_BYTES(0x6);
NpadBatteryLevel battery_level;
};
static_assert(sizeof(NpadPowerInfo) == 0xC, "NpadPowerInfo is an invalid size");
struct LedPattern {
explicit LedPattern(u64 light1, u64 light2, u64 light3, u64 light4) {
position1.Assign(light1);
position2.Assign(light2);
position3.Assign(light3);
position4.Assign(light4);
}
union {
u64 raw{};
BitField<0, 1, u64> position1;
BitField<1, 1, u64> position2;
BitField<2, 1, u64> position3;
BitField<3, 1, u64> position4;
};
};
struct NpadButtonState {
union {
NpadButton raw{};
// Buttons
BitField<0, 1, u64> a;
BitField<1, 1, u64> b;
BitField<2, 1, u64> x;
BitField<3, 1, u64> y;
BitField<4, 1, u64> stick_l;
BitField<5, 1, u64> stick_r;
BitField<6, 1, u64> l;
BitField<7, 1, u64> r;
BitField<8, 1, u64> zl;
BitField<9, 1, u64> zr;
BitField<10, 1, u64> plus;
BitField<11, 1, u64> minus;
// D-Pad
BitField<12, 1, u64> left;
BitField<13, 1, u64> up;
BitField<14, 1, u64> right;
BitField<15, 1, u64> down;
// Left JoyStick
BitField<16, 1, u64> stick_l_left;
BitField<17, 1, u64> stick_l_up;
BitField<18, 1, u64> stick_l_right;
BitField<19, 1, u64> stick_l_down;
// Right JoyStick
BitField<20, 1, u64> stick_r_left;
BitField<21, 1, u64> stick_r_up;
BitField<22, 1, u64> stick_r_right;
BitField<23, 1, u64> stick_r_down;
BitField<24, 1, u64> left_sl;
BitField<25, 1, u64> left_sr;
BitField<26, 1, u64> right_sl;
BitField<27, 1, u64> right_sr;
BitField<28, 1, u64> palma;
BitField<29, 1, u64> verification;
BitField<30, 1, u64> handheld_left_b;
BitField<31, 1, u64> lagon_c_left;
BitField<32, 1, u64> lagon_c_up;
BitField<33, 1, u64> lagon_c_right;
BitField<34, 1, u64> lagon_c_down;
};
};
static_assert(sizeof(NpadButtonState) == 0x8, "NpadButtonState has incorrect size.");
// This is nn::hid::DebugPadButton
struct DebugPadButton {
union {
u32 raw{};
BitField<0, 1, u32> a;
BitField<1, 1, u32> b;
BitField<2, 1, u32> x;
BitField<3, 1, u32> y;
BitField<4, 1, u32> l;
BitField<5, 1, u32> r;
BitField<6, 1, u32> zl;
BitField<7, 1, u32> zr;
BitField<8, 1, u32> plus;
BitField<9, 1, u32> minus;
BitField<10, 1, u32> d_left;
BitField<11, 1, u32> d_up;
BitField<12, 1, u32> d_right;
BitField<13, 1, u32> d_down;
};
};
static_assert(sizeof(DebugPadButton) == 0x4, "DebugPadButton is an invalid size");
// This is nn::hid::ConsoleSixAxisSensorHandle
struct ConsoleSixAxisSensorHandle {
u8 unknown_1;
u8 unknown_2;
INSERT_PADDING_BYTES_NOINIT(2);
};
static_assert(sizeof(ConsoleSixAxisSensorHandle) == 4,
"ConsoleSixAxisSensorHandle is an invalid size");
// This is nn::hid::SixAxisSensorHandle
struct SixAxisSensorHandle {
NpadStyleIndex npad_type;
u8 npad_id;
DeviceIndex device_index;
INSERT_PADDING_BYTES_NOINIT(1);
};
static_assert(sizeof(SixAxisSensorHandle) == 4, "SixAxisSensorHandle is an invalid size");
struct SixAxisSensorFusionParameters {
f32 parameter1;
f32 parameter2;
};
static_assert(sizeof(SixAxisSensorFusionParameters) == 8,
"SixAxisSensorFusionParameters is an invalid size");
// This is nn::hid::VibrationDeviceHandle
struct VibrationDeviceHandle {
NpadStyleIndex npad_type;
u8 npad_id;
DeviceIndex device_index;
INSERT_PADDING_BYTES_NOINIT(1);
};
static_assert(sizeof(VibrationDeviceHandle) == 4, "SixAxisSensorHandle is an invalid size");
// This is nn::hid::VibrationValue
struct VibrationValue {
f32 low_amplitude;
f32 low_frequency;
f32 high_amplitude;
f32 high_frequency;
};
static_assert(sizeof(VibrationValue) == 0x10, "VibrationValue has incorrect size.");
// This is nn::hid::VibrationDeviceInfo
struct VibrationDeviceInfo {
VibrationDeviceType type{};
VibrationDevicePosition position{};
};
static_assert(sizeof(VibrationDeviceInfo) == 0x8, "VibrationDeviceInfo has incorrect size.");
// This is nn::hid::KeyboardModifier
struct KeyboardModifier {
union {
u32 raw{};
BitField<0, 1, u32> control;
BitField<1, 1, u32> shift;
BitField<2, 1, u32> left_alt;
BitField<3, 1, u32> right_alt;
BitField<4, 1, u32> gui;
BitField<8, 1, u32> caps_lock;
BitField<9, 1, u32> scroll_lock;
BitField<10, 1, u32> num_lock;
BitField<11, 1, u32> katakana;
BitField<12, 1, u32> hiragana;
};
};
static_assert(sizeof(KeyboardModifier) == 0x4, "KeyboardModifier is an invalid size");
// This is nn::hid::KeyboardAttribute
struct KeyboardAttribute {
union {
u32 raw{};
BitField<0, 1, u32> is_connected;
};
};
static_assert(sizeof(KeyboardAttribute) == 0x4, "KeyboardAttribute is an invalid size");
// This is nn::hid::KeyboardKey
struct KeyboardKey {
// This should be a 256 bit flag
std::array<u8, 32> key;
};
static_assert(sizeof(KeyboardKey) == 0x20, "KeyboardKey is an invalid size");
// This is nn::hid::MouseButton
struct MouseButton {
union {
u32_le raw{};
BitField<0, 1, u32> left;
BitField<1, 1, u32> right;
BitField<2, 1, u32> middle;
BitField<3, 1, u32> forward;
BitField<4, 1, u32> back;
};
};
static_assert(sizeof(MouseButton) == 0x4, "MouseButton is an invalid size");
// This is nn::hid::MouseAttribute
struct MouseAttribute {
union {
u32 raw{};
BitField<0, 1, u32> transferable;
BitField<1, 1, u32> is_connected;
};
};
static_assert(sizeof(MouseAttribute) == 0x4, "MouseAttribute is an invalid size");
// This is nn::hid::detail::MouseState
struct MouseState {
s64 sampling_number;
s32 x;
s32 y;
s32 delta_x;
s32 delta_y;
// Axis Order in HW is switched for the wheel
s32 delta_wheel_y;
s32 delta_wheel_x;
MouseButton button;
MouseAttribute attribute;
};
static_assert(sizeof(MouseState) == 0x28, "MouseState is an invalid size");
/// Converts a NpadIdType to an array index.
constexpr size_t NpadIdTypeToIndex(NpadIdType npad_id_type) {
switch (npad_id_type) {
case NpadIdType::Player1:
return 0;
case NpadIdType::Player2:
return 1;
case NpadIdType::Player3:
return 2;
case NpadIdType::Player4:
return 3;
case NpadIdType::Player5:
return 4;
case NpadIdType::Player6:
return 5;
case NpadIdType::Player7:
return 6;
case NpadIdType::Player8:
return 7;
case NpadIdType::Handheld:
return 8;
case NpadIdType::Other:
return 9;
default:
return 0;
}
}
/// Converts an array index to a NpadIdType
constexpr NpadIdType IndexToNpadIdType(size_t index) {
switch (index) {
case 0:
return NpadIdType::Player1;
case 1:
return NpadIdType::Player2;
case 2:
return NpadIdType::Player3;
case 3:
return NpadIdType::Player4;
case 4:
return NpadIdType::Player5;
case 5:
return NpadIdType::Player6;
case 6:
return NpadIdType::Player7;
case 7:
return NpadIdType::Player8;
case 8:
return NpadIdType::Handheld;
case 9:
return NpadIdType::Other;
default:
return NpadIdType::Invalid;
}
}
} // namespace Core::HID

View file

@ -0,0 +1,383 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included
#include <random>
#include "common/input.h"
#include "core/hid/input_converter.h"
namespace Core::HID {
Common::Input::BatteryStatus TransformToBattery(const Common::Input::CallbackStatus& callback) {
Common::Input::BatteryStatus battery{Common::Input::BatteryStatus::None};
switch (callback.type) {
case Common::Input::InputType::Analog:
case Common::Input::InputType::Trigger: {
const auto value = TransformToTrigger(callback).analog.value;
battery = Common::Input::BatteryLevel::Empty;
if (value > 0.2f) {
battery = Common::Input::BatteryLevel::Critical;
}
if (value > 0.4f) {
battery = Common::Input::BatteryLevel::Low;
}
if (value > 0.6f) {
battery = Common::Input::BatteryLevel::Medium;
}
if (value > 0.8f) {
battery = Common::Input::BatteryLevel::Full;
}
if (value >= 1.0f) {
battery = Common::Input::BatteryLevel::Charging;
}
break;
}
case Common::Input::InputType::Button:
battery = callback.button_status.value ? Common::Input::BatteryLevel::Charging
: Common::Input::BatteryLevel::Critical;
break;
case Common::Input::InputType::Battery:
battery = callback.battery_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to battery not implemented", callback.type);
break;
}
return battery;
}
Common::Input::ButtonStatus TransformToButton(const Common::Input::CallbackStatus& callback) {
Common::Input::ButtonStatus status{};
switch (callback.type) {
case Common::Input::InputType::Analog:
case Common::Input::InputType::Trigger:
status.value = TransformToTrigger(callback).pressed.value;
break;
case Common::Input::InputType::Button:
status = callback.button_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to button not implemented", callback.type);
break;
}
if (status.inverted) {
status.value = !status.value;
}
return status;
}
Common::Input::MotionStatus TransformToMotion(const Common::Input::CallbackStatus& callback) {
Common::Input::MotionStatus status{};
switch (callback.type) {
case Common::Input::InputType::Button: {
Common::Input::AnalogProperties properties{
.deadzone = 0.0f,
.range = 1.0f,
.offset = 0.0f,
};
status.delta_timestamp = 5000;
status.force_update = true;
status.accel.x = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.accel.y = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.accel.z = {
.value = 0.0f,
.raw_value = -1.0f,
.properties = properties,
};
status.gyro.x = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.gyro.y = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
status.gyro.z = {
.value = 0.0f,
.raw_value = 0.0f,
.properties = properties,
};
if (TransformToButton(callback).value) {
std::random_device device;
std::mt19937 gen(device());
std::uniform_int_distribution<s16> distribution(-1000, 1000);
status.accel.x.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.accel.y.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.accel.z.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.x.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.y.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
status.gyro.z.raw_value = static_cast<f32>(distribution(gen)) * 0.001f;
}
break;
}
case Common::Input::InputType::Motion:
status = callback.motion_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to motion not implemented", callback.type);
break;
}
SanitizeAnalog(status.accel.x, false);
SanitizeAnalog(status.accel.y, false);
SanitizeAnalog(status.accel.z, false);
SanitizeAnalog(status.gyro.x, false);
SanitizeAnalog(status.gyro.y, false);
SanitizeAnalog(status.gyro.z, false);
return status;
}
Common::Input::StickStatus TransformToStick(const Common::Input::CallbackStatus& callback) {
Common::Input::StickStatus status{};
switch (callback.type) {
case Common::Input::InputType::Stick:
status = callback.stick_status;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to stick not implemented", callback.type);
break;
}
SanitizeStick(status.x, status.y, true);
const auto& properties_x = status.x.properties;
const auto& properties_y = status.y.properties;
const float x = status.x.value;
const float y = status.y.value;
// Set directional buttons
status.right = x > properties_x.threshold;
status.left = x < -properties_x.threshold;
status.up = y > properties_y.threshold;
status.down = y < -properties_y.threshold;
return status;
}
Common::Input::TouchStatus TransformToTouch(const Common::Input::CallbackStatus& callback) {
Common::Input::TouchStatus status{};
switch (callback.type) {
case Common::Input::InputType::Touch:
status = callback.touch_status;
break;
case Common::Input::InputType::Stick:
status.x = callback.stick_status.x;
status.y = callback.stick_status.y;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to touch not implemented", callback.type);
break;
}
SanitizeAnalog(status.x, true);
SanitizeAnalog(status.y, true);
float& x = status.x.value;
float& y = status.y.value;
// Adjust if value is inverted
x = status.x.properties.inverted ? 1.0f + x : x;
y = status.y.properties.inverted ? 1.0f + y : y;
// clamp value
x = std::clamp(x, 0.0f, 1.0f);
y = std::clamp(y, 0.0f, 1.0f);
if (status.pressed.inverted) {
status.pressed.value = !status.pressed.value;
}
return status;
}
Common::Input::TriggerStatus TransformToTrigger(const Common::Input::CallbackStatus& callback) {
Common::Input::TriggerStatus status{};
float& raw_value = status.analog.raw_value;
bool calculate_button_value = true;
switch (callback.type) {
case Common::Input::InputType::Analog:
status.analog.properties = callback.analog_status.properties;
raw_value = callback.analog_status.raw_value;
break;
case Common::Input::InputType::Button:
status.analog.properties.range = 1.0f;
status.analog.properties.inverted = callback.button_status.inverted;
raw_value = callback.button_status.value ? 1.0f : 0.0f;
break;
case Common::Input::InputType::Trigger:
status = callback.trigger_status;
calculate_button_value = false;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to trigger not implemented", callback.type);
break;
}
SanitizeAnalog(status.analog, true);
const auto& properties = status.analog.properties;
float& value = status.analog.value;
// Set button status
if (calculate_button_value) {
status.pressed.value = value > properties.threshold;
}
// Adjust if value is inverted
value = properties.inverted ? 1.0f + value : value;
// clamp value
value = std::clamp(value, 0.0f, 1.0f);
return status;
}
Common::Input::AnalogStatus TransformToAnalog(const Common::Input::CallbackStatus& callback) {
Common::Input::AnalogStatus status{};
switch (callback.type) {
case Common::Input::InputType::Analog:
status.properties = callback.analog_status.properties;
status.raw_value = callback.analog_status.raw_value;
break;
default:
LOG_ERROR(Input, "Conversion from type {} to analog not implemented", callback.type);
break;
}
SanitizeAnalog(status, false);
// Adjust if value is inverted
status.value = status.properties.inverted ? -status.value : status.value;
return status;
}
void SanitizeAnalog(Common::Input::AnalogStatus& analog, bool clamp_value) {
const auto& properties = analog.properties;
float& raw_value = analog.raw_value;
float& value = analog.value;
if (!std::isnormal(raw_value)) {
raw_value = 0;
}
// Apply center offset
raw_value -= properties.offset;
// Set initial values to be formated
value = raw_value;
// Calculate vector size
const float r = std::abs(value);
// Return zero if value is smaller than the deadzone
if (r <= properties.deadzone || properties.deadzone == 1.0f) {
analog.value = 0;
return;
}
// Adjust range of value
const float deadzone_factor =
1.0f / r * (r - properties.deadzone) / (1.0f - properties.deadzone);
value = value * deadzone_factor / properties.range;
// Invert direction if needed
if (properties.inverted) {
value = -value;
}
// Clamp value
if (clamp_value) {
value = std::clamp(value, -1.0f, 1.0f);
}
}
void SanitizeStick(Common::Input::AnalogStatus& analog_x, Common::Input::AnalogStatus& analog_y,
bool clamp_value) {
const auto& properties_x = analog_x.properties;
const auto& properties_y = analog_y.properties;
float& raw_x = analog_x.raw_value;
float& raw_y = analog_y.raw_value;
float& x = analog_x.value;
float& y = analog_y.value;
if (!std::isnormal(raw_x)) {
raw_x = 0;
}
if (!std::isnormal(raw_y)) {
raw_y = 0;
}
// Apply center offset
raw_x += properties_x.offset;
raw_y += properties_y.offset;
// Apply X scale correction from offset
if (std::abs(properties_x.offset) < 0.5f) {
if (raw_x > 0) {
raw_x /= 1 + properties_x.offset;
} else {
raw_x /= 1 - properties_x.offset;
}
}
// Apply Y scale correction from offset
if (std::abs(properties_y.offset) < 0.5f) {
if (raw_y > 0) {
raw_y /= 1 + properties_y.offset;
} else {
raw_y /= 1 - properties_y.offset;
}
}
// Invert direction if needed
raw_x = properties_x.inverted ? -raw_x : raw_x;
raw_y = properties_y.inverted ? -raw_y : raw_y;
// Set initial values to be formated
x = raw_x;
y = raw_y;
// Calculate vector size
float r = x * x + y * y;
r = std::sqrt(r);
// TODO(German77): Use deadzone and range of both axis
// Return zero if values are smaller than the deadzone
if (r <= properties_x.deadzone || properties_x.deadzone >= 1.0f) {
x = 0;
y = 0;
return;
}
// Adjust range of joystick
const float deadzone_factor =
1.0f / r * (r - properties_x.deadzone) / (1.0f - properties_x.deadzone);
x = x * deadzone_factor / properties_x.range;
y = y * deadzone_factor / properties_x.range;
r = r * deadzone_factor / properties_x.range;
// Normalize joystick
if (clamp_value && r > 1.0f) {
x /= r;
y /= r;
}
}
} // namespace Core::HID

