General: Recover Prometheus project from harddrive failure
This commit: Implements CPU Interrupts, Replaces Cycle Timing for Host Timing, Reworks the Kernel's Scheduler, Introduce Idle State and Suspended State, Recreates the bootmanager, Initializes Multicore system.
This commit is contained in:
parent
0ea4a8bcc4
commit
e31425df38
57 changed files with 1349 additions and 824 deletions
|
@ -70,6 +70,12 @@ void SetCurrentThreadName(const char* name) {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
void SetCurrentThreadName(const char* name) {
|
||||||
|
// Do Nothing on MingW
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
} // namespace Common
|
} // namespace Common
|
||||||
|
|
|
@ -7,6 +7,8 @@ endif()
|
||||||
add_library(core STATIC
|
add_library(core STATIC
|
||||||
arm/arm_interface.h
|
arm/arm_interface.h
|
||||||
arm/arm_interface.cpp
|
arm/arm_interface.cpp
|
||||||
|
arm/cpu_interrupt_handler.cpp
|
||||||
|
arm/cpu_interrupt_handler.h
|
||||||
arm/exclusive_monitor.cpp
|
arm/exclusive_monitor.cpp
|
||||||
arm/exclusive_monitor.h
|
arm/exclusive_monitor.h
|
||||||
arm/unicorn/arm_unicorn.cpp
|
arm/unicorn/arm_unicorn.cpp
|
||||||
|
@ -547,8 +549,6 @@ add_library(core STATIC
|
||||||
hle/service/vi/vi_u.h
|
hle/service/vi/vi_u.h
|
||||||
hle/service/wlan/wlan.cpp
|
hle/service/wlan/wlan.cpp
|
||||||
hle/service/wlan/wlan.h
|
hle/service/wlan/wlan.h
|
||||||
host_timing.cpp
|
|
||||||
host_timing.h
|
|
||||||
loader/deconstructed_rom_directory.cpp
|
loader/deconstructed_rom_directory.cpp
|
||||||
loader/deconstructed_rom_directory.h
|
loader/deconstructed_rom_directory.h
|
||||||
loader/elf.cpp
|
loader/elf.cpp
|
||||||
|
|
|
@ -18,11 +18,13 @@ enum class VMAPermission : u8;
|
||||||
|
|
||||||
namespace Core {
|
namespace Core {
|
||||||
class System;
|
class System;
|
||||||
|
class CPUInterruptHandler;
|
||||||
|
|
||||||
/// Generic ARMv8 CPU interface
|
/// Generic ARMv8 CPU interface
|
||||||
class ARM_Interface : NonCopyable {
|
class ARM_Interface : NonCopyable {
|
||||||
public:
|
public:
|
||||||
explicit ARM_Interface(System& system_) : system{system_} {}
|
explicit ARM_Interface(System& system_, CPUInterruptHandler& interrupt_handler)
|
||||||
|
: system{system_}, interrupt_handler{interrupt_handler} {}
|
||||||
virtual ~ARM_Interface() = default;
|
virtual ~ARM_Interface() = default;
|
||||||
|
|
||||||
struct ThreadContext32 {
|
struct ThreadContext32 {
|
||||||
|
@ -175,6 +177,7 @@ public:
|
||||||
protected:
|
protected:
|
||||||
/// System context that this ARM interface is running under.
|
/// System context that this ARM interface is running under.
|
||||||
System& system;
|
System& system;
|
||||||
|
CPUInterruptHandler& interrupt_handler;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace Core
|
} // namespace Core
|
||||||
|
|
29
src/core/arm/cpu_interrupt_handler.cpp
Normal file
29
src/core/arm/cpu_interrupt_handler.cpp
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
// Copyright 2020 yuzu emulator team
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common/thread.h"
|
||||||
|
#include "core/arm/cpu_interrupt_handler.h"
|
||||||
|
|
||||||
|
namespace Core {
|
||||||
|
|
||||||
|
CPUInterruptHandler::CPUInterruptHandler() : is_interrupted{} {
|
||||||
|
interrupt_event = std::make_unique<Common::Event>();
|
||||||
|
}
|
||||||
|
|
||||||
|
CPUInterruptHandler::~CPUInterruptHandler() = default;
|
||||||
|
|
||||||
|
void CPUInterruptHandler::SetInterrupt(bool is_interrupted_) {
|
||||||
|
if (is_interrupted_) {
|
||||||
|
interrupt_event->Set();
|
||||||
|
}
|
||||||
|
this->is_interrupted = is_interrupted_;
|
||||||
|
}
|
||||||
|
|
||||||
|
void CPUInterruptHandler::AwaitInterrupt() {
|
||||||
|
interrupt_event->Wait();
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Core
|
39
src/core/arm/cpu_interrupt_handler.h
Normal file
39
src/core/arm/cpu_interrupt_handler.h
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
// Copyright 2020 yuzu emulator team
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
class Event;
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace Core {
|
||||||
|
|
||||||
|
class CPUInterruptHandler {
|
||||||
|
public:
|
||||||
|
CPUInterruptHandler();
|
||||||
|
~CPUInterruptHandler();
|
||||||
|
|
||||||
|
CPUInterruptHandler(const CPUInterruptHandler&) = delete;
|
||||||
|
CPUInterruptHandler& operator=(const CPUInterruptHandler&) = delete;
|
||||||
|
|
||||||
|
CPUInterruptHandler(CPUInterruptHandler&&) = default;
|
||||||
|
CPUInterruptHandler& operator=(CPUInterruptHandler&&) = default;
|
||||||
|
|
||||||
|
constexpr bool IsInterrupted() const {
|
||||||
|
return is_interrupted;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetInterrupt(bool is_interrupted);
|
||||||
|
|
||||||
|
void AwaitInterrupt();
|
||||||
|
|
||||||
|
private:
|
||||||
|
bool is_interrupted{};
|
||||||
|
std::unique_ptr<Common::Event> interrupt_event;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace Core
|
|
@ -114,9 +114,9 @@ void ARM_Dynarmic_32::Step() {
|
||||||
jit->Step();
|
jit->Step();
|
||||||
}
|
}
|
||||||
|
|
||||||
ARM_Dynarmic_32::ARM_Dynarmic_32(System& system, ExclusiveMonitor& exclusive_monitor,
|
ARM_Dynarmic_32::ARM_Dynarmic_32(System& system, CPUInterruptHandler& interrupt_handler,
|
||||||
std::size_t core_index)
|
ExclusiveMonitor& exclusive_monitor, std::size_t core_index)
|
||||||
: ARM_Interface{system}, cb(std::make_unique<DynarmicCallbacks32>(*this)),
|
: ARM_Interface{system, interrupt_handler}, cb(std::make_unique<DynarmicCallbacks32>(*this)),
|
||||||
cp15(std::make_shared<DynarmicCP15>(*this)), core_index{core_index},
|
cp15(std::make_shared<DynarmicCP15>(*this)), core_index{core_index},
|
||||||
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
|
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
|
||||||
|
|
||||||
|
|
|
@ -21,6 +21,7 @@ class Memory;
|
||||||
|
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
|
class CPUInterruptHandler;
|
||||||
class DynarmicCallbacks32;
|
class DynarmicCallbacks32;
|
||||||
class DynarmicCP15;
|
class DynarmicCP15;
|
||||||
class DynarmicExclusiveMonitor;
|
class DynarmicExclusiveMonitor;
|
||||||
|
@ -28,7 +29,8 @@ class System;
|
||||||
|
|
||||||
class ARM_Dynarmic_32 final : public ARM_Interface {
|
class ARM_Dynarmic_32 final : public ARM_Interface {
|
||||||
public:
|
public:
|
||||||
ARM_Dynarmic_32(System& system, ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
|
ARM_Dynarmic_32(System& system, CPUInterruptHandler& interrupt_handler,
|
||||||
|
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
|
||||||
~ARM_Dynarmic_32() override;
|
~ARM_Dynarmic_32() override;
|
||||||
|
|
||||||
void SetPC(u64 pc) override;
|
void SetPC(u64 pc) override;
|
||||||
|
|
|
@ -9,6 +9,7 @@
|
||||||
#include "common/logging/log.h"
|
#include "common/logging/log.h"
|
||||||
#include "common/microprofile.h"
|
#include "common/microprofile.h"
|
||||||
#include "common/page_table.h"
|
#include "common/page_table.h"
|
||||||
|
#include "core/arm/cpu_interrupt_handler.h"
|
||||||
#include "core/arm/dynarmic/arm_dynarmic_64.h"
|
#include "core/arm/dynarmic/arm_dynarmic_64.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_manager.h"
|
#include "core/core_manager.h"
|
||||||
|
@ -108,23 +109,16 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
void AddTicks(u64 ticks) override {
|
void AddTicks(u64 ticks) override {
|
||||||
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
|
/// We are using host timing, NOP
|
||||||
// rough approximation of the amount of executed ticks in the system, it may be thrown off
|
|
||||||
// if not all cores are doing a similar amount of work. Instead of doing this, we should
|
|
||||||
// device a way so that timing is consistent across all cores without increasing the ticks 4
|
|
||||||
// times.