View file

@ -0,0 +1,96 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included
#pragma once
namespace Common::Input {
struct CallbackStatus;
enum class BatteryLevel : u32;
using BatteryStatus = BatteryLevel;
struct AnalogStatus;
struct ButtonStatus;
struct MotionStatus;
struct StickStatus;
struct TouchStatus;
struct TriggerStatus;
}; // namespace Common::Input
namespace Core::HID {
/**
* Converts raw input data into a valid battery status.
*
* @param callback Supported callbacks: Analog, Battery, Trigger.
* @return A valid BatteryStatus object.
*/
Common::Input::BatteryStatus TransformToBattery(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid button status. Applies invert properties to the output.
*
* @param callback Supported callbacks: Analog, Button, Trigger.
* @return A valid TouchStatus object.
*/
Common::Input::ButtonStatus TransformToButton(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid motion status.
*
* @param callback Supported callbacks: Motion.
* @return A valid TouchStatus object.
*/
Common::Input::MotionStatus TransformToMotion(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid stick status. Applies offset, deadzone, range and invert
* properties to the output.
*
* @param callback Supported callbacks: Stick.
* @return A valid StickStatus object.
*/
Common::Input::StickStatus TransformToStick(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid touch status.
*
* @param callback Supported callbacks: Touch.
* @return A valid TouchStatus object.
*/
Common::Input::TouchStatus TransformToTouch(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid trigger status. Applies offset, deadzone, range and
* invert properties to the output. Button status uses the threshold property if necessary.
*
* @param callback Supported callbacks: Analog, Button, Trigger.
* @return A valid TriggerStatus object.
*/
Common::Input::TriggerStatus TransformToTrigger(const Common::Input::CallbackStatus& callback);
/**
* Converts raw input data into a valid analog status. Applies offset, deadzone, range and
* invert properties to the output.
*
* @param callback Supported callbacks: Analog.
* @return A valid AnalogStatus object.
*/
Common::Input::AnalogStatus TransformToAnalog(const Common::Input::CallbackStatus& callback);
/**
* Converts raw analog data into a valid analog value
* @param analog An analog object containing raw data and properties
* @param clamp_value determines if the value needs to be clamped between -1.0f and 1.0f.
*/
void SanitizeAnalog(Common::Input::AnalogStatus& analog, bool clamp_value);
/**
* Converts raw stick data into a valid stick value
* @param analog_x raw analog data and properties for the x-axis
* @param analog_y raw analog data and properties for the y-axis
* @param clamp_value bool that determines if the value needs to be clamped into the unit circle.
*/
void SanitizeStick(Common::Input::AnalogStatus& analog_x, Common::Input::AnalogStatus& analog_y,
bool clamp_value);
} // namespace Core::HID

View file

@ -3,7 +3,8 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include "core/core.h" #include "core/core.h"
#include "core/frontend/input_interpreter.h" #include "core/hid/hid_types.h"
#include "core/hid/input_interpreter.h"
#include "core/hle/service/hid/controllers/npad.h" #include "core/hle/service/hid/controllers/npad.h"
#include "core/hle/service/hid/hid.h" #include "core/hle/service/hid/hid.h"
#include "core/hle/service/sm/sm.h" #include "core/hle/service/sm/sm.h"
@ -19,7 +20,7 @@ InputInterpreter::InputInterpreter(Core::System& system)
InputInterpreter::~InputInterpreter() = default; InputInterpreter::~InputInterpreter() = default;
void InputInterpreter::PollInput() { void InputInterpreter::PollInput() {
const u32 button_state = npad.GetAndResetPressState(); const auto button_state = npad.GetAndResetPressState();
previous_index = current_index; previous_index = current_index;
current_index = (current_index + 1) % button_states.size(); current_index = (current_index + 1) % button_states.size();
@ -31,32 +32,30 @@ void InputInterpreter::ResetButtonStates() {
previous_index = 0; previous_index = 0;
current_index = 0; current_index = 0;
button_states[0] = 0xFFFFFFFF; button_states[0] = Core::HID::NpadButton::All;
for (std::size_t i = 1; i < button_states.size(); ++i) { for (std::size_t i = 1; i < button_states.size(); ++i) {
button_states[i] = 0; button_states[i] = Core::HID::NpadButton::None;
} }
} }
bool InputInterpreter::IsButtonPressed(HIDButton button) const { bool InputInterpreter::IsButtonPressed(Core::HID::NpadButton button) const {
return (button_states[current_index] & (1U << static_cast<u8>(button))) != 0; return True(button_states[current_index] & button);
} }
bool InputInterpreter::IsButtonPressedOnce(HIDButton button) const { bool InputInterpreter::IsButtonPressedOnce(Core::HID::NpadButton button) const {
const bool current_press = const bool current_press = True(button_states[current_index] & button);
(button_states[current_index] & (1U << static_cast<u8>(button))) != 0; const bool previous_press = True(button_states[previous_index] & button);
const bool previous_press =
(button_states[previous_index] & (1U << static_cast<u8>(button))) != 0;
return current_press && !previous_press; return current_press && !previous_press;
} }
bool InputInterpreter::IsButtonHeld(HIDButton button) const { bool InputInterpreter::IsButtonHeld(Core::HID::NpadButton button) const {
u32 held_buttons{button_states[0]}; Core::HID::NpadButton held_buttons{button_states[0]};
for (std::size_t i = 1; i < button_states.size(); ++i) { for (std::size_t i = 1; i < button_states.size(); ++i) {
held_buttons &= button_states[i]; held_buttons &= button_states[i];
} }
return (held_buttons & (1U << static_cast<u8>(button))) != 0; return True(held_buttons & button);
} }

View file

@ -12,46 +12,14 @@ namespace Core {
class System; class System;
} }
namespace Core::HID {
enum class NpadButton : u64;
}
namespace Service::HID { namespace Service::HID {
class Controller_NPad; class Controller_NPad;
} }
enum class HIDButton : u8 {
A,
B,
X,
Y,
LStick,
RStick,
L,
R,
ZL,
ZR,
Plus,
Minus,
DLeft,
DUp,
DRight,
DDown,
LStickLeft,
LStickUp,
LStickRight,
LStickDown,
RStickLeft,
RStickUp,
RStickRight,
RStickDown,
LeftSL,
LeftSR,
RightSL,
RightSR,
};
/** /**
* The InputInterpreter class interfaces with HID to retrieve button press states. * The InputInterpreter class interfaces with HID to retrieve button press states.
* Input is intended to be polled every 50ms so that a button is considered to be * Input is intended to be polled every 50ms so that a button is considered to be
@ -76,7 +44,7 @@ public:
* *
* @returns True when the button is pressed. * @returns True when the button is pressed.
*/ */
[[nodiscard]] bool IsButtonPressed(HIDButton button) const; [[nodiscard]] bool IsButtonPressed(Core::HID::NpadButton button) const;
/** /**
* Checks whether any of the buttons in the parameter list is pressed. * Checks whether any of the buttons in the parameter list is pressed.
@ -85,7 +53,7 @@ public:
* *
* @returns True when at least one of the buttons is pressed. * @returns True when at least one of the buttons is pressed.
*/ */
template <HIDButton... T> template <Core::HID::NpadButton... T>
[[nodiscard]] bool IsAnyButtonPressed() { [[nodiscard]] bool IsAnyButtonPressed() {
return (IsButtonPressed(T) || ...); return (IsButtonPressed(T) || ...);
} }
@ -98,7 +66,7 @@ public:
* *
* @returns True when the button is pressed once. * @returns True when the button is pressed once.
*/ */
[[nodiscard]] bool IsButtonPressedOnce(HIDButton button) const; [[nodiscard]] bool IsButtonPressedOnce(Core::HID::NpadButton button) const;
/** /**
* Checks whether any of the buttons in the parameter list is pressed once. * Checks whether any of the buttons in the parameter list is pressed once.
@ -107,7 +75,7 @@ public:
* *
* @returns True when at least one of the buttons is pressed once. * @returns True when at least one of the buttons is pressed once.
*/ */
template <HIDButton... T> template <Core::HID::NpadButton... T>
[[nodiscard]] bool IsAnyButtonPressedOnce() const { [[nodiscard]] bool IsAnyButtonPressedOnce() const {
return (IsButtonPressedOnce(T) || ...); return (IsButtonPressedOnce(T) || ...);
} }
@ -119,7 +87,7 @@ public:
* *
* @returns True when the button is held down. * @returns True when the button is held down.
*/ */
[[nodiscard]] bool IsButtonHeld(HIDButton button) const; [[nodiscard]] bool IsButtonHeld(Core::HID::NpadButton button) const;
/** /**
* Checks whether any of the buttons in the parameter list is held down. * Checks whether any of the buttons in the parameter list is held down.
@ -128,7 +96,7 @@ public:
* *
* @returns True when at least one of the buttons is held down. * @returns True when at least one of the buttons is held down.
*/ */
template <HIDButton... T> template <Core::HID::NpadButton... T>
[[nodiscard]] bool IsAnyButtonHeld() const { [[nodiscard]] bool IsAnyButtonHeld() const {
return (IsButtonHeld(T) || ...); return (IsButtonHeld(T) || ...);
} }
@ -137,7 +105,7 @@ private:
Service::HID::Controller_NPad& npad; Service::HID::Controller_NPad& npad;
/// Stores 9 consecutive button states polled from HID. /// Stores 9 consecutive button states polled from HID.
std::array<u32, 9> button_states{}; std::array<Core::HID::NpadButton, 9> button_states{};
std::size_t previous_index{}; std::size_t previous_index{};
std::size_t current_index{}; std::size_t current_index{};

View file

@ -2,13 +2,21 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included // Refer to the license.txt file included
#include <random>
#include "common/math_util.h" #include "common/math_util.h"
#include "input_common/motion_input.h" #include "core/hid/motion_input.h"
namespace InputCommon { namespace Core::HID {
MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd) : kp(new_kp), ki(new_ki), kd(new_kd) {} MotionInput::MotionInput() {
// Initialize PID constants with default values
SetPID(0.3f, 0.005f, 0.0f);
}
void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) {
kp = new_kp;
ki = new_ki;
kd = new_kd;
}
void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) { void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
accel = acceleration; accel = acceleration;
@ -65,6 +73,8 @@ void MotionInput::UpdateRotation(u64 elapsed_time) {
rotations += gyro * sample_period; rotations += gyro * sample_period;
} }
// Based on Madgwick's implementation of Mayhony's AHRS algorithm.
// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
void MotionInput::UpdateOrientation(u64 elapsed_time) { void MotionInput::UpdateOrientation(u64 elapsed_time) {
if (!IsCalibrated(0.1f)) { if (!IsCalibrated(0.1f)) {
ResetOrientation(); ResetOrientation();
@ -190,43 +200,6 @@ Common::Vec3f MotionInput::GetRotations() const {
return rotations; return rotations;
} }
Input::MotionStatus MotionInput::GetMotion() const {
const Common::Vec3f gyroscope = GetGyroscope();
const Common::Vec3f accelerometer = GetAcceleration();
const Common::Vec3f rotation = GetRotations();
const std::array<Common::Vec3f, 3> orientation = GetOrientation();
const Common::Quaternion<f32> quaternion = GetQuaternion();
return {accelerometer, gyroscope, rotation, orientation, quaternion};
}
Input::MotionStatus MotionInput::GetRandomMotion(int accel_magnitude, int gyro_magnitude) const {
std::random_device device;
std::mt19937 gen(device());
std::uniform_int_distribution<s16> distribution(-1000, 1000);
const Common::Vec3f gyroscope{
static_cast<f32>(distribution(gen)) * 0.001f,
static_cast<f32>(distribution(gen)) * 0.001f,
static_cast<f32>(distribution(gen)) * 0.001f,
};
const Common::Vec3f accelerometer{
static_cast<f32>(distribution(gen)) * 0.001f,
static_cast<f32>(distribution(gen)) * 0.001f,
static_cast<f32>(distribution(gen)) * 0.001f,
};
constexpr Common::Vec3f rotation;
constexpr std::array orientation{
Common::Vec3f{1.0f, 0.0f, 0.0f},
Common::Vec3f{0.0f, 1.0f, 0.0f},
Common::Vec3f{0.0f, 0.0f, 1.0f},
};
constexpr Common::Quaternion<f32> quaternion{
{0.0f, 0.0f, 0.0f},
1.0f,
};
return {accelerometer * accel_magnitude, gyroscope * gyro_magnitude, rotation, orientation,
quaternion};
}
void MotionInput::ResetOrientation() { void MotionInput::ResetOrientation() {
if (!reset_enabled || only_accelerometer) { if (!reset_enabled || only_accelerometer) {
return; return;
@ -304,4 +277,4 @@ void MotionInput::SetOrientationFromAccelerometer() {
quat = quat.Normalized(); quat = quat.Normalized();
} }
} }
} // namespace InputCommon } // namespace Core::HID

View file

@ -7,13 +7,12 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/quaternion.h" #include "common/quaternion.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/frontend/input.h"
namespace InputCommon { namespace Core::HID {
class MotionInput { class MotionInput {
public: public:
explicit MotionInput(f32 new_kp, f32 new_ki, f32 new_kd); explicit MotionInput();
MotionInput(const MotionInput&) = default; MotionInput(const MotionInput&) = default;
MotionInput& operator=(const MotionInput&) = default; MotionInput& operator=(const MotionInput&) = default;
@ -21,6 +20,7 @@ public:
MotionInput(MotionInput&&) = default; MotionInput(MotionInput&&) = default;
MotionInput& operator=(MotionInput&&) = default; MotionInput& operator=(MotionInput&&) = default;
void SetPID(f32 new_kp, f32 new_ki, f32 new_kd);
void SetAcceleration(const Common::Vec3f& acceleration); void SetAcceleration(const Common::Vec3f& acceleration);
void SetGyroscope(const Common::Vec3f& gyroscope); void SetGyroscope(const Common::Vec3f& gyroscope);
void SetQuaternion(const Common::Quaternion<f32>& quaternion); void SetQuaternion(const Common::Quaternion<f32>& quaternion);
@ -38,9 +38,6 @@ public:
[[nodiscard]] Common::Vec3f GetGyroscope() const; [[nodiscard]] Common::Vec3f GetGyroscope() const;
[[nodiscard]] Common::Vec3f GetRotations() const; [[nodiscard]] Common::Vec3f GetRotations() const;
[[nodiscard]] Common::Quaternion<f32> GetQuaternion() const; [[nodiscard]] Common::Quaternion<f32> GetQuaternion() const;
[[nodiscard]] Input::MotionStatus GetMotion() const;
[[nodiscard]] Input::MotionStatus GetRandomMotion(int accel_magnitude,
int gyro_magnitude) const;
[[nodiscard]] bool IsMoving(f32 sensitivity) const; [[nodiscard]] bool IsMoving(f32 sensitivity) const;
[[nodiscard]] bool IsCalibrated(f32 sensitivity) const; [[nodiscard]] bool IsCalibrated(f32 sensitivity) const;
@ -59,16 +56,32 @@ private:
Common::Vec3f integral_error; Common::Vec3f integral_error;
Common::Vec3f derivative_error; Common::Vec3f derivative_error;
// Quaternion containing the device orientation
Common::Quaternion<f32> quat{{0.0f, 0.0f, -1.0f}, 0.0f}; Common::Quaternion<f32> quat{{0.0f, 0.0f, -1.0f}, 0.0f};
// Number of full rotations in each axis
Common::Vec3f rotations; Common::Vec3f rotations;
// Acceleration vector measurement in G force
Common::Vec3f accel; Common::Vec3f accel;
// Gyroscope vector measurement in radians/s.
Common::Vec3f gyro; Common::Vec3f gyro;
// Vector to be substracted from gyro measurements
Common::Vec3f gyro_drift; Common::Vec3f gyro_drift;
// Minimum gyro amplitude to detect if the device is moving
f32 gyro_threshold = 0.0f; f32 gyro_threshold = 0.0f;
// Number of invalid sequential data
u32 reset_counter = 0; u32 reset_counter = 0;
// If the provided data is invalid the device will be autocalibrated
bool reset_enabled = true; bool reset_enabled = true;
// Use accelerometer values to calculate position
bool only_accelerometer = true; bool only_accelerometer = true;
}; };
} // namespace InputCommon } // namespace Core::HID