|
|
||||||
u64 amortized_ticks = (ticks - num_interpreted_instructions) / Core::NUM_CPU_CORES;
|
|
||||||
// Always execute at least one tick.
|
|
||||||
amortized_ticks = std::max<u64>(amortized_ticks, 1);
|
|
||||||
|
|
||||||
parent.system.CoreTiming().AddTicks(amortized_ticks);
|
|
||||||
num_interpreted_instructions = 0;
|
|
||||||
}
|
}
|
||||||
u64 GetTicksRemaining() override {
|
u64 GetTicksRemaining() override {
|
||||||
return std::max(parent.system.CoreTiming().GetDowncount(), s64{0});
|
if (!parent.interrupt_handler.IsInterrupted()) {
|
||||||
|
return 1000ULL;
|
||||||
|
}
|
||||||
|
return 0ULL;
|
||||||
}
|
}
|
||||||
u64 GetCNTPCT() override {
|
u64 GetCNTPCT() override {
|
||||||
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
|
return parent.system.CoreTiming().GetClockTicks();
|
||||||
}
|
}
|
||||||
|
|
||||||
ARM_Dynarmic_64& parent;
|
ARM_Dynarmic_64& parent;
|
||||||
|
@ -183,10 +177,10 @@ void ARM_Dynarmic_64::Step() {
|
||||||
cb->InterpreterFallback(jit->GetPC(), 1);
|
cb->InterpreterFallback(jit->GetPC(), 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
ARM_Dynarmic_64::ARM_Dynarmic_64(System& system, ExclusiveMonitor& exclusive_monitor,
|
ARM_Dynarmic_64::ARM_Dynarmic_64(System& system, CPUInterruptHandler& interrupt_handler,
|
||||||
std::size_t core_index)
|
ExclusiveMonitor& exclusive_monitor, std::size_t core_index)
|
||||||
: ARM_Interface{system}, cb(std::make_unique<DynarmicCallbacks64>(*this)),
|
: ARM_Interface{system, interrupt_handler}, cb(std::make_unique<DynarmicCallbacks64>(*this)),
|
||||||
inner_unicorn{system, ARM_Unicorn::Arch::AArch64}, core_index{core_index},
|
inner_unicorn{system, interrupt_handler, ARM_Unicorn::Arch::AArch64}, core_index{core_index},
|
||||||
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
|
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
|
||||||
|
|
||||||
ARM_Dynarmic_64::~ARM_Dynarmic_64() = default;
|
ARM_Dynarmic_64::~ARM_Dynarmic_64() = default;
|
||||||
|
|
|
@ -22,12 +22,14 @@ class Memory;
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
class DynarmicCallbacks64;
|
class DynarmicCallbacks64;
|
||||||
|
class CPUInterruptHandler;
|
||||||
class DynarmicExclusiveMonitor;
|
class DynarmicExclusiveMonitor;
|
||||||
class System;
|
class System;
|
||||||
|
|
||||||
class ARM_Dynarmic_64 final : public ARM_Interface {
|
class ARM_Dynarmic_64 final : public ARM_Interface {
|
||||||
public:
|
public:
|
||||||
ARM_Dynarmic_64(System& system, ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
|
ARM_Dynarmic_64(System& system, CPUInterruptHandler& interrupt_handler,
|
||||||
|
ExclusiveMonitor& exclusive_monitor, std::size_t core_index);
|
||||||
~ARM_Dynarmic_64() override;
|
~ARM_Dynarmic_64() override;
|
||||||
|
|
||||||
void SetPC(u64 pc) override;
|
void SetPC(u64 pc) override;
|
||||||
|
|
|
@ -6,6 +6,7 @@
|
||||||
#include <unicorn/arm64.h>
|
#include <unicorn/arm64.h>
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
#include "common/microprofile.h"
|
#include "common/microprofile.h"
|
||||||
|
#include "core/arm/cpu_interrupt_handler.h"
|
||||||
#include "core/arm/unicorn/arm_unicorn.h"
|
#include "core/arm/unicorn/arm_unicorn.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
|
@ -62,7 +63,8 @@ static bool UnmappedMemoryHook(uc_engine* uc, uc_mem_type type, u64 addr, int si
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
ARM_Unicorn::ARM_Unicorn(System& system, Arch architecture) : ARM_Interface{system} {
|
ARM_Unicorn::ARM_Unicorn(System& system, CPUInterruptHandler& interrupt_handler, Arch architecture)
|
||||||
|
: ARM_Interface{system, interrupt_handler} {
|
||||||
const auto arch = architecture == Arch::AArch32 ? UC_ARCH_ARM : UC_ARCH_ARM64;
|
const auto arch = architecture == Arch::AArch32 ? UC_ARCH_ARM : UC_ARCH_ARM64;
|
||||||
CHECKED(uc_open(arch, UC_MODE_ARM, &uc));
|
CHECKED(uc_open(arch, UC_MODE_ARM, &uc));
|
||||||
|
|
||||||
|
@ -160,8 +162,12 @@ void ARM_Unicorn::Run() {
|
||||||
if (GDBStub::IsServerEnabled()) {
|
if (GDBStub::IsServerEnabled()) {
|
||||||
ExecuteInstructions(std::max(4000000U, 0U));
|
ExecuteInstructions(std::max(4000000U, 0U));
|
||||||
} else {
|
} else {
|
||||||
ExecuteInstructions(
|
while (true) {
|
||||||
std::max(std::size_t(system.CoreTiming().GetDowncount()), std::size_t{0}));
|
if (interrupt_handler.IsInterrupted()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
ExecuteInstructions(10);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -183,8 +189,6 @@ void ARM_Unicorn::ExecuteInstructions(std::size_t num_instructions) {
|
||||||
UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC, page_buffer.data()));
|
UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC, page_buffer.data()));
|
||||||
CHECKED(uc_emu_start(uc, GetPC(), 1ULL << 63, 0, num_instructions));
|
CHECKED(uc_emu_start(uc, GetPC(), 1ULL << 63, 0, num_instructions));
|
||||||
CHECKED(uc_mem_unmap(uc, map_addr, page_buffer.size()));
|
CHECKED(uc_mem_unmap(uc, map_addr, page_buffer.size()));
|
||||||
|
|
||||||
system.CoreTiming().AddTicks(num_instructions);
|
|
||||||
if (GDBStub::IsServerEnabled()) {
|
if (GDBStub::IsServerEnabled()) {
|
||||||
if (last_bkpt_hit && last_bkpt.type == GDBStub::BreakpointType::Execute) {
|
if (last_bkpt_hit && last_bkpt.type == GDBStub::BreakpointType::Execute) {
|
||||||
uc_reg_write(uc, UC_ARM64_REG_PC, &last_bkpt.address);
|
uc_reg_write(uc, UC_ARM64_REG_PC, &last_bkpt.address);
|
||||||
|
|
|
@ -11,6 +11,7 @@
|
||||||
|
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
|
class CPUInterruptHandler;
|
||||||
class System;
|
class System;
|
||||||
|
|
||||||
class ARM_Unicorn final : public ARM_Interface {
|
class ARM_Unicorn final : public ARM_Interface {
|
||||||
|
@ -20,7 +21,7 @@ public:
|
||||||
AArch64, // 64-bit ARM
|
AArch64, // 64-bit ARM
|
||||||
};
|
};
|
||||||
|
|
||||||
explicit ARM_Unicorn(System& system, Arch architecture);
|
explicit ARM_Unicorn(System& system, CPUInterruptHandler& interrupt_handler, Arch architecture);
|
||||||