View file

@ -9,6 +9,7 @@
#include "core/core.h" #include "core/core.h"
#include "core/hardware_properties.h" #include "core/hardware_properties.h"
#include "core/hle/kernel/init/init_slab_setup.h" #include "core/hle/kernel/init/init_slab_setup.h"
#include "core/hle/kernel/k_code_memory.h"
#include "core/hle/kernel/k_event.h" #include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_memory_layout.h" #include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h" #include "core/hle/kernel/k_memory_manager.h"
@ -32,6 +33,7 @@ namespace Kernel::Init {
HANDLER(KPort, (SLAB_COUNT(KPort)), ##__VA_ARGS__) \ HANDLER(KPort, (SLAB_COUNT(KPort)), ##__VA_ARGS__) \
HANDLER(KSharedMemory, (SLAB_COUNT(KSharedMemory)), ##__VA_ARGS__) \ HANDLER(KSharedMemory, (SLAB_COUNT(KSharedMemory)), ##__VA_ARGS__) \
HANDLER(KTransferMemory, (SLAB_COUNT(KTransferMemory)), ##__VA_ARGS__) \ HANDLER(KTransferMemory, (SLAB_COUNT(KTransferMemory)), ##__VA_ARGS__) \
HANDLER(KCodeMemory, (SLAB_COUNT(KCodeMemory)), ##__VA_ARGS__) \
HANDLER(KSession, (SLAB_COUNT(KSession)), ##__VA_ARGS__) \ HANDLER(KSession, (SLAB_COUNT(KSession)), ##__VA_ARGS__) \
HANDLER(KResourceLimit, (SLAB_COUNT(KResourceLimit)), ##__VA_ARGS__) HANDLER(KResourceLimit, (SLAB_COUNT(KResourceLimit)), ##__VA_ARGS__)

View file

@ -8,6 +8,7 @@
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h" #include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/time_manager.h" #include "core/hle/kernel/time_manager.h"
@ -28,7 +29,7 @@ bool ReadFromUser(Core::System& system, s32* out, VAddr address) {
bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) { bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 value) {
auto& monitor = system.Monitor(); auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex(); const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable. // TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here. // TODO(bunnei): We should call CanAccessAtomic(..) here.
@ -58,7 +59,7 @@ bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 valu
bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) { bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32 new_value) {
auto& monitor = system.Monitor(); auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex(); const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable. // TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here. // TODO(bunnei): We should call CanAccessAtomic(..) here.
@ -85,6 +86,27 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
return true; return true;
} }
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
public:
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// If the thread is waiting on an address arbiter, remove it from the tree.
if (waiting_thread->IsWaitingForAddressArbiter()) {
m_tree->erase(m_tree->iterator_to(*waiting_thread));
waiting_thread->ClearAddressArbiter();
}
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
private:
KAddressArbiter::ThreadTree* m_tree;
};
} // namespace } // namespace
ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) { ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
@ -96,14 +118,14 @@ ResultCode KAddressArbiter::Signal(VAddr addr, s32 count) {
auto it = thread_tree.nfind_light({addr, -1}); auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) && while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) { (it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it); KThread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, ResultSuccess); target_thread->EndWait(ResultSuccess);
ASSERT(target_thread->IsWaitingForAddressArbiter()); ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup(); target_thread->ClearAddressArbiter();
it = thread_tree.erase(it); it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters; ++num_waiters;
} }
} }
@ -129,14 +151,14 @@ ResultCode KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32
auto it = thread_tree.nfind_light({addr, -1}); auto it = thread_tree.nfind_light({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) && while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) { (it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it); KThread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, ResultSuccess); target_thread->EndWait(ResultSuccess);
ASSERT(target_thread->IsWaitingForAddressArbiter()); ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup(); target_thread->ClearAddressArbiter();
it = thread_tree.erase(it); it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters; ++num_waiters;
} }
} }
@ -197,14 +219,14 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) && while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) { (it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it); KThread* target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, ResultSuccess); target_thread->EndWait(ResultSuccess);
ASSERT(target_thread->IsWaitingForAddressArbiter()); ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->Wakeup(); target_thread->ClearAddressArbiter();
it = thread_tree.erase(it); it = thread_tree.erase(it);
target_thread->ClearAddressArbiter();
++num_waiters; ++num_waiters;
} }
} }
@ -214,6 +236,7 @@ ResultCode KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32
ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) { ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
{ {
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout}; KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
@ -224,9 +247,6 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
return ResultTerminationRequested; return ResultTerminationRequested;
} }
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
// Read the value from userspace. // Read the value from userspace.
s32 user_value{}; s32 user_value{};
bool succeeded{}; bool succeeded{};
@ -256,31 +276,20 @@ ResultCode KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement
// Set the arbiter. // Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr); cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread); thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
// Wait for the thread to finish.
cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration); cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
} }
// Cancel the timer wait.
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result. // Get the result.
KSynchronizationObject* dummy{}; return cur_thread->GetWaitResult();
return cur_thread->GetWaitResult(&dummy);
} }
ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) { ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
{ {
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout}; KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};
@ -291,9 +300,6 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
return ResultTerminationRequested; return ResultTerminationRequested;
} }
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
// Read the value from userspace. // Read the value from userspace.
s32 user_value{}; s32 user_value{};
if (!ReadFromUser(system, &user_value, addr)) { if (!ReadFromUser(system, &user_value, addr)) {
@ -316,26 +322,14 @@ ResultCode KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Set the arbiter. // Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr); cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread); thread_tree.insert(*cur_thread);
cur_thread->SetState(ThreadState::Waiting);
// Wait for the thread to finish.
cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration); cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Arbitration);
} }
// Cancel the timer wait.
kernel.TimeManager().UnscheduleTimeEvent(cur_thread);
// Remove from the address arbiter.
{
KScopedSchedulerLock sl(kernel);
if (cur_thread->IsWaitingForAddressArbiter()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearAddressArbiter();
}
}
// Get the result. // Get the result.
KSynchronizationObject* dummy{}; return cur_thread->GetWaitResult();
return cur_thread->GetWaitResult(&dummy);
} }
} // namespace Kernel } // namespace Kernel

View file

@ -170,6 +170,10 @@ public:
} }
} }
const std::string& GetName() const {
return name;
}
private: private:
void RegisterWithKernel(); void RegisterWithKernel();
void UnregisterWithKernel(); void UnregisterWithKernel();

View file

@ -6,6 +6,7 @@
#include "core/hle/kernel/k_class_token.h" #include "core/hle/kernel/k_class_token.h"
#include "core/hle/kernel/k_client_port.h" #include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_client_session.h" #include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_code_memory.h"
#include "core/hle/kernel/k_event.h" #include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_port.h" #include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_process.h"
@ -48,7 +49,7 @@ static_assert(ClassToken<KWritableEvent> == 0b10001001'00000000);
static_assert(ClassToken<KTransferMemory> == 0b10010001'00000000); static_assert(ClassToken<KTransferMemory> == 0b10010001'00000000);
// static_assert(ClassToken<KDeviceAddressSpace> == 0b01100001'00000000); // static_assert(ClassToken<KDeviceAddressSpace> == 0b01100001'00000000);
// static_assert(ClassToken<KSessionRequest> == 0b10100001'00000000); // static_assert(ClassToken<KSessionRequest> == 0b10100001'00000000);
// static_assert(ClassToken<KCodeMemory> == 0b11000001'00000000); static_assert(ClassToken<KCodeMemory> == 0b11000001'00000000);
// Ensure that the token hierarchy is correct. // Ensure that the token hierarchy is correct.
@ -79,7 +80,7 @@ static_assert(ClassToken<KWritableEvent> == ((0b10001001 << 8) | ClassToken<KAut
static_assert(ClassToken<KTransferMemory> == ((0b10010001 << 8) | ClassToken<KAutoObject>)); static_assert(ClassToken<KTransferMemory> == ((0b10010001 << 8) | ClassToken<KAutoObject>));
// static_assert(ClassToken<KDeviceAddressSpace> == ((0b01100001 << 8) | ClassToken<KAutoObject>)); // static_assert(ClassToken<KDeviceAddressSpace> == ((0b01100001 << 8) | ClassToken<KAutoObject>));
// static_assert(ClassToken<KSessionRequest> == ((0b10100001 << 8) | ClassToken<KAutoObject>)); // static_assert(ClassToken<KSessionRequest> == ((0b10100001 << 8) | ClassToken<KAutoObject>));
// static_assert(ClassToken<KCodeMemory> == ((0b11000001 << 8) | ClassToken<KAutoObject>)); static_assert(ClassToken<KCodeMemory> == ((0b11000001 << 8) | ClassToken<KAutoObject>));
// Ensure that the token hierarchy reflects the class hierarchy. // Ensure that the token hierarchy reflects the class hierarchy.

View file

@ -0,0 +1,146 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/common_types.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_code_memory.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_memory_block.h"
#include "core/hle/kernel/k_page_linked_list.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Kernel {
KCodeMemory::KCodeMemory(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, m_lock(kernel_) {}
ResultCode KCodeMemory::Initialize(Core::DeviceMemory& device_memory, VAddr addr, size_t size) {
// Set members.
m_owner = kernel.CurrentProcess();
// Get the owner page table.
auto& page_table = m_owner->PageTable();
// Construct the page group.
KMemoryInfo kBlockInfo = page_table.QueryInfo(addr);
m_page_group = KPageLinkedList(kBlockInfo.GetAddress(), kBlockInfo.GetNumPages());
// Lock the memory.
R_TRY(page_table.LockForCodeMemory(addr, size))
// Clear the memory.
for (const auto& block : m_page_group.Nodes()) {
std::memset(device_memory.GetPointer(block.GetAddress()), 0xFF, block.GetSize());
}
// Set remaining tracking members.
m_address = addr;
m_is_initialized = true;
m_is_owner_mapped = false;
m_is_mapped = false;
// We succeeded.
return ResultSuccess;
}
void KCodeMemory::Finalize() {
// Unlock.
if (!m_is_mapped && !m_is_owner_mapped) {
const size_t size = m_page_group.GetNumPages() * PageSize;
m_owner->PageTable().UnlockForCodeMemory(m_address, size);
}
}
ResultCode KCodeMemory::Map(VAddr address, size_t size) {
// Validate the size.
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
// Lock ourselves.
KScopedLightLock lk(m_lock);
// Ensure we're not already mapped.
R_UNLESS(!m_is_mapped, ResultInvalidState);
// Map the memory.
R_TRY(kernel.CurrentProcess()->PageTable().MapPages(
address, m_page_group, KMemoryState::CodeOut, KMemoryPermission::UserReadWrite));
// Mark ourselves as mapped.
m_is_mapped = true;
return ResultSuccess;
}
ResultCode KCodeMemory::Unmap(VAddr address, size_t size) {
// Validate the size.
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
// Lock ourselves.
KScopedLightLock lk(m_lock);
// Unmap the memory.
R_TRY(kernel.CurrentProcess()->PageTable().UnmapPages(address, m_page_group,
KMemoryState::CodeOut));
// Mark ourselves as unmapped.
m_is_mapped = false;
return ResultSuccess;
}
ResultCode KCodeMemory::MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm) {
// Validate the size.
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
// Lock ourselves.
KScopedLightLock lk(m_lock);
// Ensure we're not already mapped.
R_UNLESS(!m_is_owner_mapped, ResultInvalidState);
// Convert the memory permission.
KMemoryPermission k_perm{};
switch (perm) {
case Svc::MemoryPermission::Read:
k_perm = KMemoryPermission::UserRead;
break;
case Svc::MemoryPermission::ReadExecute:
k_perm = KMemoryPermission::UserReadExecute;
break;
default:
break;
}
// Map the memory.
R_TRY(
m_owner->PageTable().MapPages(address, m_page_group, KMemoryState::GeneratedCode, k_perm));
// Mark ourselves as mapped.
m_is_owner_mapped = true;
return ResultSuccess;
}
ResultCode KCodeMemory::UnmapFromOwner(VAddr address, size_t size) {
// Validate the size.
R_UNLESS(m_page_group.GetNumPages() == Common::DivideUp(size, PageSize), ResultInvalidSize);
// Lock ourselves.
KScopedLightLock lk(m_lock);
// Unmap the memory.
R_TRY(m_owner->PageTable().UnmapPages(address, m_page_group, KMemoryState::GeneratedCode));
// Mark ourselves as unmapped.
m_is_owner_mapped = false;
return ResultSuccess;
}
} // namespace Kernel

View file

@ -0,0 +1,66 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_page_linked_list.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Kernel {
enum class CodeMemoryOperation : u32 {
Map = 0,
MapToOwner = 1,
Unmap = 2,
UnmapFromOwner = 3,
};
class KCodeMemory final
: public KAutoObjectWithSlabHeapAndContainer<KCodeMemory, KAutoObjectWithList> {
KERNEL_AUTOOBJECT_TRAITS(KCodeMemory, KAutoObject);
public:
explicit KCodeMemory(KernelCore& kernel_);
ResultCode Initialize(Core::DeviceMemory& device_memory, VAddr address, size_t size);
void Finalize();
ResultCode Map(VAddr address, size_t size);
ResultCode Unmap(VAddr address, size_t size);
ResultCode MapToOwner(VAddr address, size_t size, Svc::MemoryPermission perm);
ResultCode UnmapFromOwner(VAddr address, size_t size);
bool IsInitialized() const {
return m_is_initialized;
}
static void PostDestroy([[maybe_unused]] uintptr_t arg) {}
KProcess* GetOwner() const {
return m_owner;
}
VAddr GetSourceAddress() const {
return m_address;
}
size_t GetSize() const {
return m_is_initialized ? m_page_group.GetNumPages() * PageSize : 0;
}
private:
KPageLinkedList m_page_group{};
KProcess* m_owner{};
VAddr m_address{};
KLightLock m_lock;
bool m_is_initialized{};
bool m_is_owner_mapped{};
bool m_is_mapped{};
};
} // namespace Kernel