~ARM_Unicorn() override;
|
~ARM_Unicorn() override;
|
||||||
|
|
||||||
void SetPC(u64 pc) override;
|
void SetPC(u64 pc) override;
|
||||||
|
|
|
@ -11,7 +11,6 @@
|
||||||
#include "common/string_util.h"
|
#include "common/string_util.h"
|
||||||
#include "core/arm/exclusive_monitor.h"
|
#include "core/arm/exclusive_monitor.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_manager.h"
|
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
#include "core/cpu_manager.h"
|
#include "core/cpu_manager.h"
|
||||||
#include "core/device_memory.h"
|
#include "core/device_memory.h"
|
||||||
|
@ -117,23 +116,30 @@ struct System::Impl {
|
||||||
: kernel{system}, fs_controller{system}, memory{system},
|
: kernel{system}, fs_controller{system}, memory{system},
|
||||||
cpu_manager{system}, reporter{system}, applet_manager{system} {}
|
cpu_manager{system}, reporter{system}, applet_manager{system} {}
|
||||||
|
|
||||||
CoreManager& CurrentCoreManager() {
|
|
||||||
return cpu_manager.GetCurrentCoreManager();
|
|
||||||
}
|
|
||||||
|
|
||||||
Kernel::PhysicalCore& CurrentPhysicalCore() {
|
Kernel::PhysicalCore& CurrentPhysicalCore() {
|
||||||
const auto index = cpu_manager.GetActiveCoreIndex();
|
return kernel.CurrentPhysicalCore();
|
||||||
return kernel.PhysicalCore(index);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Kernel::PhysicalCore& GetPhysicalCore(std::size_t index) {
|
Kernel::PhysicalCore& GetPhysicalCore(std::size_t index) {
|
||||||
return kernel.PhysicalCore(index);
|
return kernel.PhysicalCore(index);
|
||||||
}
|
}
|
||||||
|
|
||||||
ResultStatus RunLoop(bool tight_loop) {
|
ResultStatus Run() {
|
||||||
status = ResultStatus::Success;
|
status = ResultStatus::Success;
|
||||||
|
|
||||||
cpu_manager.RunLoop(tight_loop);
|
kernel.Suspend(false);
|
||||||
|
core_timing.SyncPause(false);
|
||||||
|
cpu_manager.Pause(false);
|
||||||
|
|
||||||
|
return status;
|
||||||
|
}
|
||||||
|
|
||||||
|
ResultStatus Pause() {
|
||||||
|
status = ResultStatus::Success;
|
||||||
|
|
||||||
|
kernel.Suspend(true);
|
||||||
|
core_timing.SyncPause(true);
|
||||||
|
cpu_manager.Pause(true);
|
||||||
|
|
||||||
return status;
|
return status;
|
||||||
}
|
}
|
||||||
|
@ -143,7 +149,7 @@ struct System::Impl {
|
||||||
|
|
||||||
device_memory = std::make_unique<Core::DeviceMemory>(system);
|
device_memory = std::make_unique<Core::DeviceMemory>(system);
|
||||||
|
|
||||||
core_timing.Initialize();
|
core_timing.Initialize([&system]() { system.RegisterHostThread(); });
|
||||||
kernel.Initialize();
|
kernel.Initialize();
|
||||||
cpu_manager.Initialize();
|
cpu_manager.Initialize();
|
||||||
|
|
||||||
|
@ -387,20 +393,24 @@ struct System::Impl {
|
||||||
System::System() : impl{std::make_unique<Impl>(*this)} {}
|
System::System() : impl{std::make_unique<Impl>(*this)} {}
|
||||||
System::~System() = default;
|
System::~System() = default;
|
||||||
|
|
||||||
CoreManager& System::CurrentCoreManager() {
|
CpuManager& System::GetCpuManager() {
|
||||||
return impl->CurrentCoreManager();
|
return impl->cpu_manager;
|
||||||
}
|
}
|
||||||
|
|
||||||
const CoreManager& System::CurrentCoreManager() const {
|
const CpuManager& System::GetCpuManager() const {
|
||||||
return impl->CurrentCoreManager();
|
return impl->cpu_manager;
|
||||||
}
|
}
|
||||||
|
|
||||||
System::ResultStatus System::RunLoop(bool tight_loop) {
|
System::ResultStatus System::Run() {
|
||||||
return impl->RunLoop(tight_loop);
|
return impl->Run();
|
||||||
|
}
|
||||||
|
|
||||||
|
System::ResultStatus System::Pause() {
|
||||||
|
return impl->Pause();
|
||||||
}
|
}
|
||||||
|
|
||||||
System::ResultStatus System::SingleStep() {
|
System::ResultStatus System::SingleStep() {
|
||||||
return RunLoop(false);
|
return ResultStatus::Success;
|
||||||
}
|
}
|
||||||
|
|
||||||
void System::InvalidateCpuInstructionCaches() {
|
void System::InvalidateCpuInstructionCaches() {
|
||||||
|
@ -444,7 +454,9 @@ const ARM_Interface& System::CurrentArmInterface() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
std::size_t System::CurrentCoreIndex() const {
|
std::size_t System::CurrentCoreIndex() const {
|
||||||
return impl->cpu_manager.GetActiveCoreIndex();
|
std::size_t core = impl->kernel.GetCurrentHostThreadID();
|
||||||
|
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
|
||||||
|
return core;
|
||||||
}
|
}
|
||||||
|
|
||||||
Kernel::Scheduler& System::CurrentScheduler() {
|
Kernel::Scheduler& System::CurrentScheduler() {
|
||||||
|
@ -497,15 +509,6 @@ const ARM_Interface& System::ArmInterface(std::size_t core_index) const {
|
||||||
return impl->GetPhysicalCore(core_index).ArmInterface();
|
return impl->GetPhysicalCore(core_index).ArmInterface();
|
||||||
}
|
}
|
||||||
|
|
||||||
CoreManager& System::GetCoreManager(std::size_t core_index) {
|
|
||||||
return impl->cpu_manager.GetCoreManager(core_index);
|
|
||||||
}
|
|
||||||
|
|
||||||
const CoreManager& System::GetCoreManager(std::size_t core_index) const {
|
|
||||||
ASSERT(core_index < NUM_CPU_CORES);
|
|
||||||
return impl->cpu_manager.GetCoreManager(core_index);
|
|
||||||
}
|
|
||||||
|
|
||||||
ExclusiveMonitor& System::Monitor() {
|
ExclusiveMonitor& System::Monitor() {
|
||||||
return impl->kernel.GetExclusiveMonitor();
|
return impl->kernel.GetExclusiveMonitor();
|
||||||
}
|
}
|
||||||
|
|
|
@ -90,7 +90,7 @@ class InterruptManager;
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
class ARM_Interface;
|
class ARM_Interface;
|
||||||
class CoreManager;
|
class CpuManager;
|
||||||
class DeviceMemory;
|
class DeviceMemory;
|
||||||
class ExclusiveMonitor;
|
class ExclusiveMonitor;
|
||||||
class FrameLimiter;
|
class FrameLimiter;
|
||||||
|
@ -136,16 +136,18 @@ public:
|
||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Run the core CPU loop
|
* Run the OS and Application
|
||||||
* This function runs the core for the specified number of CPU instructions before trying to
|
* This function will start emulation and run the competent devices
|
||||||