View file

@ -11,6 +11,7 @@
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h" #include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_common.h" #include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/svc_results.h" #include "core/hle/kernel/svc_results.h"
@ -33,7 +34,7 @@ bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero, bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
u32 new_orr_mask) { u32 new_orr_mask) {
auto& monitor = system.Monitor(); auto& monitor = system.Monitor();
const auto current_core = system.CurrentCoreIndex(); const auto current_core = system.Kernel().CurrentPhysicalCoreIndex();
// Load the value from the address. // Load the value from the address.
const auto expected = monitor.ExclusiveRead32(current_core, address); const auto expected = monitor.ExclusiveRead32(current_core, address);
@ -57,6 +58,48 @@ bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero
return true; return true;
} }
class ThreadQueueImplForKConditionVariableWaitForAddress final : public KThreadQueue {
public:
explicit ThreadQueueImplForKConditionVariableWaitForAddress(KernelCore& kernel_)
: KThreadQueue(kernel_) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
class ThreadQueueImplForKConditionVariableWaitConditionVariable final : public KThreadQueue {
private:
KConditionVariable::ThreadTree* m_tree;
public:
explicit ThreadQueueImplForKConditionVariableWaitConditionVariable(
KernelCore& kernel_, KConditionVariable::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
owner->RemoveWaiter(waiting_thread);
}
// If the thread is waiting on a condvar, remove it from the tree.
if (waiting_thread->IsWaitingForConditionVariable()) {
m_tree->erase(m_tree->iterator_to(*waiting_thread));
waiting_thread->ClearConditionVariable();
}
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
} // namespace } // namespace
KConditionVariable::KConditionVariable(Core::System& system_) KConditionVariable::KConditionVariable(Core::System& system_)
@ -78,84 +121,77 @@ ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
// Determine the next tag. // Determine the next tag.
u32 next_value{}; u32 next_value{};
if (next_owner_thread) { if (next_owner_thread != nullptr) {
next_value = next_owner_thread->GetAddressKeyValue(); next_value = next_owner_thread->GetAddressKeyValue();
if (num_waiters > 1) { if (num_waiters > 1) {
next_value |= Svc::HandleWaitMask; next_value |= Svc::HandleWaitMask;
} }
next_owner_thread->SetSyncedObject(nullptr, ResultSuccess);
next_owner_thread->Wakeup();
}
// Write the value to userspace. // Write the value to userspace.
if (!WriteToUser(system, addr, std::addressof(next_value))) { ResultCode result{ResultSuccess};
if (next_owner_thread) { if (WriteToUser(system, addr, std::addressof(next_value))) [[likely]] {
next_owner_thread->SetSyncedObject(nullptr, ResultInvalidCurrentMemory); result = ResultSuccess;
} else {
result = ResultInvalidCurrentMemory;
} }
return ResultInvalidCurrentMemory; // Signal the next owner thread.
} next_owner_thread->EndWait(result);
} return result;
} else {
// Just write the value to userspace.
R_UNLESS(WriteToUser(system, addr, std::addressof(next_value)),
ResultInvalidCurrentMemory);
return ResultSuccess; return ResultSuccess;
} }
}
}
ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) { ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
// Wait for the address. // Wait for the address.
{ KThread* owner_thread{};
KScopedAutoObject<KThread> owner_thread;
ASSERT(owner_thread.IsNull());
{ {
KScopedSchedulerLock sl(kernel); KScopedSchedulerLock sl(kernel);
cur_thread->SetSyncedObject(nullptr, ResultSuccess);
// Check if the thread should terminate. // Check if the thread should terminate.
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested); R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
{
// Read the tag from userspace. // Read the tag from userspace.
u32 test_tag{}; u32 test_tag{};
R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
ResultInvalidCurrentMemory);
// If the tag isn't the handle (with wait mask), we're done. // If the tag isn't the handle (with wait mask), we're done.
R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), ResultSuccess); R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
// Get the lock owner thread. // Get the lock owner thread.
owner_thread = owner_thread = kernel.CurrentProcess()
kernel.CurrentProcess()->GetHandleTable().GetObjectWithoutPseudoHandle<KThread>( ->GetHandleTable()
handle); .GetObjectWithoutPseudoHandle<KThread>(handle)
R_UNLESS(owner_thread.IsNotNull(), ResultInvalidHandle); .ReleasePointerUnsafe();
R_UNLESS(owner_thread != nullptr, ResultInvalidHandle);
// Update the lock. // Update the lock.
cur_thread->SetAddressKey(addr, value); cur_thread->SetAddressKey(addr, value);
owner_thread->AddWaiter(cur_thread); owner_thread->AddWaiter(cur_thread);
cur_thread->SetState(ThreadState::Waiting);
// Begin waiting.
cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar); cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr); cur_thread->SetMutexWaitAddressForDebugging(addr);
} }
}
ASSERT(owner_thread.IsNotNull());
}
// Remove the thread as a waiter from the lock owner. // Close our reference to the owner thread, now that the wait is over.
{ owner_thread->Close();
KScopedSchedulerLock sl(kernel);
KThread* owner_thread = cur_thread->GetLockOwner();
if (owner_thread != nullptr) {
owner_thread->RemoveWaiter(cur_thread);
}
}
// Get the wait result. // Get the wait result.
KSynchronizationObject* dummy{}; return cur_thread->GetWaitResult();
return cur_thread->GetWaitResult(std::addressof(dummy));
} }
KThread* KConditionVariable::SignalImpl(KThread* thread) { void KConditionVariable::SignalImpl(KThread* thread) {
// Check pre-conditions. // Check pre-conditions.
ASSERT(kernel.GlobalSchedulerContext().IsLocked()); ASSERT(kernel.GlobalSchedulerContext().IsLocked());
@ -169,18 +205,16 @@ KThread* KConditionVariable::SignalImpl(KThread* thread) {
// TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable. // TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
// TODO(bunnei): We should call CanAccessAtomic(..) here. // TODO(bunnei): We should call CanAccessAtomic(..) here.
can_access = true; can_access = true;
if (can_access) { if (can_access) [[likely]] {
UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag, UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
Svc::HandleWaitMask); Svc::HandleWaitMask);
} }
} }
KThread* thread_to_close = nullptr; if (can_access) [[likely]] {
if (can_access) {
if (prev_tag == Svc::InvalidHandle) { if (prev_tag == Svc::InvalidHandle) {
// If nobody held the lock previously, we're all good. // If nobody held the lock previously, we're all good.
thread->SetSyncedObject(nullptr, ResultSuccess); thread->EndWait(ResultSuccess);
thread->Wakeup();
} else { } else {
// Get the previous owner. // Get the previous owner.
KThread* owner_thread = kernel.CurrentProcess() KThread* owner_thread = kernel.CurrentProcess()
@ -189,33 +223,22 @@ KThread* KConditionVariable::SignalImpl(KThread* thread) {
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask)) static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
.ReleasePointerUnsafe(); .ReleasePointerUnsafe();
if (owner_thread) { if (owner_thread) [[likely]] {
// Add the thread as a waiter on the owner. // Add the thread as a waiter on the owner.
owner_thread->AddWaiter(thread); owner_thread->AddWaiter(thread);
thread_to_close = owner_thread; owner_thread->Close();
} else { } else {
// The lock was tagged with a thread that doesn't exist. // The lock was tagged with a thread that doesn't exist.
thread->SetSyncedObject(nullptr, ResultInvalidState); thread->EndWait(ResultInvalidState);
thread->Wakeup();
} }
} }
} else { } else {
// If the address wasn't accessible, note so. // If the address wasn't accessible, note so.
thread->SetSyncedObject(nullptr, ResultInvalidCurrentMemory); thread->EndWait(ResultInvalidCurrentMemory);
thread->Wakeup();
} }
return thread_to_close;
} }
void KConditionVariable::Signal(u64 cv_key, s32 count) { void KConditionVariable::Signal(u64 cv_key, s32 count) {
// Prepare for signaling.
constexpr int MaxThreads = 16;
KLinkedList<KThread> thread_list{kernel};
std::array<KThread*, MaxThreads> thread_array;
s32 num_to_close{};
// Perform signaling. // Perform signaling.
s32 num_waiters{}; s32 num_waiters{};
{ {
@ -226,14 +249,7 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
(it->GetConditionVariableKey() == cv_key)) { (it->GetConditionVariableKey() == cv_key)) {
KThread* target_thread = std::addressof(*it); KThread* target_thread = std::addressof(*it);
if (KThread* thread = SignalImpl(target_thread); thread != nullptr) { this->SignalImpl(target_thread);
if (num_to_close < MaxThreads) {
thread_array[num_to_close++] = thread;
} else {
thread_list.push_back(*thread);
}
}
it = thread_tree.erase(it); it = thread_tree.erase(it);
target_thread->ClearConditionVariable(); target_thread->ClearConditionVariable();
++num_waiters; ++num_waiters;
@ -245,27 +261,16 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
WriteToUser(system, cv_key, std::addressof(has_waiter_flag)); WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
} }
} }
// Close threads in the array.
for (auto i = 0; i < num_to_close; ++i) {
thread_array[i]->Close();
}
// Close threads in the list.
for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) {
(*it).Close();
}
} }
ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) { ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
// Prepare to wait. // Prepare to wait.
KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread(); KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKConditionVariableWaitConditionVariable wait_queue(
kernel, std::addressof(thread_tree));
{ {
KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout}; KScopedSchedulerLockAndSleep slp(kernel, cur_thread, timeout);
// Set the synced object.
cur_thread->SetSyncedObject(nullptr, ResultTimedOut);
// Check that the thread isn't terminating. // Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) { if (cur_thread->IsTerminationRequested()) {
@ -290,8 +295,7 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
} }
// Wake up the next owner. // Wake up the next owner.
next_owner_thread->SetSyncedObject(nullptr, ResultSuccess); next_owner_thread->EndWait(ResultSuccess);
next_owner_thread->Wakeup();
} }
// Write to the cv key. // Write to the cv key.
@ -308,40 +312,21 @@ ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout)
} }
} }
// If timeout is zero, time out.
R_UNLESS(timeout != 0, ResultTimedOut);
// Update condition variable tracking. // Update condition variable tracking.
{
cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value); cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
thread_tree.insert(*cur_thread); thread_tree.insert(*cur_thread);
}
// If the timeout is non-zero, set the thread as waiting. // Begin waiting.
if (timeout != 0) { cur_thread->BeginWait(std::addressof(wait_queue));
cur_thread->SetState(ThreadState::Waiting);
cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar); cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
cur_thread->SetMutexWaitAddressForDebugging(addr); cur_thread->SetMutexWaitAddressForDebugging(addr);
} }
}
// Cancel the timer wait. // Get the wait result.
kernel.TimeManager().UnscheduleTimeEvent(cur_thread); return cur_thread->GetWaitResult();
// Remove from the condition variable.
{
KScopedSchedulerLock sl(kernel);
if (KThread* owner = cur_thread->GetLockOwner(); owner != nullptr) {
owner->RemoveWaiter(cur_thread);
}
if (cur_thread->IsWaitingForConditionVariable()) {
thread_tree.erase(thread_tree.iterator_to(*cur_thread));
cur_thread->ClearConditionVariable();
}
}
// Get the result.
KSynchronizationObject* dummy{};
return cur_thread->GetWaitResult(std::addressof(dummy));
} }
} // namespace Kernel } // namespace Kernel

View file

@ -34,7 +34,7 @@ public:
[[nodiscard]] ResultCode Wait(VAddr addr, u64 key, u32 value, s64 timeout); [[nodiscard]] ResultCode Wait(VAddr addr, u64 key, u32 value, s64 timeout);
private: private:
[[nodiscard]] KThread* SignalImpl(KThread* thread); void SignalImpl(KThread* thread);
ThreadTree thread_tree; ThreadTree thread_tree;

View file

@ -13,6 +13,7 @@ ResultCode KHandleTable::Finalize() {
// Get the table and clear our record of it. // Get the table and clear our record of it.
u16 saved_table_size = 0; u16 saved_table_size = 0;
{ {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
std::swap(m_table_size, saved_table_size); std::swap(m_table_size, saved_table_size);
@ -43,6 +44,7 @@ bool KHandleTable::Remove(Handle handle) {
// Find the object and free the entry. // Find the object and free the entry.
KAutoObject* obj = nullptr; KAutoObject* obj = nullptr;
{ {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
if (this->IsValidHandle(handle)) { if (this->IsValidHandle(handle)) {
@ -62,6 +64,7 @@ bool KHandleTable::Remove(Handle handle) {
} }
ResultCode KHandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) { ResultCode KHandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
// Never exceed our capacity. // Never exceed our capacity.
@ -84,6 +87,7 @@ ResultCode KHandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) {
} }
ResultCode KHandleTable::Reserve(Handle* out_handle) { ResultCode KHandleTable::Reserve(Handle* out_handle) {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
// Never exceed our capacity. // Never exceed our capacity.
@ -94,6 +98,7 @@ ResultCode KHandleTable::Reserve(Handle* out_handle) {
} }
void KHandleTable::Unreserve(Handle handle) { void KHandleTable::Unreserve(Handle handle) {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
// Unpack the handle. // Unpack the handle.
@ -112,6 +117,7 @@ void KHandleTable::Unreserve(Handle handle) {
} }
void KHandleTable::Register(Handle handle, KAutoObject* obj, u16 type) { void KHandleTable::Register(Handle handle, KAutoObject* obj, u16 type) {
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
// Unpack the handle. // Unpack the handle.

View file

@ -68,6 +68,7 @@ public:
template <typename T = KAutoObject> template <typename T = KAutoObject>
KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const { KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const {
// Lock and look up in table. // Lock and look up in table.
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
if constexpr (std::is_same_v<T, KAutoObject>) { if constexpr (std::is_same_v<T, KAutoObject>) {
@ -122,6 +123,7 @@ public:
size_t num_opened; size_t num_opened;
{ {
// Lock the table. // Lock the table.
KScopedDisableDispatch dd(kernel);
KScopedSpinLock lk(m_lock); KScopedSpinLock lk(m_lock);
for (num_opened = 0; num_opened < num_handles; num_opened++) { for (num_opened = 0; num_opened < num_handles; num_opened++) {
// Get the current handle. // Get the current handle.

View file

@ -0,0 +1,80 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/hle/kernel/k_light_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/svc_results.h"
namespace Kernel {
namespace {
class ThreadQueueImplForKLightConditionVariable final : public KThreadQueue {
public:
ThreadQueueImplForKLightConditionVariable(KernelCore& kernel_, KThread::WaiterList* wl,
bool term)
: KThreadQueue(kernel_), m_wait_list(wl), m_allow_terminating_thread(term) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Only process waits if we're allowed to.
if (ResultTerminationRequested == wait_result && m_allow_terminating_thread) {
return;
}
// Remove the thread from the waiting thread from the light condition variable.
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
private:
KThread::WaiterList* m_wait_list;
bool m_allow_terminating_thread;
};
} // namespace
void KLightConditionVariable::Wait(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
// Create thread queue.
KThread* owner = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKLightConditionVariable wait_queue(kernel, std::addressof(wait_list),
allow_terminating_thread);
// Sleep the thread.
{
KScopedSchedulerLockAndSleep lk(kernel, owner, timeout);
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
lk.CancelSleep();
return;
}
lock->Unlock();
// Add the thread to the queue.
wait_list.push_back(*owner);
// Begin waiting.
owner->BeginWait(std::addressof(wait_queue));
}
// Re-acquire the lock.
lock->Lock();
}
void KLightConditionVariable::Broadcast() {
KScopedSchedulerLock lk(kernel);
// Signal all threads.
for (auto it = wait_list.begin(); it != wait_list.end(); it = wait_list.erase(it)) {
it->EndWait(ResultSuccess);
}
}
} // namespace Kernel

View file

@ -2,72 +2,24 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
// This file references various implementation details from Atmosphere, an open-source firmware for
// the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel { namespace Kernel {
class KernelCore; class KernelCore;
class KLightLock;
class KLightConditionVariable { class KLightConditionVariable {
public: public:
explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {} explicit KLightConditionVariable(KernelCore& kernel_) : kernel{kernel_} {}
void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true) { void Wait(KLightLock* lock, s64 timeout = -1, bool allow_terminating_thread = true);
WaitImpl(lock, timeout, allow_terminating_thread); void Broadcast();
}
void Broadcast() {
KScopedSchedulerLock lk{kernel};
// Signal all threads.
for (auto& thread : wait_list) {
thread.SetState(ThreadState::Runnable);
}
}
private: private:
void WaitImpl(KLightLock* lock, s64 timeout, bool allow_terminating_thread) {
KThread* owner = GetCurrentThreadPointer(kernel);
// Sleep the thread.
{
KScopedSchedulerLockAndSleep lk{kernel, owner, timeout};
if (!allow_terminating_thread && owner->IsTerminationRequested()) {
lk.CancelSleep();
return;
}
lock->Unlock();
// Set the thread as waiting.
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
// Add the thread to the queue.
wait_list.push_back(GetCurrentThread(kernel));
}
// Remove the thread from the wait list.
{
KScopedSchedulerLock sl{kernel};
wait_list.erase(wait_list.iterator_to(GetCurrentThread(kernel)));
}
// Cancel the task that the sleep setup.
kernel.TimeManager().UnscheduleTimeEvent(owner);
// Re-acquire the lock.
lock->Lock();
}
KernelCore& kernel; KernelCore& kernel;
KThread::WaiterList wait_list{}; KThread::WaiterList wait_list{};
}; };

View file

@ -5,44 +5,59 @@
#include "core/hle/kernel/k_light_lock.h" #include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
namespace Kernel { namespace Kernel {
namespace {
class ThreadQueueImplForKLightLock final : public KThreadQueue {
public:
explicit ThreadQueueImplForKLightLock(KernelCore& kernel_) : KThreadQueue(kernel_) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Remove the thread as a waiter from its owner.
if (KThread* owner = waiting_thread->GetLockOwner(); owner != nullptr) {
owner->RemoveWaiter(waiting_thread);
}
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
} // namespace
void KLightLock::Lock() { void KLightLock::Lock() {
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)); const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
const uintptr_t cur_thread_tag = (cur_thread | 1);
while (true) { while (true) {
uintptr_t old_tag = tag.load(std::memory_order_relaxed); uintptr_t old_tag = tag.load(std::memory_order_relaxed);
while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : old_tag | 1, while (!tag.compare_exchange_weak(old_tag, (old_tag == 0) ? cur_thread : (old_tag | 1),
std::memory_order_acquire)) { std::memory_order_acquire)) {
if ((old_tag | 1) == cur_thread_tag) {
return;
}
} }
if ((old_tag == 0) || ((old_tag | 1) == cur_thread_tag)) { if (old_tag == 0 || this->LockSlowPath(old_tag | 1, cur_thread)) {
break; break;
} }
LockSlowPath(old_tag | 1, cur_thread);
} }
} }
void KLightLock::Unlock() { void KLightLock::Unlock() {
const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel)); const uintptr_t cur_thread = reinterpret_cast<uintptr_t>(GetCurrentThreadPointer(kernel));
uintptr_t expected = cur_thread; uintptr_t expected = cur_thread;
do { if (!tag.compare_exchange_strong(expected, 0, std::memory_order_release)) {
if (expected != cur_thread) { this->UnlockSlowPath(cur_thread);
return UnlockSlowPath(cur_thread);
} }
} while (!tag.compare_exchange_weak(expected, 0, std::memory_order_release));
} }
void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) { bool KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread); KThread* cur_thread = reinterpret_cast<KThread*>(_cur_thread);
ThreadQueueImplForKLightLock wait_queue(kernel);
// Pend the current thread waiting on the owner thread. // Pend the current thread waiting on the owner thread.
{ {
@ -50,7 +65,7 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
// Ensure we actually have locking to do. // Ensure we actually have locking to do.
if (tag.load(std::memory_order_relaxed) != _owner) { if (tag.load(std::memory_order_relaxed) != _owner) {
return; return false;
} }
// Add the current thread as a waiter on the owner. // Add the current thread as a waiter on the owner.
@ -58,22 +73,15 @@ void KLightLock::LockSlowPath(uintptr_t _owner, uintptr_t _cur_thread) {
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag))); cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(tag)));
owner_thread->AddWaiter(cur_thread); owner_thread->AddWaiter(cur_thread);
// Set thread states. // Begin waiting to hold the lock.
cur_thread->SetState(ThreadState::Waiting); cur_thread->BeginWait(std::addressof(wait_queue));
if (owner_thread->IsSuspended()) { if (owner_thread->IsSuspended()) {
owner_thread->ContinueIfHasKernelWaiters(); owner_thread->ContinueIfHasKernelWaiters();
} }
} }
// We're no longer waiting on the lock owner. return true;
{
KScopedSchedulerLock sl{kernel};
if (KThread* owner_thread = cur_thread->GetLockOwner(); owner_thread != nullptr) {
owner_thread->RemoveWaiter(cur_thread);
}
}
} }
void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) { void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
@ -81,22 +89,20 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
// Unlock. // Unlock.
{ {
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl(kernel);
// Get the next owner. // Get the next owner.
s32 num_waiters = 0; s32 num_waiters;
KThread* next_owner = owner_thread->RemoveWaiterByKey( KThread* next_owner = owner_thread->RemoveWaiterByKey(
std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag))); std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(tag)));
// Pass the lock to the next owner. // Pass the lock to the next owner.
uintptr_t next_tag = 0; uintptr_t next_tag = 0;
if (next_owner != nullptr) { if (next_owner != nullptr) {
next_tag = reinterpret_cast<uintptr_t>(next_owner); next_tag =
if (num_waiters > 1) { reinterpret_cast<uintptr_t>(next_owner) | static_cast<uintptr_t>(num_waiters > 1);
next_tag |= 0x1;
}
next_owner->SetState(ThreadState::Runnable); next_owner->EndWait(ResultSuccess);
if (next_owner->IsSuspended()) { if (next_owner->IsSuspended()) {
next_owner->ContinueIfHasKernelWaiters(); next_owner->ContinueIfHasKernelWaiters();
@ -110,7 +116,7 @@ void KLightLock::UnlockSlowPath(uintptr_t _cur_thread) {
} }
// Write the new tag value. // Write the new tag value.
tag.store(next_tag); tag.store(next_tag, std::memory_order_release);
} }
} }

View file

@ -20,7 +20,7 @@ public:
void Unlock(); void Unlock();
void LockSlowPath(uintptr_t owner, uintptr_t cur_thread); bool LockSlowPath(uintptr_t owner, uintptr_t cur_thread);
void UnlockSlowPath(uintptr_t cur_thread); void UnlockSlowPath(uintptr_t cur_thread);

View file

@ -131,6 +131,26 @@ enum class KMemoryPermission : u8 {
UserMask = static_cast<u8>(Svc::MemoryPermission::Read | Svc::MemoryPermission::Write | UserMask = static_cast<u8>(Svc::MemoryPermission::Read | Svc::MemoryPermission::Write |
Svc::MemoryPermission::Execute), Svc::MemoryPermission::Execute),
KernelShift = 3,
KernelRead = Read << KernelShift,
KernelWrite = Write << KernelShift,
KernelExecute = Execute << KernelShift,
NotMapped = (1 << (2 * KernelShift)),
KernelReadWrite = KernelRead | KernelWrite,
KernelReadExecute = KernelRead | KernelExecute,
UserRead = Read | KernelRead,
UserWrite = Write | KernelWrite,
UserExecute = Execute,
UserReadWrite = UserRead | UserWrite,
UserReadExecute = UserRead | UserExecute,
IpcLockChangeMask = NotMapped | UserReadWrite
}; };
DECLARE_ENUM_FLAG_OPERATORS(KMemoryPermission); DECLARE_ENUM_FLAG_OPERATORS(KMemoryPermission);

View file

@ -27,6 +27,10 @@ public:
return num_pages; return num_pages;
} }
constexpr std::size_t GetSize() const {
return GetNumPages() * PageSize;
}
private: private:
u64 addr{}; u64 addr{};
std::size_t num_pages{}; std::size_t num_pages{};

View file

@ -368,6 +368,33 @@ ResultCode KPageTable::UnmapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, st
return ResultSuccess; return ResultSuccess;
} }
ResultCode KPageTable::UnmapProcessMemory(VAddr dst_addr, std::size_t size,
KPageTable& src_page_table, VAddr src_addr) {
std::lock_guard lock{page_table_lock};
const std::size_t num_pages{size / PageSize};
// Check that the memory is mapped in the destination process.
size_t num_allocator_blocks;
R_TRY(CheckMemoryState(&num_allocator_blocks, dst_addr, size, KMemoryState::All,
KMemoryState::SharedCode, KMemoryPermission::UserReadWrite,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
KMemoryAttribute::None));
// Check that the memory is mapped in the source process.
R_TRY(src_page_table.CheckMemoryState(src_addr, size, KMemoryState::FlagCanMapProcess,
KMemoryState::FlagCanMapProcess, KMemoryPermission::None,
KMemoryPermission::None, KMemoryAttribute::All,
KMemoryAttribute::None));
CASCADE_CODE(Operate(dst_addr, num_pages, KMemoryPermission::None, OperationType::Unmap));
// Apply the memory block update.
block_manager->Update(dst_addr, num_pages, KMemoryState::Free, KMemoryPermission::None,
KMemoryAttribute::None);
return ResultSuccess;
}
void KPageTable::MapPhysicalMemory(KPageLinkedList& page_linked_list, VAddr start, VAddr end) { void KPageTable::MapPhysicalMemory(KPageLinkedList& page_linked_list, VAddr start, VAddr end) {
auto node{page_linked_list.Nodes().begin()}; auto node{page_linked_list.Nodes().begin()};
PAddr map_addr{node->GetAddress()}; PAddr map_addr{node->GetAddress()};
@ -685,7 +712,7 @@ ResultCode KPageTable::UnmapPages(VAddr addr, KPageLinkedList& page_linked_list,
return ResultSuccess; return ResultSuccess;
} }
ResultCode KPageTable::SetCodeMemoryPermission(VAddr addr, std::size_t size, ResultCode KPageTable::SetProcessMemoryPermission(VAddr addr, std::size_t size,
KMemoryPermission perm) { KMemoryPermission perm) {
std::lock_guard lock{page_table_lock}; std::lock_guard lock{page_table_lock};
@ -942,6 +969,60 @@ ResultCode KPageTable::UnlockForDeviceAddressSpace(VAddr addr, std::size_t size)
return ResultSuccess; return ResultSuccess;
} }
ResultCode KPageTable::LockForCodeMemory(VAddr addr, std::size_t size) {
std::lock_guard lock{page_table_lock};
KMemoryPermission new_perm = KMemoryPermission::NotMapped | KMemoryPermission::KernelReadWrite;
KMemoryPermission old_perm{};
if (const ResultCode result{CheckMemoryState(
nullptr, &old_perm, nullptr, addr, size, KMemoryState::FlagCanCodeMemory,
KMemoryState::FlagCanCodeMemory, KMemoryPermission::Mask,
KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None)};
result.IsError()) {
return result;
}
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
block_manager->UpdateLock(
addr, size / PageSize,
[](KMemoryBlockManager::iterator block, KMemoryPermission permission) {
block->ShareToDevice(permission);
},
new_perm);
return ResultSuccess;
}
ResultCode KPageTable::UnlockForCodeMemory(VAddr addr, std::size_t size) {
std::lock_guard lock{page_table_lock};
KMemoryPermission new_perm = KMemoryPermission::UserReadWrite;
KMemoryPermission old_perm{};
if (const ResultCode result{CheckMemoryState(
nullptr, &old_perm, nullptr, addr, size, KMemoryState::FlagCanCodeMemory,
KMemoryState::FlagCanCodeMemory, KMemoryPermission::None, KMemoryPermission::None,
KMemoryAttribute::All, KMemoryAttribute::Locked)};
result.IsError()) {
return result;
}
new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
block_manager->UpdateLock(
addr, size / PageSize,
[](KMemoryBlockManager::iterator block, KMemoryPermission permission) {
block->UnshareToDevice(permission);
},
new_perm);
return ResultSuccess;
}
ResultCode KPageTable::InitializeMemoryLayout(VAddr start, VAddr end) { ResultCode KPageTable::InitializeMemoryLayout(VAddr start, VAddr end) {
block_manager = std::make_unique<KMemoryBlockManager>(start, end); block_manager = std::make_unique<KMemoryBlockManager>(start, end);
@ -1231,4 +1312,42 @@ ResultCode KPageTable::CheckMemoryState(KMemoryState* out_state, KMemoryPermissi
return ResultSuccess; return ResultSuccess;
} }
ResultCode KPageTable::CheckMemoryState(size_t* out_blocks_needed, VAddr addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const {
// Get information about the first block.
const VAddr last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it{block_manager->FindIterator(addr)};
KMemoryInfo info = it->GetMemoryInfo();
// If the start address isn't aligned, we need a block.
const size_t blocks_for_start_align =
(Common::AlignDown(addr, PageSize) != info.GetAddress()) ? 1 : 0;
while (true) {
// Validate against the provided masks.
R_TRY(CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
// Break once we're done.
if (last_addr <= info.GetLastAddress()) {
break;
}
// Advance our iterator.
it++;
info = it->GetMemoryInfo();
}
// If the end address isn't aligned, we need a block.
const size_t blocks_for_end_align =
(Common::AlignUp(addr + size, PageSize) != info.GetEndAddress()) ? 1 : 0;
if (out_blocks_needed != nullptr) {
*out_blocks_needed = blocks_for_start_align + blocks_for_end_align;
}
return ResultSuccess;
}
} // namespace Kernel } // namespace Kernel

View file

@ -33,6 +33,8 @@ public:
KMemoryPermission perm); KMemoryPermission perm);
ResultCode MapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size); ResultCode MapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size);
ResultCode UnmapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size); ResultCode UnmapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size);
ResultCode UnmapProcessMemory(VAddr dst_addr, std::size_t size, KPageTable& src_page_table,
VAddr src_addr);
ResultCode MapPhysicalMemory(VAddr addr, std::size_t size); ResultCode MapPhysicalMemory(VAddr addr, std::size_t size);
ResultCode UnmapPhysicalMemory(VAddr addr, std::size_t size); ResultCode UnmapPhysicalMemory(VAddr addr, std::size_t size);
ResultCode UnmapMemory(VAddr addr, std::size_t size); ResultCode UnmapMemory(VAddr addr, std::size_t size);
@ -41,7 +43,7 @@ public:
ResultCode MapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state, ResultCode MapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state,
KMemoryPermission perm); KMemoryPermission perm);
ResultCode UnmapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state); ResultCode UnmapPages(VAddr addr, KPageLinkedList& page_linked_list, KMemoryState state);
ResultCode SetCodeMemoryPermission(VAddr addr, std::size_t size, KMemoryPermission perm); ResultCode SetProcessMemoryPermission(VAddr addr, std::size_t size, KMemoryPermission perm);
KMemoryInfo QueryInfo(VAddr addr); KMemoryInfo QueryInfo(VAddr addr);
ResultCode ReserveTransferMemory(VAddr addr, std::size_t size, KMemoryPermission perm); ResultCode ReserveTransferMemory(VAddr addr, std::size_t size, KMemoryPermission perm);
ResultCode ResetTransferMemory(VAddr addr, std::size_t size); ResultCode ResetTransferMemory(VAddr addr, std::size_t size);
@ -55,6 +57,8 @@ public:
KMemoryPermission perm, PAddr map_addr = 0); KMemoryPermission perm, PAddr map_addr = 0);
ResultCode LockForDeviceAddressSpace(VAddr addr, std::size_t size); ResultCode LockForDeviceAddressSpace(VAddr addr, std::size_t size);
ResultCode UnlockForDeviceAddressSpace(VAddr addr, std::size_t size); ResultCode UnlockForDeviceAddressSpace(VAddr addr, std::size_t size);
ResultCode LockForCodeMemory(VAddr addr, std::size_t size);
ResultCode UnlockForCodeMemory(VAddr addr, std::size_t size);
Common::PageTable& PageTableImpl() { Common::PageTable& PageTableImpl() {
return page_table_impl; return page_table_impl;
@ -115,6 +119,10 @@ private:
return CheckMemoryState(nullptr, nullptr, nullptr, addr, size, state_mask, state, perm_mask, return CheckMemoryState(nullptr, nullptr, nullptr, addr, size, state_mask, state, perm_mask,
perm, attr_mask, attr, ignore_attr); perm, attr_mask, attr, ignore_attr);
} }
ResultCode CheckMemoryState(size_t* out_blocks_needed, VAddr addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
std::recursive_mutex page_table_lock; std::recursive_mutex page_table_lock;
std::unique_ptr<KMemoryBlockManager> block_manager; std::unique_ptr<KMemoryBlockManager> block_manager;

View file

@ -60,6 +60,7 @@ void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority
thread->GetContext64().cpu_registers[0] = 0; thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle; thread->GetContext32().cpu_registers[1] = thread_handle;
thread->GetContext64().cpu_registers[1] = thread_handle; thread->GetContext64().cpu_registers[1] = thread_handle;
thread->DisableDispatch();
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires // Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
@ -227,6 +228,8 @@ void KProcess::PinCurrentThread() {
const s32 core_id = GetCurrentCoreId(kernel); const s32 core_id = GetCurrentCoreId(kernel);
KThread* cur_thread = GetCurrentThreadPointer(kernel); KThread* cur_thread = GetCurrentThreadPointer(kernel);
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it. // Pin it.
PinThread(core_id, cur_thread); PinThread(core_id, cur_thread);
cur_thread->Pin(); cur_thread->Pin();
@ -234,6 +237,7 @@ void KProcess::PinCurrentThread() {
// An update is needed. // An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel); KScheduler::SetSchedulerUpdateNeeded(kernel);
} }
}
void KProcess::UnpinCurrentThread() { void KProcess::UnpinCurrentThread() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked()); ASSERT(kernel.GlobalSchedulerContext().IsLocked());
@ -250,6 +254,20 @@ void KProcess::UnpinCurrentThread() {
KScheduler::SetSchedulerUpdateNeeded(kernel); KScheduler::SetSchedulerUpdateNeeded(kernel);
} }
void KProcess::UnpinThread(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(kernel);
}
ResultCode KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address, ResultCode KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
[[maybe_unused]] size_t size) { [[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access. // Lock ourselves, to prevent concurrent access.
@ -528,7 +546,7 @@ void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
std::lock_guard lock{HLE::g_hle_lock}; std::lock_guard lock{HLE::g_hle_lock};
const auto ReprotectSegment = [&](const CodeSet::Segment& segment, const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
KMemoryPermission permission) { KMemoryPermission permission) {
page_table->SetCodeMemoryPermission(segment.addr + base_addr, segment.size, permission); page_table->SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
}; };
kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(), kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),

View file

@ -347,6 +347,7 @@ public:
void PinCurrentThread(); void PinCurrentThread();
void UnpinCurrentThread(); void UnpinCurrentThread();
void UnpinThread(KThread* thread);
KLightLock& GetStateLock() { KLightLock& GetStateLock() {
return state_lock; return state_lock;