* update hardware. This is much faster than SingleStep (and should be equivalent), as the CPU
|
|
||||||
* is not required to do a full dispatch with each instruction. NOTE: the number of instructions
|
|
||||||
* requested is not guaranteed to run, as this will be interrupted preemptively if a hardware
|
|
||||||
* update is requested (e.g. on a thread switch).
|
|
||||||
* @param tight_loop If false, the CPU single-steps.
|
|
||||||
* @return Result status, indicating whether or not the operation succeeded.
|
|
||||||
*/
|
*/
|
||||||
ResultStatus RunLoop(bool tight_loop = true);
|
ResultStatus Run();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Pause the OS and Application
|
||||||
|
* This function will pause emulation and stop the competent devices
|
||||||
|
*/
|
||||||
|
ResultStatus Pause();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Step the CPU one instruction
|
* Step the CPU one instruction
|
||||||
|
@ -215,11 +217,9 @@ public:
|
||||||
/// Gets a const reference to an ARM interface from the CPU core with the specified index
|
/// Gets a const reference to an ARM interface from the CPU core with the specified index
|
||||||
const ARM_Interface& ArmInterface(std::size_t core_index) const;
|
const ARM_Interface& ArmInterface(std::size_t core_index) const;
|
||||||
|
|
||||||
/// Gets a CPU interface to the CPU core with the specified index
|
CpuManager& GetCpuManager();
|
||||||
CoreManager& GetCoreManager(std::size_t core_index);
|
|
||||||
|
|
||||||
/// Gets a CPU interface to the CPU core with the specified index
|
const CpuManager& GetCpuManager() const;
|
||||||
const CoreManager& GetCoreManager(std::size_t core_index) const;
|
|
||||||
|
|
||||||
/// Gets a reference to the exclusive monitor
|
/// Gets a reference to the exclusive monitor
|
||||||
ExclusiveMonitor& Monitor();
|
ExclusiveMonitor& Monitor();
|
||||||
|
@ -373,12 +373,6 @@ public:
|
||||||
private:
|
private:
|
||||||
System();
|
System();
|
||||||
|
|
||||||
/// Returns the currently running CPU core
|
|
||||||
CoreManager& CurrentCoreManager();
|
|
||||||
|
|
||||||
/// Returns the currently running CPU core
|
|
||||||
const CoreManager& CurrentCoreManager() const;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Initialize the emulated system.
|
* Initialize the emulated system.
|
||||||
* @param emu_window Reference to the host-system window used for video output and keyboard
|
* @param emu_window Reference to the host-system window used for video output and keyboard
|
||||||
|
|
|
@ -34,7 +34,6 @@ void CoreManager::RunLoop(bool tight_loop) {
|
||||||
// instead advance to the next event and try to yield to the next thread
|
// instead advance to the next event and try to yield to the next thread
|
||||||
if (Kernel::GetCurrentThread() == nullptr) {
|
if (Kernel::GetCurrentThread() == nullptr) {
|
||||||
LOG_TRACE(Core, "Core-{} idling", core_index);
|
LOG_TRACE(Core, "Core-{} idling", core_index);
|
||||||
core_timing.Idle();
|
|
||||||
} else {
|
} else {
|
||||||
if (tight_loop) {
|
if (tight_loop) {
|
||||||
physical_core.Run();
|
physical_core.Run();
|
||||||
|
@ -42,7 +41,6 @@ void CoreManager::RunLoop(bool tight_loop) {
|
||||||
physical_core.Step();
|
physical_core.Step();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
core_timing.Advance();
|
|
||||||
|
|
||||||
Reschedule();
|
Reschedule();
|
||||||
}
|
}
|
||||||
|
@ -59,7 +57,7 @@ void CoreManager::Reschedule() {
|
||||||
// Lock the global kernel mutex when we manipulate the HLE state
|
// Lock the global kernel mutex when we manipulate the HLE state
|
||||||
std::lock_guard lock(HLE::g_hle_lock);
|
std::lock_guard lock(HLE::g_hle_lock);
|
||||||
|
|
||||||
global_scheduler.SelectThread(core_index);
|
// global_scheduler.SelectThread(core_index);
|
||||||
|
|
||||||
physical_core.Scheduler().TryDoContextSwitch();
|
physical_core.Scheduler().TryDoContextSwitch();
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
// Copyright 2020 yuzu Emulator Project
|
||||||
// Licensed under GPLv2+
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
|
@ -10,20 +10,16 @@
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
|
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
#include "common/thread.h"
|
|
||||||
#include "core/core_timing_util.h"
|
#include "core/core_timing_util.h"
|
||||||
#include "core/hardware_properties.h"
|
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
|
||||||
constexpr int MAX_SLICE_LENGTH = 10000;
|
|
||||||
|
|
||||||
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
|
||||||
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
||||||
}
|
}
|
||||||
|
|
||||||
struct CoreTiming::Event {
|
struct CoreTiming::Event {
|
||||||
s64 time;
|
u64 time;
|
||||||
u64 fifo_order;
|
u64 fifo_order;
|
||||||
u64 userdata;
|
u64 userdata;
|
||||||
std::weak_ptr<EventType> type;
|
std::weak_ptr<EventType> type;
|
||||||
|
@ -39,51 +35,74 @@ struct CoreTiming::Event {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
CoreTiming::CoreTiming() = default;
|
CoreTiming::CoreTiming() {
|
||||||
|
clock =
|
||||||
|
Common::CreateBestMatchingClock(Core::Hardware::BASE_CLOCK_RATE, Core::Hardware::CNTFREQ);
|
||||||
|
}
|
||||||
|
|
||||||
CoreTiming::~CoreTiming() = default;
|
CoreTiming::~CoreTiming() = default;
|
||||||
|
|
||||||
void CoreTiming::Initialize() {
|
void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
||||||
downcounts.fill(MAX_SLICE_LENGTH);
|
std::string name = "yuzu:HostTiming";
|
||||||
time_slice.fill(MAX_SLICE_LENGTH);
|
Common::SetCurrentThreadName(name.c_str());
|
||||||
slice_length = MAX_SLICE_LENGTH;
|
instance.on_thread_init();
|
||||||
global_timer = 0;
|
instance.ThreadLoop();
|
||||||
idled_cycles = 0;
|
}
|
||||||
current_context = 0;
|
|
||||||
|
|
||||||
// The time between CoreTiming being initialized and the first call to Advance() is considered
|
|
||||||
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
|
||||||
// executing the first cycle of each slice to prepare the slice length and downcount for
|
|
||||||
// that slice.
|
|
||||||
is_global_timer_sane = true;
|
|
||||||
|
|
||||||
|
void CoreTiming::Initialize(std::function<void(void)>&& on_thread_init_) {
|
||||||
|
on_thread_init = std::move(on_thread_init_);
|
||||||
event_fifo_id = 0;
|
event_fifo_id = 0;
|
||||||
|
|
||||||
const auto empty_timed_callback = [](u64, s64) {};
|
const auto empty_timed_callback = [](u64, s64) {};
|
||||||
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
||||||
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::Shutdown() {
|
void CoreTiming::Shutdown() {
|
||||||
|
paused = true;
|
||||||
|
shutting_down = true;
|
||||||
|
event.Set();
|
||||||
|
timer_thread->join();
|
||||||
ClearPendingEvents();
|
ClearPendingEvents();
|
||||||
|
timer_thread.reset();
|
||||||
|
has_started = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ScheduleEvent(s64 cycles_into_future, const std::shared_ptr<EventType>& event_type,
|
void CoreTiming::Pause(bool is_paused) {
|
||||||
|
paused = is_paused;
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::SyncPause(bool is_paused) {
|
||||||
|
if (is_paused == paused && paused_set == paused) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
Pause(is_paused);
|
||||||
|
event.Set();
|
||||||
|
while (paused_set != is_paused)
|
||||||
|
;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CoreTiming::IsRunning() const {
|
||||||
|
return !paused_set;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CoreTiming::HasPendingEvents() const {
|
||||||
|
return !(wait_set && event_queue.empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
|
||||||
u64 userdata) {
|
u64 userdata) {
|
||||||
std::lock_guard guard{inner_mutex};
|
basic_lock.lock();
|
||||||
const s64 timeout = GetTicks() + cycles_into_future;
|
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
|
||||||
|
|
||||||
// If this event needs to be scheduled before the next advance(), force one early
|
|
||||||
if (!is_global_timer_sane) {
|
|
||||||
ForceExceptionCheck(cycles_into_future);
|
|
||||||
}
|
|
||||||
|
|
||||||
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
|
||||||
|
|
||||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
basic_lock.unlock();
|
||||||
|
event.Set();
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
|
||||||
std::lock_guard guard{inner_mutex};
|
basic_lock.lock();
|
||||||
|
|
||||||
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
|
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
|
||||||
});
|
});
|
||||||
|
@ -93,23 +112,23 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u
|
||||||
event_queue.erase(itr, event_queue.end());
|
event_queue.erase(itr, event_queue.end());
|
||||||
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
}
|
}
|
||||||
|
basic_lock.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
u64 CoreTiming::GetTicks() const {
|
void CoreTiming::AddTicks(std::size_t core_index, u64 ticks) {
|
||||||
u64 ticks = static_cast<u64>(global_timer);
|
ticks_count[core_index] += ticks;
|
||||||
if (!is_global_timer_sane) {
|
|
||||||
ticks += accumulated_ticks;
|
|
||||||
}
|
|
||||||
return ticks;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
u64 CoreTiming::GetIdleTicks() const {
|
void CoreTiming::ResetTicks(std::size_t core_index) {
|
||||||
return static_cast<u64>(idled_cycles);
|
ticks_count[core_index] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::AddTicks(u64 ticks) {
|
u64 CoreTiming::GetCPUTicks() const {
|
||||||
accumulated_ticks += ticks;
|
return clock->GetCPUCycles();
|
||||||
downcounts[current_context] -= static_cast<s64>(ticks);
|
}
|
||||||
|
|
||||||
|
u64 CoreTiming::GetClockTicks() const {
|
||||||
|
return clock->GetClockCycles();
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ClearPendingEvents() {
|
void CoreTiming::ClearPendingEvents() {
|
||||||
|
@ -117,7 +136,7 @@ void CoreTiming::ClearPendingEvents() {
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||||||
std::lock_guard guard{inner_mutex};
|
basic_lock.lock();
|
||||||
|
|
||||||
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
return e.type.lock().get() == event_type.get();
|
return e.type.lock().get() == event_type.get();
|
||||||
|
@ -128,99 +147,64 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||||||
event_queue.erase(itr, event_queue.end());
|
event_queue.erase(itr, event_queue.end());
|
||||||
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
}
|
}
|
||||||
|
basic_lock.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ForceExceptionCheck(s64 cycles) {
|
std::optional<u64> CoreTiming::Advance() {
|
||||||
cycles = std::max<s64>(0, cycles);
|
advance_lock.lock();
|
||||||
if (downcounts[current_context] <= cycles) {
|
basic_lock.lock();
|
||||||
return;
|
global_timer = GetGlobalTimeNs().count();
|
||||||
}
|
|
||||||
|
|
||||||
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
|
||||||
// here. Account for cycles already executed by adjusting the g.slice_length
|
|
||||||
downcounts[current_context] = static_cast<int>(cycles);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
|
|
||||||
const u64 original_context = current_context;
|
|
||||||
u64 next_context = (original_context + 1) % num_cpu_cores;
|
|
||||||
while (next_context != original_context) {
|
|
||||||
if (time_slice[next_context] >= needed_ticks) {
|
|
||||||
return {next_context};
|
|
||||||
} else if (time_slice[next_context] >= 0) {
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
|
||||||
next_context = (next_context + 1) % num_cpu_cores;
|
|
||||||
}
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
|
||||||
|
|
||||||
void CoreTiming::Advance() {
|
|
||||||
std::unique_lock<std::mutex> guard(inner_mutex);
|
|
||||||
|
|
||||||
const u64 cycles_executed = accumulated_ticks;
|
|
||||||
time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks);
|
|
||||||
global_timer += cycles_executed;
|
|
||||||
|
|
||||||
is_global_timer_sane = true;
|
|
||||||
|
|
||||||
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||||||
Event evt = std::move(event_queue.front());
|
Event evt = std::move(event_queue.front());
|
||||||
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
event_queue.pop_back();
|
event_queue.pop_back();
|
||||||
inner_mutex.unlock();
|
basic_lock.unlock();
|
||||||
|
|
||||||
if (auto event_type{evt.type.lock()}) {
|
if (auto event_type{evt.type.lock()}) {
|
||||||
event_type->callback(evt.userdata, global_timer - evt.time);
|
event_type->callback(evt.userdata, global_timer - evt.time);
|
||||||
}
|
}
|
||||||
|
|
||||||
inner_mutex.lock();
|
basic_lock.lock();
|
||||||
}
|
}
|
||||||
|
|
||||||