View file

@ -240,8 +240,8 @@ void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s3
// If the thread is runnable, we want to change its priority in the queue. // If the thread is runnable, we want to change its priority in the queue.
if (thread->GetRawState() == ThreadState::Runnable) { if (thread->GetRawState() == ThreadState::Runnable) {
GetPriorityQueue(kernel).ChangePriority( GetPriorityQueue(kernel).ChangePriority(old_priority,
old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread); thread == kernel.GetCurrentEmuThread(), thread);
IncrementScheduledCount(thread); IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel); SetSchedulerUpdateNeeded(kernel);
} }
@ -360,7 +360,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
} }
bool KScheduler::CanSchedule(KernelCore& kernel) { bool KScheduler::CanSchedule(KernelCore& kernel) {
return kernel.CurrentScheduler()->GetCurrentThread()->GetDisableDispatchCount() <= 1; return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() <= 1;
} }
bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) { bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
@ -376,21 +376,31 @@ void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
} }
void KScheduler::DisableScheduling(KernelCore& kernel) { void KScheduler::DisableScheduling(KernelCore& kernel) {
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) { // If we are shutting down the kernel, none of this is relevant anymore.
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 0); if (kernel.IsShuttingDown()) {
scheduler->GetCurrentThread()->DisableDispatch(); return;
} }
ASSERT(GetCurrentThreadPointer(kernel)->GetDisableDispatchCount() >= 0);
GetCurrentThreadPointer(kernel)->DisableDispatch();
} }
void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) { void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
if (auto* scheduler = kernel.CurrentScheduler(); scheduler) { // If we are shutting down the kernel, none of this is relevant anymore.
ASSERT(scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1); if (kernel.IsShuttingDown()) {
if (scheduler->GetCurrentThread()->GetDisableDispatchCount() >= 1) { return;
scheduler->GetCurrentThread()->EnableDispatch();
}
} }
auto* current_thread = GetCurrentThreadPointer(kernel);
ASSERT(current_thread->GetDisableDispatchCount() >= 1);
if (current_thread->GetDisableDispatchCount() > 1) {
current_thread->EnableDispatch();
} else {
RescheduleCores(kernel, cores_needing_scheduling); RescheduleCores(kernel, cores_needing_scheduling);
} }
}
u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) { u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
if (IsSchedulerUpdateNeeded(kernel)) { if (IsSchedulerUpdateNeeded(kernel)) {
@ -617,13 +627,17 @@ KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, c
state.highest_priority_thread = nullptr; state.highest_priority_thread = nullptr;
} }
KScheduler::~KScheduler() { void KScheduler::Finalize() {
if (idle_thread) { if (idle_thread) {
idle_thread->Close(); idle_thread->Close();
idle_thread = nullptr; idle_thread = nullptr;
} }
} }
KScheduler::~KScheduler() {
ASSERT(!idle_thread);
}
KThread* KScheduler::GetCurrentThread() const { KThread* KScheduler::GetCurrentThread() const {
if (auto result = current_thread.load(); result) { if (auto result = current_thread.load(); result) {
return result; return result;
@ -642,10 +656,12 @@ void KScheduler::RescheduleCurrentCore() {
if (phys_core.IsInterrupted()) { if (phys_core.IsInterrupted()) {
phys_core.ClearInterrupt(); phys_core.ClearInterrupt();
} }
guard.Lock(); guard.Lock();
if (state.needs_scheduling.load()) { if (state.needs_scheduling.load()) {
Schedule(); Schedule();
} else { } else {
GetCurrentThread()->EnableDispatch();
guard.Unlock(); guard.Unlock();
} }
} }
@ -655,27 +671,34 @@ void KScheduler::OnThreadStart() {
} }
void KScheduler::Unload(KThread* thread) { void KScheduler::Unload(KThread* thread) {
ASSERT(thread);
LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr"); LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
if (thread) {
if (thread->IsCallingSvc()) { if (thread->IsCallingSvc()) {
thread->ClearIsCallingSvc(); thread->ClearIsCallingSvc();
} }
if (!thread->IsTerminationRequested()) {
prev_thread = thread;
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id); auto& physical_core = system.Kernel().PhysicalCore(core_id);
if (!physical_core.IsInitialized()) {
return;
}
Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
cpu_core.SaveContext(thread->GetContext32()); cpu_core.SaveContext(thread->GetContext32());
cpu_core.SaveContext(thread->GetContext64()); cpu_core.SaveContext(thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified. // Save the TPIDR_EL0 system register in case it was modified.
thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0()); thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
cpu_core.ClearExclusiveState(); cpu_core.ClearExclusiveState();
if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
prev_thread = thread;
} else { } else {
prev_thread = nullptr; prev_thread = nullptr;
} }
thread->context_guard.Unlock(); thread->context_guard.Unlock();
} }
}
void KScheduler::Reload(KThread* thread) { void KScheduler::Reload(KThread* thread) {
LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr"); LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr");
@ -683,11 +706,6 @@ void KScheduler::Reload(KThread* thread) {
if (thread) { if (thread) {
ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable."); ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
auto* const thread_owner_process = thread->GetOwnerProcess();
if (thread_owner_process != nullptr) {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
Core::ARM_Interface& cpu_core = system.ArmInterface(core_id); Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
cpu_core.LoadContext(thread->GetContext32()); cpu_core.LoadContext(thread->GetContext32());
cpu_core.LoadContext(thread->GetContext64()); cpu_core.LoadContext(thread->GetContext64());
@ -705,7 +723,7 @@ void KScheduler::SwitchContextStep2() {
} }
void KScheduler::ScheduleImpl() { void KScheduler::ScheduleImpl() {
KThread* previous_thread = current_thread.load(); KThread* previous_thread = GetCurrentThread();
KThread* next_thread = state.highest_priority_thread; KThread* next_thread = state.highest_priority_thread;
state.needs_scheduling = false; state.needs_scheduling = false;
@ -717,10 +735,15 @@ void KScheduler::ScheduleImpl() {
// If we're not actually switching thread, there's nothing to do. // If we're not actually switching thread, there's nothing to do.
if (next_thread == current_thread.load()) { if (next_thread == current_thread.load()) {
previous_thread->EnableDispatch();
guard.Unlock(); guard.Unlock();
return; return;
} }
if (next_thread->GetCurrentCore() != core_id) {
next_thread->SetCurrentCore(core_id);
}
current_thread.store(next_thread); current_thread.store(next_thread);
KProcess* const previous_process = system.Kernel().CurrentProcess(); KProcess* const previous_process = system.Kernel().CurrentProcess();
@ -731,11 +754,7 @@ void KScheduler::ScheduleImpl() {
Unload(previous_thread); Unload(previous_thread);
std::shared_ptr<Common::Fiber>* old_context; std::shared_ptr<Common::Fiber>* old_context;
if (previous_thread != nullptr) {
old_context = &previous_thread->GetHostContext(); old_context = &previous_thread->GetHostContext();
} else {
old_context = &idle_thread->GetHostContext();
}
guard.Unlock(); guard.Unlock();
Common::Fiber::YieldTo(*old_context, *switch_fiber); Common::Fiber::YieldTo(*old_context, *switch_fiber);

View file

@ -33,6 +33,8 @@ public:
explicit KScheduler(Core::System& system_, s32 core_id_); explicit KScheduler(Core::System& system_, s32 core_id_);
~KScheduler(); ~KScheduler();
void Finalize();
/// Reschedules to the next available thread (call after current thread is suspended) /// Reschedules to the next available thread (call after current thread is suspended)
void RescheduleCurrentCore(); void RescheduleCurrentCore();

View file

@ -23,6 +23,11 @@ public:
} }
void Lock() { void Lock() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
if (IsLockedByCurrentThread()) { if (IsLockedByCurrentThread()) {
// If we already own the lock, we can just increment the count. // If we already own the lock, we can just increment the count.
ASSERT(lock_count > 0); ASSERT(lock_count > 0);
@ -43,6 +48,11 @@ public:
} }
void Unlock() { void Unlock() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
ASSERT(IsLockedByCurrentThread()); ASSERT(IsLockedByCurrentThread());
ASSERT(lock_count > 0); ASSERT(lock_count > 0);

View file

@ -8,6 +8,7 @@
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/global_scheduler_context.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/time_manager.h" #include "core/hle/kernel/time_manager.h"

View file

@ -175,8 +175,7 @@ ResultCode KServerSession::CompleteSyncRequest(HLERequestContext& context) {
{ {
KScopedSchedulerLock lock(kernel); KScopedSchedulerLock lock(kernel);
if (!context.IsThreadWaiting()) { if (!context.IsThreadWaiting()) {
context.GetThread().Wakeup(); context.GetThread().EndWait(result);
context.GetThread().SetSyncedObject(nullptr, result);
} }
} }

View file

@ -8,11 +8,66 @@
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h" #include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h" #include "core/hle/kernel/svc_results.h"
namespace Kernel { namespace Kernel {
namespace {
class ThreadQueueImplForKSynchronizationObjectWait final : public KThreadQueueWithoutEndWait {
public:
ThreadQueueImplForKSynchronizationObjectWait(KernelCore& kernel_, KSynchronizationObject** o,
KSynchronizationObject::ThreadListNode* n, s32 c)
: KThreadQueueWithoutEndWait(kernel_), m_objects(o), m_nodes(n), m_count(c) {}
void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
ResultCode wait_result) override {
// Determine the sync index, and unlink all nodes.
s32 sync_index = -1;
for (auto i = 0; i < m_count; ++i) {
// Check if this is the signaled object.
if (m_objects[i] == signaled_object && sync_index == -1) {
sync_index = i;
}
// Unlink the current node from the current object.
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
}
// Set the waiting thread's sync index.
waiting_thread->SetSyncedIndex(sync_index);
// Set the waiting thread as not cancellable.
waiting_thread->ClearCancellable();
// Invoke the base end wait handler.
KThreadQueue::EndWait(waiting_thread, wait_result);
}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Remove all nodes from our list.
for (auto i = 0; i < m_count; ++i) {
m_objects[i]->UnlinkNode(std::addressof(m_nodes[i]));
}
// Set the waiting thread as not cancellable.
waiting_thread->ClearCancellable();
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
private:
KSynchronizationObject** m_objects;
KSynchronizationObject::ThreadListNode* m_nodes;
s32 m_count;
};
} // namespace
void KSynchronizationObject::Finalize() { void KSynchronizationObject::Finalize() {
this->OnFinalizeSynchronizationObject(); this->OnFinalizeSynchronizationObject();
KAutoObject::Finalize(); KAutoObject::Finalize();
@ -25,11 +80,19 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
std::vector<ThreadListNode> thread_nodes(num_objects); std::vector<ThreadListNode> thread_nodes(num_objects);
// Prepare for wait. // Prepare for wait.
KThread* thread = kernel_ctx.CurrentScheduler()->GetCurrentThread(); KThread* thread = GetCurrentThreadPointer(kernel_ctx);
ThreadQueueImplForKSynchronizationObjectWait wait_queue(kernel_ctx, objects,
thread_nodes.data(), num_objects);
{ {
// Setup the scheduling lock and sleep. // Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp{kernel_ctx, thread, timeout}; KScopedSchedulerLockAndSleep slp(kernel_ctx, thread, timeout);
// Check if the thread should terminate.
if (thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
}
// Check if any of the objects are already signaled. // Check if any of the objects are already signaled.
for (auto i = 0; i < num_objects; ++i) { for (auto i = 0; i < num_objects; ++i) {
@ -48,12 +111,6 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
return ResultTimedOut; return ResultTimedOut;
} }
// Check if the thread should terminate.
if (thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
}
// Check if waiting was canceled. // Check if waiting was canceled.
if (thread->IsWaitCancelled()) { if (thread->IsWaitCancelled()) {
slp.CancelSleep(); slp.CancelSleep();
@ -66,73 +123,25 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel_ctx, s32* out_index,
thread_nodes[i].thread = thread; thread_nodes[i].thread = thread;
thread_nodes[i].next = nullptr; thread_nodes[i].next = nullptr;
if (objects[i]->thread_list_tail == nullptr) { objects[i]->LinkNode(std::addressof(thread_nodes[i]));
objects[i]->thread_list_head = std::addressof(thread_nodes[i]);
} else {
objects[i]->thread_list_tail->next = std::addressof(thread_nodes[i]);
} }
objects[i]->thread_list_tail = std::addressof(thread_nodes[i]); // Mark the thread as cancellable.
}
// For debugging only
thread->SetWaitObjectsForDebugging({objects, static_cast<std::size_t>(num_objects)});
// Mark the thread as waiting.
thread->SetCancellable(); thread->SetCancellable();
thread->SetSyncedObject(nullptr, ResultTimedOut);
thread->SetState(ThreadState::Waiting); // Clear the thread's synced index.
thread->SetSyncedIndex(-1);
// Wait for an object to be signaled.
thread->BeginWait(std::addressof(wait_queue));
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization); thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Synchronization);
} }
// The lock/sleep is done, so we should be able to get our result. // Set the output index.
*out_index = thread->GetSyncedIndex();
// Thread is no longer cancellable.
thread->ClearCancellable();
// For debugging only
thread->SetWaitObjectsForDebugging({});
// Cancel the timer as needed.
kernel_ctx.TimeManager().UnscheduleTimeEvent(thread);
// Get the wait result. // Get the wait result.
ResultCode wait_result{ResultSuccess}; return thread->GetWaitResult();
s32 sync_index = -1;
{
KScopedSchedulerLock lock(kernel_ctx);
KSynchronizationObject* synced_obj;
wait_result = thread->GetWaitResult(std::addressof(synced_obj));
for (auto i = 0; i < num_objects; ++i) {
// Unlink the object from the list.
ThreadListNode* prev_ptr =
reinterpret_cast<ThreadListNode*>(std::addressof(objects[i]->thread_list_head));
ThreadListNode* prev_val = nullptr;
ThreadListNode *prev, *tail_prev;
do {
prev = prev_ptr;
prev_ptr = prev_ptr->next;
tail_prev = prev_val;
prev_val = prev_ptr;
} while (prev_ptr != std::addressof(thread_nodes[i]));
if (objects[i]->thread_list_tail == std::addressof(thread_nodes[i])) {
objects[i]->thread_list_tail = tail_prev;
}
prev->next = thread_nodes[i].next;
if (objects[i] == synced_obj) {
sync_index = i;
}
}
}
// Set output.
*out_index = sync_index;
return wait_result;
} }
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_) KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
@ -141,7 +150,7 @@ KSynchronizationObject::KSynchronizationObject(KernelCore& kernel_)
KSynchronizationObject::~KSynchronizationObject() = default; KSynchronizationObject::~KSynchronizationObject() = default;
void KSynchronizationObject::NotifyAvailable(ResultCode result) { void KSynchronizationObject::NotifyAvailable(ResultCode result) {
KScopedSchedulerLock lock(kernel); KScopedSchedulerLock sl(kernel);
// If we're not signaled, we've nothing to notify. // If we're not signaled, we've nothing to notify.
if (!this->IsSignaled()) { if (!this->IsSignaled()) {
@ -150,11 +159,7 @@ void KSynchronizationObject::NotifyAvailable(ResultCode result) {
// Iterate over each thread. // Iterate over each thread.
for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) { for (auto* cur_node = thread_list_head; cur_node != nullptr; cur_node = cur_node->next) {
KThread* thread = cur_node->thread; cur_node->thread->NotifyAvailable(this, result);
if (thread->GetState() == ThreadState::Waiting) {
thread->SetSyncedObject(this, result);
thread->SetState(ThreadState::Runnable);
}
} }
} }

View file

@ -35,6 +35,38 @@ public:
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const; [[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
void LinkNode(ThreadListNode* node_) {
// Link the node to the list.
if (thread_list_tail == nullptr) {
thread_list_head = node_;
} else {
thread_list_tail->next = node_;
}
thread_list_tail = node_;
}
void UnlinkNode(ThreadListNode* node_) {
// Unlink the node from the list.
ThreadListNode* prev_ptr =
reinterpret_cast<ThreadListNode*>(std::addressof(thread_list_head));
ThreadListNode* prev_val = nullptr;
ThreadListNode *prev, *tail_prev;
do {
prev = prev_ptr;
prev_ptr = prev_ptr->next;
tail_prev = prev_val;
prev_val = prev_ptr;
} while (prev_ptr != node_);
if (thread_list_tail == node_) {
thread_list_tail = tail_prev;
}
prev->next = node_->next;
}
protected: protected:
explicit KSynchronizationObject(KernelCore& kernel); explicit KSynchronizationObject(KernelCore& kernel);
~KSynchronizationObject() override; ~KSynchronizationObject() override;