is_global_timer_sane = false;
|
|
||||||
|
|
||||||
// Still events left (scheduled in the future)
|
|
||||||
if (!event_queue.empty()) {
|
if (!event_queue.empty()) {
|
||||||
const s64 needed_ticks =
|
const u64 next_time = event_queue.front().time - global_timer;
|
||||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
basic_lock.unlock();
|
||||||
const auto next_core = NextAvailableCore(needed_ticks);
|
advance_lock.unlock();
|
||||||
if (next_core) {
|
return next_time;
|
||||||
downcounts[*next_core] = needed_ticks;
|
} else {
|
||||||
|
basic_lock.unlock();
|
||||||
|
advance_lock.unlock();
|
||||||
|
return std::nullopt;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
accumulated_ticks = 0;
|
void CoreTiming::ThreadLoop() {
|
||||||
|
has_started = true;
|
||||||
downcounts[current_context] = time_slice[current_context];
|
while (!shutting_down) {
|
||||||
|
while (!paused) {
|
||||||
|
paused_set = false;
|
||||||
|
const auto next_time = Advance();
|
||||||
|
if (next_time) {
|
||||||
|
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
||||||
|
event.WaitFor(next_time_ns);
|
||||||
|
} else {
|
||||||
|
wait_set = true;
|
||||||
|
event.Wait();
|
||||||
|
}
|
||||||
|
wait_set = false;
|
||||||
|
}
|
||||||
|
paused_set = true;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ResetRun() {
|
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
|
||||||
downcounts.fill(MAX_SLICE_LENGTH);
|
return clock->GetTimeNS();
|
||||||
time_slice.fill(MAX_SLICE_LENGTH);
|
|
||||||
current_context = 0;
|
|
||||||
// Still events left (scheduled in the future)
|
|
||||||
if (!event_queue.empty()) {
|
|
||||||
const s64 needed_ticks =
|
|
||||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
|
||||||
downcounts[current_context] = needed_ticks;
|
|
||||||
}
|
|
||||||
|
|
||||||
is_global_timer_sane = false;
|
|
||||||
accumulated_ticks = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void CoreTiming::Idle() {
|
|
||||||
accumulated_ticks += downcounts[current_context];
|
|
||||||
idled_cycles += downcounts[current_context];
|
|
||||||
downcounts[current_context] = 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
||||||
return std::chrono::microseconds{GetTicks() * 1000000 / Hardware::BASE_CLOCK_RATE};
|
return clock->GetTimeUS();
|
||||||
}
|
|
||||||
|
|
||||||
s64 CoreTiming::GetDowncount() const {
|
|
||||||
return downcounts[current_context];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Core::Timing
|
} // namespace Core::Timing
|
||||||
|
|
|
@ -1,19 +1,25 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
// Copyright 2020 yuzu Emulator Project
|
||||||
// Licensed under GPLv2+
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include <atomic>
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
#include <optional>
|
#include <optional>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <thread>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
#include "common/spin_lock.h"
|
||||||
|
#include "common/thread.h"
|
||||||
#include "common/threadsafe_queue.h"
|
#include "common/threadsafe_queue.h"
|
||||||
|
#include "common/wall_clock.h"
|
||||||
|
#include "core/hardware_properties.h"
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
|
||||||
|
@ -56,16 +62,30 @@ public:
|
||||||
|
|
||||||
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
|
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
|
||||||
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
|
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
|
||||||
void Initialize();
|
void Initialize(std::function<void(void)>&& on_thread_init_);
|
||||||
|
|
||||||
/// Tears down all timing related functionality.
|
/// Tears down all timing related functionality.
|
||||||
void Shutdown();
|
void Shutdown();
|
||||||
|
|
||||||
/// After the first Advance, the slice lengths and the downcount will be reduced whenever an
|
/// Pauses/Unpauses the execution of the timer thread.
|
||||||
/// event is scheduled earlier than the current values.
|
void Pause(bool is_paused);
|
||||||
///
|
|
||||||
/// Scheduling from a callback will not update the downcount until the Advance() completes.
|
/// Pauses/Unpauses the execution of the timer thread and waits until paused.
|
||||||
void ScheduleEvent(s64 cycles_into_future, const std::shared_ptr<EventType>& event_type,
|
void SyncPause(bool is_paused);
|
||||||
|
|
||||||
|
/// Checks if core timing is running.
|
||||||
|
bool IsRunning() const;
|
||||||
|
|
||||||
|
/// Checks if the timer thread has started.
|
||||||
|
bool HasStarted() const {
|
||||||
|
return has_started;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Checks if there are any pending time events.
|
||||||
|
bool HasPendingEvents() const;
|
||||||
|
|
||||||
|
/// Schedules an event in core timing
|
||||||
|
void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
|
||||||
u64 userdata = 0);
|
u64 userdata = 0);
|
||||||
|
|
||||||
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
|
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
|
||||||
|
@ -73,41 +93,24 @@ public:
|
||||||
/// We only permit one event of each type in the queue at a time.
|
/// We only permit one event of each type in the queue at a time.
|
||||||
void RemoveEvent(const std::shared_ptr<EventType>& event_type);
|
void RemoveEvent(const std::shared_ptr<EventType>& event_type);
|
||||||
|
|
||||||
void ForceExceptionCheck(s64 cycles);
|
void AddTicks(std::size_t core_index, u64 ticks);
|
||||||
|
|
||||||
/// This should only be called from the emu thread, if you are calling it any other thread,
|
void ResetTicks(std::size_t core_index);
|
||||||
/// you are doing something evil
|
|
||||||
u64 GetTicks() const;
|
|
||||||
|
|
||||||
u64 GetIdleTicks() const;
|
/// Returns current time in emulated CPU cycles
|
||||||
|
u64 GetCPUTicks() const;
|
||||||
|
|
||||||
void AddTicks(u64 ticks);
|
/// Returns current time in emulated in Clock cycles
|
||||||
|
u64 GetClockTicks() const;
|
||||||
/// Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
|
|
||||||
/// the previous timing slice and begins the next one, you must Advance from the previous
|
|
||||||
/// slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
|
|
||||||
/// Advance() is required to initialize the slice length before the first cycle of emulated
|
|
||||||
/// instructions is executed.
|
|
||||||
void Advance();
|
|
||||||
|
|
||||||
/// Pretend that the main CPU has executed enough cycles to reach the next event.
|
|
||||||
void Idle();
|
|
||||||
|
|
||||||
|
/// Returns current time in microseconds.