View file

@ -13,6 +13,9 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/fiber.h" #include "common/fiber.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "common/thread_queue_list.h"
#include "core/core.h" #include "core/core.h"
#include "core/cpu_manager.h" #include "core/cpu_manager.h"
#include "core/hardware_properties.h" #include "core/hardware_properties.h"
@ -56,6 +59,34 @@ static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context,
namespace Kernel { namespace Kernel {
namespace {
class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait {
public:
explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel_)
: KThreadQueueWithoutEndWait(kernel_) {}
};
class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
public:
explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel_, KThread::WaiterList* wl)
: KThreadQueue(kernel_), m_wait_list(wl) {}
void CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) override {
// Remove the thread from the wait list.
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
private:
KThread::WaiterList* m_wait_list;
};
} // namespace
KThread::KThread(KernelCore& kernel_) KThread::KThread(KernelCore& kernel_)
: KAutoObjectWithSlabHeapAndContainer{kernel_}, activity_pause_lock{kernel_} {} : KAutoObjectWithSlabHeapAndContainer{kernel_}, activity_pause_lock{kernel_} {}
KThread::~KThread() = default; KThread::~KThread() = default;
@ -82,6 +113,8 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
[[fallthrough]]; [[fallthrough]];
case ThreadType::HighPriority: case ThreadType::HighPriority:
[[fallthrough]]; [[fallthrough]];
case ThreadType::Dummy:
[[fallthrough]];
case ThreadType::User: case ThreadType::User:
ASSERT(((owner == nullptr) || ASSERT(((owner == nullptr) ||
(owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask())); (owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
@ -127,11 +160,8 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
priority = prio; priority = prio;
base_priority = prio; base_priority = prio;
// Set sync object and waiting lock to null.
synced_object = nullptr;
// Initialize sleeping queue. // Initialize sleeping queue.
sleeping_queue = nullptr; wait_queue = nullptr;
// Set suspend flags. // Set suspend flags.
suspend_request_flags = 0; suspend_request_flags = 0;
@ -184,7 +214,7 @@ ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_s
// Setup the stack parameters. // Setup the stack parameters.
StackParameters& sp = GetStackParameters(); StackParameters& sp = GetStackParameters();
sp.cur_thread = this; sp.cur_thread = this;
sp.disable_count = 1; sp.disable_count = 0;
SetInExceptionHandler(); SetInExceptionHandler();
// Set thread ID. // Set thread ID.
@ -211,15 +241,16 @@ ResultCode KThread::InitializeThread(KThread* thread, KThreadFunction func, uint
// Initialize the thread. // Initialize the thread.
R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type)); R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type));
// Initialize host context. // Initialize emulation parameters.
thread->host_context = thread->host_context =
std::make_shared<Common::Fiber>(std::move(init_func), init_func_parameter); std::make_shared<Common::Fiber>(std::move(init_func), init_func_parameter);
thread->is_single_core = !Settings::values.use_multi_core.GetValue();
return ResultSuccess; return ResultSuccess;
} }
ResultCode KThread::InitializeDummyThread(KThread* thread) { ResultCode KThread::InitializeDummyThread(KThread* thread) {
return thread->Initialize({}, {}, {}, DefaultThreadPriority, 3, {}, ThreadType::Main); return thread->Initialize({}, {}, {}, DefaultThreadPriority, 3, {}, ThreadType::Dummy);
} }
ResultCode KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) { ResultCode KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
@ -273,11 +304,14 @@ void KThread::Finalize() {
auto it = waiter_list.begin(); auto it = waiter_list.begin();
while (it != waiter_list.end()) { while (it != waiter_list.end()) {
// The thread shouldn't be a kernel waiter. // Clear the lock owner
it->SetLockOwner(nullptr); it->SetLockOwner(nullptr);
it->SetSyncedObject(nullptr, ResultInvalidState);
it->Wakeup(); // Erase the waiter from our list.
it = waiter_list.erase(it); it = waiter_list.erase(it);
// Cancel the thread's wait.
it->CancelWait(ResultInvalidState, true);
} }
} }
@ -294,15 +328,12 @@ bool KThread::IsSignaled() const {
return signaled; return signaled;
} }
void KThread::Wakeup() { void KThread::OnTimer() {
KScopedSchedulerLock sl{kernel}; ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If we're waiting, cancel the wait.
if (GetState() == ThreadState::Waiting) { if (GetState() == ThreadState::Waiting) {
if (sleeping_queue != nullptr) { wait_queue->CancelWait(this, ResultTimedOut, false);
sleeping_queue->WakeupThread(this);
} else {
SetState(ThreadState::Runnable);
}
} }
} }
@ -327,7 +358,7 @@ void KThread::StartTermination() {
// Signal. // Signal.
signaled = true; signaled = true;
NotifyAvailable(); KSynchronizationObject::NotifyAvailable();
// Clear previous thread in KScheduler. // Clear previous thread in KScheduler.
KScheduler::ClearPreviousThread(kernel, this); KScheduler::ClearPreviousThread(kernel, this);
@ -475,30 +506,32 @@ ResultCode KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_m
return ResultSuccess; return ResultSuccess;
} }
ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) { ResultCode KThread::SetCoreMask(s32 core_id_, u64 v_affinity_mask) {
ASSERT(parent != nullptr); ASSERT(parent != nullptr);
ASSERT(v_affinity_mask != 0); ASSERT(v_affinity_mask != 0);
KScopedLightLock lk{activity_pause_lock}; KScopedLightLock lk(activity_pause_lock);
// Set the core mask. // Set the core mask.
u64 p_affinity_mask = 0; u64 p_affinity_mask = 0;
{ {
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl(kernel);
ASSERT(num_core_migration_disables >= 0); ASSERT(num_core_migration_disables >= 0);
// If the core id is no-update magic, preserve the ideal core id. // If we're updating, set our ideal virtual core.
if (cpu_core_id == Svc::IdealCoreNoUpdate) { if (core_id_ != Svc::IdealCoreNoUpdate) {
cpu_core_id = virtual_ideal_core_id; virtual_ideal_core_id = core_id_;
R_UNLESS(((1ULL << cpu_core_id) & v_affinity_mask) != 0, ResultInvalidCombination); } else {
// Preserve our ideal core id.
core_id_ = virtual_ideal_core_id;
R_UNLESS(((1ULL << core_id_) & v_affinity_mask) != 0, ResultInvalidCombination);
} }
// Set the virtual core/affinity mask. // Set our affinity mask.
virtual_ideal_core_id = cpu_core_id;
virtual_affinity_mask = v_affinity_mask; virtual_affinity_mask = v_affinity_mask;
// Translate the virtual core to a physical core. // Translate the virtual core to a physical core.
if (cpu_core_id >= 0) { if (core_id_ >= 0) {
cpu_core_id = Core::Hardware::VirtualToPhysicalCoreMap[cpu_core_id]; core_id_ = Core::Hardware::VirtualToPhysicalCoreMap[core_id_];
} }
// Translate the virtual affinity mask to a physical one. // Translate the virtual affinity mask to a physical one.
@ -513,7 +546,7 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
const KAffinityMask old_mask = physical_affinity_mask; const KAffinityMask old_mask = physical_affinity_mask;
// Set our new ideals. // Set our new ideals.
physical_ideal_core_id = cpu_core_id; physical_ideal_core_id = core_id_;
physical_affinity_mask.SetAffinityMask(p_affinity_mask); physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) { if (physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
@ -531,18 +564,18 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
} }
} else { } else {
// Otherwise, we edit the original affinity for restoration later. // Otherwise, we edit the original affinity for restoration later.
original_physical_ideal_core_id = cpu_core_id; original_physical_ideal_core_id = core_id_;
original_physical_affinity_mask.SetAffinityMask(p_affinity_mask); original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
} }
} }
// Update the pinned waiter list. // Update the pinned waiter list.
ThreadQueueImplForKThreadSetProperty wait_queue_(kernel, std::addressof(pinned_waiter_list));
{ {
bool retry_update{}; bool retry_update{};
bool thread_is_pinned{};
do { do {
// Lock the scheduler. // Lock the scheduler.
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl(kernel);
// Don't do any further management if our termination has been requested. // Don't do any further management if our termination has been requested.
R_SUCCEED_IF(IsTerminationRequested()); R_SUCCEED_IF(IsTerminationRequested());
@ -570,12 +603,9 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
ResultTerminationRequested); ResultTerminationRequested);
// Note that the thread was pinned.
thread_is_pinned = true;
// Wait until the thread isn't pinned any more. // Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel)); pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).SetState(ThreadState::Waiting); GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
} else { } else {
// If the thread isn't pinned, release the scheduler lock and retry until it's // If the thread isn't pinned, release the scheduler lock and retry until it's
// not current. // not current.
@ -583,16 +613,6 @@ ResultCode KThread::SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask) {
} }
} }
} while (retry_update); } while (retry_update);
// If the thread was pinned, it no longer is, and we should remove the current thread from
// our waiter list.
if (thread_is_pinned) {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Remove from the list.
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
}
} }
return ResultSuccess; return ResultSuccess;
@ -641,15 +661,9 @@ void KThread::WaitCancel() {
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl{kernel};
// Check if we're waiting and cancellable. // Check if we're waiting and cancellable.
if (GetState() == ThreadState::Waiting && cancellable) { if (this->GetState() == ThreadState::Waiting && cancellable) {
if (sleeping_queue != nullptr) {
sleeping_queue->WakeupThread(this);
wait_cancelled = true;
} else {
SetSyncedObject(nullptr, ResultCancelled);
SetState(ThreadState::Runnable);
wait_cancelled = false; wait_cancelled = false;
} wait_queue->CancelWait(this, ResultCancelled, true);
} else { } else {
// Otherwise, note that we cancelled a wait. // Otherwise, note that we cancelled a wait.
wait_cancelled = true; wait_cancelled = true;
@ -700,60 +714,59 @@ ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
// Set the activity. // Set the activity.
{ {
// Lock the scheduler. // Lock the scheduler.
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl(kernel);
// Verify our state. // Verify our state.
const auto cur_state = GetState(); const auto cur_state = this->GetState();
R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable), R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable),
ResultInvalidState); ResultInvalidState);
// Either pause or resume. // Either pause or resume.
if (activity == Svc::ThreadActivity::Paused) { if (activity == Svc::ThreadActivity::Paused) {
// Verify that we're not suspended. // Verify that we're not suspended.
R_UNLESS(!IsSuspendRequested(SuspendType::Thread), ResultInvalidState); R_UNLESS(!this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Suspend. // Suspend.
RequestSuspend(SuspendType::Thread); this->RequestSuspend(SuspendType::Thread);
} else { } else {
ASSERT(activity == Svc::ThreadActivity::Runnable); ASSERT(activity == Svc::ThreadActivity::Runnable);
// Verify that we're suspended. // Verify that we're suspended.
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState); R_UNLESS(this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Resume. // Resume.
Resume(SuspendType::Thread); this->Resume(SuspendType::Thread);
} }
} }
// If the thread is now paused, update the pinned waiter list. // If the thread is now paused, update the pinned waiter list.
if (activity == Svc::ThreadActivity::Paused) { if (activity == Svc::ThreadActivity::Paused) {
bool thread_is_pinned{}; ThreadQueueImplForKThreadSetProperty wait_queue_(kernel,
bool thread_is_current{}; std::addressof(pinned_waiter_list));
bool thread_is_current;
do { do {
// Lock the scheduler. // Lock the scheduler.
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl(kernel);
// Don't do any further management if our termination has been requested. // Don't do any further management if our termination has been requested.
R_SUCCEED_IF(IsTerminationRequested()); R_SUCCEED_IF(this->IsTerminationRequested());
// By default, treat the thread as not current.
thread_is_current = false;
// Check whether the thread is pinned. // Check whether the thread is pinned.
if (GetStackParameters().is_pinned) { if (this->GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating. // Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
ResultTerminationRequested); ResultTerminationRequested);
// Note that the thread was pinned and not current.
thread_is_pinned = true;
thread_is_current = false;
// Wait until the thread isn't pinned any more. // Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel)); pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).SetState(ThreadState::Waiting); GetCurrentThread(kernel).BeginWait(std::addressof(wait_queue_));
} else { } else {
// Check if the thread is currently running. // Check if the thread is currently running.
// If it is, we'll need to retry. // If it is, we'll need to retry.
thread_is_current = false;
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) { for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (kernel.Scheduler(i).GetCurrentThread() == this) { if (kernel.Scheduler(i).GetCurrentThread() == this) {
thread_is_current = true; thread_is_current = true;
@ -762,16 +775,6 @@ ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
} }
} }
} while (thread_is_current); } while (thread_is_current);
// If the thread was pinned, it no longer is, and we should remove the current thread from
// our waiter list.
if (thread_is_pinned) {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Remove from the list.
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
}
} }
return ResultSuccess; return ResultSuccess;
@ -966,6 +969,9 @@ ResultCode KThread::Run() {
// Set our state and finish. // Set our state and finish.
SetState(ThreadState::Runnable); SetState(ThreadState::Runnable);
DisableDispatch();
return ResultSuccess; return ResultSuccess;
} }
} }
@ -996,29 +1002,63 @@ ResultCode KThread::Sleep(s64 timeout) {
ASSERT(this == GetCurrentThreadPointer(kernel)); ASSERT(this == GetCurrentThreadPointer(kernel));
ASSERT(timeout > 0); ASSERT(timeout > 0);
ThreadQueueImplForKThreadSleep wait_queue_(kernel);
{ {
// Setup the scheduling lock and sleep. // Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp{kernel, this, timeout}; KScopedSchedulerLockAndSleep slp(kernel, this, timeout);
// Check if the thread should terminate. // Check if the thread should terminate.
if (IsTerminationRequested()) { if (this->IsTerminationRequested()) {
slp.CancelSleep(); slp.CancelSleep();
return ResultTerminationRequested; return ResultTerminationRequested;
} }
// Mark the thread as waiting. // Wait for the sleep to end.
SetState(ThreadState::Waiting); this->BeginWait(std::addressof(wait_queue_));
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep); SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
} }
// The lock/sleep is done.
// Cancel the timer.
kernel.TimeManager().UnscheduleTimeEvent(this);
return ResultSuccess; return ResultSuccess;
} }
void KThread::BeginWait(KThreadQueue* queue) {
// Set our state as waiting.
SetState(ThreadState::Waiting);
// Set our wait queue.
wait_queue = queue;
}
void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, ResultCode wait_result_) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
wait_queue->NotifyAvailable(this, signaled_object, wait_result_);
}
}
void KThread::EndWait(ResultCode wait_result_) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
wait_queue->EndWait(this, wait_result_);
}
}
void KThread::CancelWait(ResultCode wait_result_, bool cancel_timer_task) {
// Lock the scheduler.
KScopedSchedulerLock sl(kernel);
// If we're waiting, notify our queue that we're available.
if (GetState() == ThreadState::Waiting) {
wait_queue->CancelWait(this, wait_result_, cancel_timer_task);
}
}
void KThread::SetState(ThreadState state) { void KThread::SetState(ThreadState state) {
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl{kernel};
@ -1050,4 +1090,26 @@ s32 GetCurrentCoreId(KernelCore& kernel) {
return GetCurrentThread(kernel).GetCurrentCore(); return GetCurrentThread(kernel).GetCurrentCore();
} }
KScopedDisableDispatch::~KScopedDisableDispatch() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
// Skip the reschedule if single-core, as dispatch tracking is disabled here.
if (!Settings::values.use_multi_core.GetValue()) {
return;
}
if (GetCurrentThread(kernel).GetDisableDispatchCount() <= 1) {
auto scheduler = kernel.CurrentScheduler();
if (scheduler) {
scheduler->RescheduleCurrentCore();
}
} else {
GetCurrentThread(kernel).EnableDispatch();
}
}
} // namespace Kernel } // namespace Kernel

View file

@ -48,6 +48,7 @@ enum class ThreadType : u32 {
Kernel = 1, Kernel = 1,
HighPriority = 2, HighPriority = 2,
User = 3, User = 3,
Dummy = 100, // Special thread type for emulation purposes only
}; };
DECLARE_ENUM_FLAG_OPERATORS(ThreadType); DECLARE_ENUM_FLAG_OPERATORS(ThreadType);
@ -161,8 +162,6 @@ public:
} }
} }
void Wakeup();
void SetBasePriority(s32 value); void SetBasePriority(s32 value);
[[nodiscard]] ResultCode Run(); [[nodiscard]] ResultCode Run();
@ -197,13 +196,19 @@ public:
void Suspend(); void Suspend();
void SetSyncedObject(KSynchronizationObject* obj, ResultCode wait_res) { constexpr void SetSyncedIndex(s32 index) {
synced_object = obj; synced_index = index;
}
[[nodiscard]] constexpr s32 GetSyncedIndex() const {
return synced_index;
}
constexpr void SetWaitResult(ResultCode wait_res) {
wait_result = wait_res; wait_result = wait_res;
} }
[[nodiscard]] ResultCode GetWaitResult(KSynchronizationObject** out) const { [[nodiscard]] constexpr ResultCode GetWaitResult() const {
*out = synced_object;
return wait_result; return wait_result;
} }
@ -374,6 +379,8 @@ public:
[[nodiscard]] bool IsSignaled() const override; [[nodiscard]] bool IsSignaled() const override;
void OnTimer();
static void PostDestroy(uintptr_t arg); static void PostDestroy(uintptr_t arg);
[[nodiscard]] static ResultCode InitializeDummyThread(KThread* thread); [[nodiscard]] static ResultCode InitializeDummyThread(KThread* thread);
@ -446,20 +453,39 @@ public:
return per_core_priority_queue_entry[core]; return per_core_priority_queue_entry[core];
} }
void SetSleepingQueue(KThreadQueue* q) { [[nodiscard]] bool IsKernelThread() const {
sleeping_queue = q; return GetActiveCore() == 3;
}
[[nodiscard]] bool IsDispatchTrackingDisabled() const {
return is_single_core || IsKernelThread();
} }
[[nodiscard]] s32 GetDisableDispatchCount() const { [[nodiscard]] s32 GetDisableDispatchCount() const {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return 1;
}
return this->GetStackParameters().disable_count; return this->GetStackParameters().disable_count;
} }
void DisableDispatch() { void DisableDispatch() {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return;
}
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0); ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++; this->GetStackParameters().disable_count++;
} }
void EnableDispatch() { void EnableDispatch() {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return;
}
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0); ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--; this->GetStackParameters().disable_count--;
} }
@ -573,6 +599,15 @@ public:
address_key_value = val; address_key_value = val;
} }
void ClearWaitQueue() {
wait_queue = nullptr;
}
void BeginWait(KThreadQueue* queue);
void NotifyAvailable(KSynchronizationObject* signaled_object, ResultCode wait_result_);
void EndWait(ResultCode wait_result_);
void CancelWait(ResultCode wait_result_, bool cancel_timer_task);
[[nodiscard]] bool HasWaiters() const { [[nodiscard]] bool HasWaiters() const {
return !waiter_list.empty(); return !waiter_list.empty();
} }
@ -667,7 +702,6 @@ private:
KAffinityMask physical_affinity_mask{}; KAffinityMask physical_affinity_mask{};
u64 thread_id{}; u64 thread_id{};
std::atomic<s64> cpu_time{}; std::atomic<s64> cpu_time{};
KSynchronizationObject* synced_object{};
VAddr address_key{}; VAddr address_key{};
KProcess* parent{}; KProcess* parent{};
VAddr kernel_stack_top{}; VAddr kernel_stack_top{};
@ -677,13 +711,14 @@ private:
s64 schedule_count{}; s64 schedule_count{};
s64 last_scheduled_tick{}; s64 last_scheduled_tick{};
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{}; std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
KThreadQueue* sleeping_queue{}; KThreadQueue* wait_queue{};
WaiterList waiter_list{}; WaiterList waiter_list{};
WaiterList pinned_waiter_list{}; WaiterList pinned_waiter_list{};
KThread* lock_owner{}; KThread* lock_owner{};
u32 address_key_value{}; u32 address_key_value{};
u32 suspend_request_flags{}; u32 suspend_request_flags{};
u32 suspend_allowed_flags{}; u32 suspend_allowed_flags{};
s32 synced_index{};
ResultCode wait_result{ResultSuccess}; ResultCode wait_result{ResultSuccess};
s32 base_priority{}; s32 base_priority{};
s32 physical_ideal_core_id{}; s32 physical_ideal_core_id{};
@ -708,6 +743,7 @@ private:
// For emulation // For emulation
std::shared_ptr<Common::Fiber> host_context{}; std::shared_ptr<Common::Fiber> host_context{};
bool is_single_core{};
// For debugging // For debugging
std::vector<KSynchronizationObject*> wait_objects_for_debugging; std::vector<KSynchronizationObject*> wait_objects_for_debugging;
@ -752,4 +788,20 @@ public:
} }
}; };
class KScopedDisableDispatch {
public:
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel_) : kernel{kernel_} {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
GetCurrentThread(kernel).DisableDispatch();
}
~KScopedDisableDispatch();
private:
KernelCore& kernel;
};
} // namespace Kernel } // namespace Kernel