|
||||||
std::chrono::microseconds GetGlobalTimeUs() const;
|
std::chrono::microseconds GetGlobalTimeUs() const;
|
||||||
|
|
||||||
void ResetRun();
|
/// Returns current time in nanoseconds.
|
||||||
|
std::chrono::nanoseconds GetGlobalTimeNs() const;
|
||||||
|
|
||||||
s64 GetDowncount() const;
|
/// Checks for events manually and returns time in nanoseconds for next event, threadsafe.
|
||||||
|
std::optional<u64> Advance();
|
||||||
void SwitchContext(u64 new_context) {
|
|
||||||
current_context = new_context;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CanCurrentContextRun() const {
|
|
||||||
return time_slice[current_context] > 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::optional<u64> NextAvailableCore(const s64 needed_ticks) const;
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
struct Event;
|
struct Event;
|
||||||
|
@ -115,21 +118,14 @@ private:
|
||||||
/// Clear all pending events. This should ONLY be done on exit.
|
/// Clear all pending events. This should ONLY be done on exit.
|
||||||
void ClearPendingEvents();
|
void ClearPendingEvents();
|
||||||
|
|
||||||
static constexpr u64 num_cpu_cores = 4;
|
static void ThreadEntry(CoreTiming& instance);
|
||||||
|
void ThreadLoop();
|
||||||
|
|
||||||
s64 global_timer = 0;
|
std::unique_ptr<Common::WallClock> clock;
|
||||||
s64 idled_cycles = 0;
|
|
||||||
s64 slice_length = 0;
|
|
||||||
u64 accumulated_ticks = 0;
|
|
||||||
std::array<s64, num_cpu_cores> downcounts{};
|
|
||||||
// Slice of time assigned to each core per run.
|
|
||||||
std::array<s64, num_cpu_cores> time_slice{};
|
|
||||||
u64 current_context = 0;
|
|
||||||
|
|
||||||
// Are we in a function that has been called from Advance()
|
u64 global_timer = 0;
|
||||||
// If events are scheduled from a function that gets called from Advance(),
|
|
||||||
// don't change slice_length and downcount.
|
std::chrono::nanoseconds start_point;
|
||||||
bool is_global_timer_sane = false;
|
|
||||||
|
|
||||||
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
||||||
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
||||||
|
@ -139,8 +135,18 @@ private:
|
||||||
u64 event_fifo_id = 0;
|
u64 event_fifo_id = 0;
|
||||||
|
|
||||||
std::shared_ptr<EventType> ev_lost;
|
std::shared_ptr<EventType> ev_lost;
|
||||||
|
Common::Event event{};
|
||||||
|
Common::SpinLock basic_lock{};
|
||||||
|
Common::SpinLock advance_lock{};
|
||||||
|
std::unique_ptr<std::thread> timer_thread;
|
||||||
|
std::atomic<bool> paused{};
|
||||||
|
std::atomic<bool> paused_set{};
|
||||||
|
std::atomic<bool> wait_set{};
|
||||||
|
std::atomic<bool> shutting_down{};
|
||||||
|
std::atomic<bool> has_started{};
|
||||||
|
std::function<void(void)> on_thread_init{};
|
||||||
|
|
||||||
std::mutex inner_mutex;
|
std::array<std::atomic<u64>, Core::Hardware::NUM_CPU_CORES> ticks_count{};
|
||||||
};
|
};
|
||||||
|
|
||||||
/// Creates a core timing event with the given name and callback.
|
/// Creates a core timing event with the given name and callback.
|
||||||
|
|
|
@ -2,80 +2,192 @@
|
||||||
// Licensed under GPLv2 or any later version
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include "common/fiber.h"
|
||||||
|
#include "common/thread.h"
|
||||||
#include "core/arm/exclusive_monitor.h"
|
#include "core/arm/exclusive_monitor.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_manager.h"
|
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
#include "core/cpu_manager.h"
|
#include "core/cpu_manager.h"
|
||||||
#include "core/gdbstub/gdbstub.h"
|
#include "core/gdbstub/gdbstub.h"
|
||||||
|
#include "core/hle/kernel/kernel.h"
|
||||||
|
#include "core/hle/kernel/physical_core.h"
|
||||||
|
#include "core/hle/kernel/scheduler.h"
|
||||||
|
#include "core/hle/kernel/thread.h"
|
||||||
|
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
CpuManager::CpuManager(System& system) : system{system} {}
|
CpuManager::CpuManager(System& system) : system{system} {}
|
||||||
CpuManager::~CpuManager() = default;
|
CpuManager::~CpuManager() = default;
|
||||||
|
|
||||||
|
void CpuManager::ThreadStart(CpuManager& cpu_manager, std::size_t core) {
|
||||||
|
cpu_manager.RunThread(core);
|
||||||
|
}
|
||||||
|
|
||||||
void CpuManager::Initialize() {
|
void CpuManager::Initialize() {
|
||||||
for (std::size_t index = 0; index < core_managers.size(); ++index) {
|
running_mode = true;
|
||||||
core_managers[index] = std::make_unique<CoreManager>(system, index);
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
core_data[core].host_thread =
|
||||||
|
std::make_unique<std::thread>(ThreadStart, std::ref(*this), core);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void CpuManager::Shutdown() {
|
void CpuManager::Shutdown() {
|
||||||
for (auto& cpu_core : core_managers) {
|
running_mode = false;
|
||||||
cpu_core.reset();
|
Pause(false);
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
core_data[core].host_thread->join();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
CoreManager& CpuManager::GetCoreManager(std::size_t index) {
|
void CpuManager::GuestThreadFunction(void* cpu_manager_) {
|
||||||
return *core_managers.at(index);
|
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
|
||||||
|
cpu_manager->RunGuestThread();
|
||||||
}
|
}
|
||||||
|
|
||||||
const CoreManager& CpuManager::GetCoreManager(std::size_t index) const {
|
void CpuManager::IdleThreadFunction(void* cpu_manager_) {
|
||||||
return *core_managers.at(index);
|
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
|
||||||
|
cpu_manager->RunIdleThread();
|
||||||
}
|
}
|
||||||
|
|
||||||
CoreManager& CpuManager::GetCurrentCoreManager() {
|
void CpuManager::SuspendThreadFunction(void* cpu_manager_) {
|
||||||
// Otherwise, use single-threaded mode active_core variable
|
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
|
||||||
return *core_managers[active_core];
|
cpu_manager->RunSuspendThread();
|
||||||
}
|
}
|
||||||
|
|
||||||
const CoreManager& CpuManager::GetCurrentCoreManager() const {
|
std::function<void(void*)> CpuManager::GetGuestThreadStartFunc() {
|
||||||
// Otherwise, use single-threaded mode active_core variable
|
return std::function<void(void*)>(GuestThreadFunction);
|
||||||
return *core_managers[active_core];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void CpuManager::RunLoop(bool tight_loop) {
|
std::function<void(void*)> CpuManager::GetIdleThreadStartFunc() {
|
||||||
if (GDBStub::IsServerEnabled()) {
|
return std::function<void(void*)>(IdleThreadFunction);
|
||||||
GDBStub::HandlePacket();
|
}
|
||||||
|
|
||||||
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
|
std::function<void(void*)> CpuManager::GetSuspendThreadStartFunc() {
|
||||||
// execute. Otherwise, get out of the loop function.