View file

@ -0,0 +1,49 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel {
void KThreadQueue::NotifyAvailable([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] KSynchronizationObject* signaled_object,
[[maybe_unused]] ResultCode wait_result) {}
void KThreadQueue::EndWait(KThread* waiting_thread, ResultCode wait_result) {
// Set the thread's wait result.
waiting_thread->SetWaitResult(wait_result);
// Set the thread as runnable.
waiting_thread->SetState(ThreadState::Runnable);
// Clear the thread's wait queue.
waiting_thread->ClearWaitQueue();
// Cancel the thread task.
kernel.TimeManager().UnscheduleTimeEvent(waiting_thread);
}
void KThreadQueue::CancelWait(KThread* waiting_thread, ResultCode wait_result,
bool cancel_timer_task) {
// Set the thread's wait result.
waiting_thread->SetWaitResult(wait_result);
// Set the thread as runnable.
waiting_thread->SetState(ThreadState::Runnable);
// Clear the thread's wait queue.
waiting_thread->ClearWaitQueue();
// Cancel the thread task.
if (cancel_timer_task) {
kernel.TimeManager().UnscheduleTimeEvent(waiting_thread);
}
}
void KThreadQueueWithoutEndWait::EndWait([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] ResultCode wait_result) {}
} // namespace Kernel

View file

@ -4,6 +4,7 @@
#pragma once #pragma once
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
namespace Kernel { namespace Kernel {
@ -11,71 +12,24 @@ namespace Kernel {
class KThreadQueue { class KThreadQueue {
public: public:
explicit KThreadQueue(KernelCore& kernel_) : kernel{kernel_} {} explicit KThreadQueue(KernelCore& kernel_) : kernel{kernel_} {}
virtual ~KThreadQueue() = default;
bool IsEmpty() const { virtual void NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
return wait_list.empty(); ResultCode wait_result);
} virtual void EndWait(KThread* waiting_thread, ResultCode wait_result);
virtual void CancelWait(KThread* waiting_thread, ResultCode wait_result,
KThread::WaiterList::iterator begin() { bool cancel_timer_task);
return wait_list.begin();
}
KThread::WaiterList::iterator end() {
return wait_list.end();
}
bool SleepThread(KThread* t) {
KScopedSchedulerLock sl{kernel};
// If the thread needs terminating, don't enqueue it.
if (t->IsTerminationRequested()) {
return false;
}
// Set the thread's queue and mark it as waiting.
t->SetSleepingQueue(this);
t->SetState(ThreadState::Waiting);
// Add the thread to the queue.
wait_list.push_back(*t);
return true;
}
void WakeupThread(KThread* t) {
KScopedSchedulerLock sl{kernel};
// Remove the thread from the queue.
wait_list.erase(wait_list.iterator_to(*t));
// Mark the thread as no longer sleeping.
t->SetState(ThreadState::Runnable);
t->SetSleepingQueue(nullptr);
}
KThread* WakeupFrontThread() {
KScopedSchedulerLock sl{kernel};
if (wait_list.empty()) {
return nullptr;
} else {
// Remove the thread from the queue.
auto it = wait_list.begin();
KThread* thread = std::addressof(*it);
wait_list.erase(it);
ASSERT(thread->GetState() == ThreadState::Waiting);
// Mark the thread as no longer sleeping.
thread->SetState(ThreadState::Runnable);
thread->SetSleepingQueue(nullptr);
return thread;
}
}
private: private:
KernelCore& kernel; KernelCore& kernel;
KThread::WaiterList wait_list{}; KThread::WaiterList wait_list{};
}; };
class KThreadQueueWithoutEndWait : public KThreadQueue {
public:
explicit KThreadQueueWithoutEndWait(KernelCore& kernel_) : KThreadQueue(kernel_) {}
void EndWait(KThread* waiting_thread, ResultCode wait_result) override final;
};
} // namespace Kernel } // namespace Kernel

View file

@ -14,6 +14,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/thread.h" #include "common/thread.h"
#include "common/thread_worker.h" #include "common/thread_worker.h"
#include "core/arm/arm_interface.h" #include "core/arm/arm_interface.h"
@ -83,12 +84,16 @@ struct KernelCore::Impl {
} }
void InitializeCores() { void InitializeCores() {
for (auto& core : cores) { for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
core.Initialize(current_process->Is64BitProcess()); cores[core_id].Initialize(current_process->Is64BitProcess());
system.Memory().SetCurrentPageTable(*current_process, core_id);
} }
} }
void Shutdown() { void Shutdown() {
is_shutting_down.store(true, std::memory_order_relaxed);
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
process_list.clear(); process_list.clear();
// Close all open server ports. // Close all open server ports.
@ -123,15 +128,6 @@ struct KernelCore::Impl {
next_user_process_id = KProcess::ProcessIDMin; next_user_process_id = KProcess::ProcessIDMin;
next_thread_id = 1; next_thread_id = 1;
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
if (suspend_threads[core_id]) {
suspend_threads[core_id]->Close();
suspend_threads[core_id] = nullptr;
}
schedulers[core_id].reset();
}
cores.clear(); cores.clear();
global_handle_table->Finalize(); global_handle_table->Finalize();
@ -159,6 +155,16 @@ struct KernelCore::Impl {
CleanupObject(time_shared_mem); CleanupObject(time_shared_mem);
CleanupObject(system_resource_limit); CleanupObject(system_resource_limit);
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
if (suspend_threads[core_id]) {
suspend_threads[core_id]->Close();
suspend_threads[core_id] = nullptr;
}
schedulers[core_id]->Finalize();
schedulers[core_id].reset();
}
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others // Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
next_host_thread_id = Core::Hardware::NUM_CPU_CORES; next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
@ -245,13 +251,11 @@ struct KernelCore::Impl {
KScopedSchedulerLock lock(kernel); KScopedSchedulerLock lock(kernel);
global_scheduler_context->PreemptThreads(); global_scheduler_context->PreemptThreads();
} }
const auto time_interval = std::chrono::nanoseconds{ const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
Core::Timing::msToCycles(std::chrono::milliseconds(10))};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event); system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
}); });
const auto time_interval = const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
std::chrono::nanoseconds{Core::Timing::msToCycles(std::chrono::milliseconds(10))};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event); system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
} }
@ -267,14 +271,6 @@ struct KernelCore::Impl {
void MakeCurrentProcess(KProcess* process) { void MakeCurrentProcess(KProcess* process) {
current_process = process; current_process = process;
if (process == nullptr) {
return;
}
const u32 core_id = GetCurrentHostThreadID();
if (core_id < Core::Hardware::NUM_CPU_CORES) {
system.Memory().SetCurrentPageTable(*process, core_id);
}
} }
static inline thread_local u32 host_thread_id = UINT32_MAX; static inline thread_local u32 host_thread_id = UINT32_MAX;
@ -300,15 +296,16 @@ struct KernelCore::Impl {
// Gets the dummy KThread for the caller, allocating a new one if this is the first time // Gets the dummy KThread for the caller, allocating a new one if this is the first time
KThread* GetHostDummyThread() { KThread* GetHostDummyThread() {
auto make_thread = [this]() { auto make_thread = [this]() {
std::unique_ptr<KThread> thread = std::make_unique<KThread>(system.Kernel()); std::lock_guard lk(dummy_thread_lock);
auto& thread = dummy_threads.emplace_back(std::make_unique<KThread>(system.Kernel()));
KAutoObject::Create(thread.get()); KAutoObject::Create(thread.get());
ASSERT(KThread::InitializeDummyThread(thread.get()).IsSuccess()); ASSERT(KThread::InitializeDummyThread(thread.get()).IsSuccess());
thread->SetName(fmt::format("DummyThread:{}", GetHostThreadId())); thread->SetName(fmt::format("DummyThread:{}", GetHostThreadId()));
return thread; return thread.get();
}; };
thread_local auto thread = make_thread(); thread_local KThread* saved_thread = make_thread();
return thread.get(); return saved_thread;
} }
/// Registers a CPU core thread by allocating a host thread ID for it /// Registers a CPU core thread by allocating a host thread ID for it
@ -343,7 +340,16 @@ struct KernelCore::Impl {
is_phantom_mode_for_singlecore = value; is_phantom_mode_for_singlecore = value;
} }
bool IsShuttingDown() const {
return is_shutting_down.load(std::memory_order_relaxed);
}
KThread* GetCurrentEmuThread() { KThread* GetCurrentEmuThread() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (IsShuttingDown()) {
return {};
}
const auto thread_id = GetCurrentHostThreadID(); const auto thread_id = GetCurrentHostThreadID();
if (thread_id >= Core::Hardware::NUM_CPU_CORES) { if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
return GetHostDummyThread(); return GetHostDummyThread();
@ -695,6 +701,12 @@ struct KernelCore::Impl {
return port; return port;
} }
std::mutex server_ports_lock;
std::mutex server_sessions_lock;
std::mutex registered_objects_lock;
std::mutex registered_in_use_objects_lock;
std::mutex dummy_thread_lock;
std::atomic<u32> next_object_id{0}; std::atomic<u32> next_object_id{0};
std::atomic<u64> next_kernel_process_id{KProcess::InitialKIPIDMin}; std::atomic<u64> next_kernel_process_id{KProcess::InitialKIPIDMin};
std::atomic<u64> next_user_process_id{KProcess::ProcessIDMin}; std::atomic<u64> next_user_process_id{KProcess::ProcessIDMin};
@ -725,10 +737,6 @@ struct KernelCore::Impl {
std::unordered_set<KServerSession*> server_sessions; std::unordered_set<KServerSession*> server_sessions;
std::unordered_set<KAutoObject*> registered_objects; std::unordered_set<KAutoObject*> registered_objects;
std::unordered_set<KAutoObject*> registered_in_use_objects; std::unordered_set<KAutoObject*> registered_in_use_objects;
std::mutex server_ports_lock;
std::mutex server_sessions_lock;
std::mutex registered_objects_lock;
std::mutex registered_in_use_objects_lock;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor; std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::vector<Kernel::PhysicalCore> cores; std::vector<Kernel::PhysicalCore> cores;
@ -753,7 +761,11 @@ struct KernelCore::Impl {
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{}; std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{};
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{}; std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
// Specifically tracked to be automatically destroyed with kernel
std::vector<std::unique_ptr<KThread>> dummy_threads;
bool is_multicore{}; bool is_multicore{};
std::atomic_bool is_shutting_down{};
bool is_phantom_mode_for_singlecore{}; bool is_phantom_mode_for_singlecore{};
u32 single_core_thread_id{}; u32 single_core_thread_id{};
@ -839,16 +851,20 @@ const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
return impl->cores[id]; return impl->cores[id];
} }
size_t KernelCore::CurrentPhysicalCoreIndex() const {
const u32 core_id = impl->GetCurrentHostThreadID();
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
return Core::Hardware::NUM_CPU_CORES - 1;
}
return core_id;
}
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() { Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
u32 core_id = impl->GetCurrentHostThreadID(); return impl->cores[CurrentPhysicalCoreIndex()];
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
return impl->cores[core_id];
} }
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const { const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
u32 core_id = impl->GetCurrentHostThreadID(); return impl->cores[CurrentPhysicalCoreIndex()];
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
return impl->cores[core_id];
} }
Kernel::KScheduler* KernelCore::CurrentScheduler() { Kernel::KScheduler* KernelCore::CurrentScheduler() {
@ -1051,6 +1067,9 @@ void KernelCore::Suspend(bool in_suspention) {
impl->suspend_threads[core_id]->SetState(state); impl->suspend_threads[core_id]->SetState(state);
impl->suspend_threads[core_id]->SetWaitReasonForDebugging( impl->suspend_threads[core_id]->SetWaitReasonForDebugging(
ThreadWaitReasonForDebugging::Suspended); ThreadWaitReasonForDebugging::Suspended);
if (!should_suspend) {
impl->suspend_threads[core_id]->DisableDispatch();
}
} }
} }
} }
@ -1059,19 +1078,21 @@ bool KernelCore::IsMulticore() const {
return impl->is_multicore; return impl->is_multicore;
} }
bool KernelCore::IsShuttingDown() const {
return impl->IsShuttingDown();
}
void KernelCore::ExceptionalExit() { void KernelCore::ExceptionalExit() {
exception_exited = true; exception_exited = true;
Suspend(true); Suspend(true);
} }
void KernelCore::EnterSVCProfile() { void KernelCore::EnterSVCProfile() {
std::size_t core = impl->GetCurrentHostThreadID(); impl->svc_ticks[CurrentPhysicalCoreIndex()] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
impl->svc_ticks[core] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
} }
void KernelCore::ExitSVCProfile() { void KernelCore::ExitSVCProfile() {
std::size_t core = impl->GetCurrentHostThreadID(); MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[CurrentPhysicalCoreIndex()]);
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[core]);
} }
std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) { std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) {

View file

@ -53,6 +53,7 @@ class KSharedMemoryInfo;
class KThread; class KThread;
class KTransferMemory; class KTransferMemory;
class KWritableEvent; class KWritableEvent;
class KCodeMemory;
class PhysicalCore; class PhysicalCore;
class ServiceThread; class ServiceThread;
class Synchronization; class Synchronization;
@ -148,6 +149,9 @@ public:
/// Gets the an instance of the respective physical CPU core. /// Gets the an instance of the respective physical CPU core.
const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const; const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const;
/// Gets the current physical core index for the running host thread.
std::size_t CurrentPhysicalCoreIndex() const;
/// Gets the sole instance of the Scheduler at the current running core. /// Gets the sole instance of the Scheduler at the current running core.
Kernel::KScheduler* CurrentScheduler(); Kernel::KScheduler* CurrentScheduler();
@ -271,6 +275,8 @@ public:
bool IsMulticore() const; bool IsMulticore() const;
bool IsShuttingDown() const;
void EnterSVCProfile(); void EnterSVCProfile();
void ExitSVCProfile(); void ExitSVCProfile();
@ -326,6 +332,8 @@ public:
return slab_heap_container->transfer_memory; return slab_heap_container->transfer_memory;
} else if constexpr (std::is_same_v<T, KWritableEvent>) { } else if constexpr (std::is_same_v<T, KWritableEvent>) {
return slab_heap_container->writeable_event; return slab_heap_container->writeable_event;
} else if constexpr (std::is_same_v<T, KCodeMemory>) {
return slab_heap_container->code_memory;
} }
} }
@ -377,6 +385,7 @@ private:
KSlabHeap<KThread> thread; KSlabHeap<KThread> thread;
KSlabHeap<KTransferMemory> transfer_memory; KSlabHeap<KTransferMemory> transfer_memory;
KSlabHeap<KWritableEvent> writeable_event; KSlabHeap<KWritableEvent> writeable_event;
KSlabHeap<KCodeMemory> code_memory;
}; };
std::unique_ptr<SlabHeapContainer> slab_heap_container; std::unique_ptr<SlabHeapContainer> slab_heap_container;

Some files were not shown because too many files have changed in this diff Show more