|
return std::function<void(void*)>(SuspendThreadFunction);
|
||||||
if (GDBStub::GetCpuHaltFlag()) {
|
}
|
||||||
if (GDBStub::GetCpuStepFlag()) {
|
|
||||||
tight_loop = false;
|
void* CpuManager::GetStartFuncParamater() {
|
||||||
|
return static_cast<void*>(this);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CpuManager::RunGuestThread() {
|
||||||
|
auto& kernel = system.Kernel();
|
||||||
|
{
|
||||||
|
auto& sched = kernel.CurrentScheduler();
|
||||||
|
sched.OnThreadStart();
|
||||||
|
}
|
||||||
|
while (true) {
|
||||||
|
auto& physical_core = kernel.CurrentPhysicalCore();
|
||||||
|
LOG_CRITICAL(Core_ARM, "Running Guest Thread");
|
||||||
|
physical_core.Idle();
|
||||||
|
LOG_CRITICAL(Core_ARM, "Leaving Guest Thread");
|
||||||
|
// physical_core.Run();
|
||||||
|
auto& scheduler = physical_core.Scheduler();
|
||||||
|
scheduler.TryDoContextSwitch();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CpuManager::RunIdleThread() {
|
||||||
|
auto& kernel = system.Kernel();
|
||||||
|
while (true) {
|
||||||
|
auto& physical_core = kernel.CurrentPhysicalCore();
|
||||||
|
LOG_CRITICAL(Core_ARM, "Running Idle Thread");
|
||||||
|
physical_core.Idle();
|
||||||
|
auto& scheduler = physical_core.Scheduler();
|
||||||
|
scheduler.TryDoContextSwitch();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CpuManager::RunSuspendThread() {
|
||||||
|
LOG_CRITICAL(Core_ARM, "Suspending Thread Entered");
|
||||||
|
auto& kernel = system.Kernel();
|
||||||
|
{
|
||||||
|
auto& sched = kernel.CurrentScheduler();
|
||||||
|
sched.OnThreadStart();
|
||||||
|
}
|
||||||
|
while (true) {
|
||||||
|
auto core = kernel.GetCurrentHostThreadID();
|
||||||
|
auto& scheduler = kernel.CurrentScheduler();
|
||||||
|
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
|
||||||
|
LOG_CRITICAL(Core_ARM, "Suspending Core {}", core);
|
||||||
|
Common::Fiber::YieldTo(current_thread->GetHostContext(), core_data[core].host_context);
|
||||||
|
LOG_CRITICAL(Core_ARM, "Unsuspending Core {}", core);
|
||||||
|
ASSERT(scheduler.ContextSwitchPending());
|
||||||
|
ASSERT(core == kernel.GetCurrentHostThreadID());
|
||||||
|
scheduler.TryDoContextSwitch();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CpuManager::Pause(bool paused) {
|
||||||
|
if (!paused) {
|
||||||
|
bool all_not_barrier = false;
|
||||||
|
while (!all_not_barrier) {
|
||||||
|
all_not_barrier = true;
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
all_not_barrier &=
|
||||||
|
!core_data[core].is_running.load() && core_data[core].initialized.load();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
core_data[core].enter_barrier->Set();
|
||||||
|
}
|
||||||
|
if (paused_state.load()) {
|
||||||
|
bool all_barrier = false;
|
||||||
|
while (!all_barrier) {
|
||||||
|
all_barrier = true;
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
all_barrier &=
|
||||||
|
core_data[core].is_paused.load() && core_data[core].initialized.load();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
core_data[core].exit_barrier->Set();
|
||||||
|
}
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
return;
|
/// Wait until all cores are paused.
|
||||||
|
bool all_barrier = false;
|
||||||
|
while (!all_barrier) {
|
||||||
|
all_barrier = true;
|
||||||
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
all_barrier &=
|
||||||
|
core_data[core].is_paused.load() && core_data[core].initialized.load();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
/// Don't release the barrier
|
||||||
|
}
|
||||||
|
paused_state = paused;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto& core_timing = system.CoreTiming();
|
void CpuManager::RunThread(std::size_t core) {
|
||||||
core_timing.ResetRun();
|
/// Initialization
|
||||||
bool keep_running{};
|
system.RegisterCoreThread(core);
|
||||||
do {
|
std::string name = "yuzu:CoreHostThread_" + std::to_string(core);
|
||||||
keep_running = false;
|
Common::SetCurrentThreadName(name.c_str());
|
||||||
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
auto& data = core_data[core];
|
||||||
core_timing.SwitchContext(active_core);
|
data.enter_barrier = std::make_unique<Common::Event>();
|
||||||
if (core_timing.CanCurrentContextRun()) {
|
data.exit_barrier = std::make_unique<Common::Event>();
|
||||||
core_managers[active_core]->RunLoop(tight_loop);
|
data.host_context = Common::Fiber::ThreadToFiber();
|
||||||
}
|
data.is_running = false;
|
||||||
keep_running |= core_timing.CanCurrentContextRun();
|
data.initialized = true;
|
||||||
}
|
/// Running
|
||||||
} while (keep_running);
|
while (running_mode) {
|
||||||
|
data.is_running = false;
|
||||||
if (GDBStub::IsServerEnabled()) {
|
data.enter_barrier->Wait();
|
||||||
GDBStub::SetCpuStepFlag(false);
|
auto& scheduler = system.Kernel().CurrentScheduler();
|
||||||
|
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
|
||||||
|
data.is_running = true;
|
||||||
|
Common::Fiber::YieldTo(data.host_context, current_thread->GetHostContext());
|
||||||
|
data.is_running = false;
|
||||||
|
data.is_paused = true;
|
||||||
|
data.exit_barrier->Wait();
|
||||||
|
data.is_paused = false;
|
||||||
}
|
}
|
||||||
|
/// Time to cleanup
|
||||||
|
data.host_context->Exit();
|
||||||
|
data.enter_barrier.reset();
|
||||||
|
data.exit_barrier.reset();
|
||||||
|
data.initialized = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Core
|
} // namespace Core
|
||||||
|
|
|
@ -5,12 +5,18 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <array>
|
#include <array>
|
||||||
|
#include <functional>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
#include <thread>
|
||||||
#include "core/hardware_properties.h"
|
#include "core/hardware_properties.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
class Event;
|
||||||
|
class Fiber;
|
||||||
|
} // namespace Common
|
||||||
|
|
||||||
namespace Core {
|
namespace Core {
|
||||||
|
|
||||||
class CoreManager;
|
|
||||||
class System;
|
class System;
|
||||||
|
|
||||||
class CpuManager {
|
class CpuManager {
|
||||||
|
@ -27,21 +33,40 @@ public:
|
||||||
void Initialize();
|
void Initialize();
|
||||||
void Shutdown();
|
void Shutdown();
|
||||||
|
|
||||||
CoreManager& GetCoreManager(std::size_t index);
|
void Pause(bool paused);
|
||||||
const CoreManager& GetCoreManager(std::size_t index) const;
|
|
||||||
|
|
||||||
CoreManager& GetCurrentCoreManager();
|
std::function<void(void*)> GetGuestThreadStartFunc();
|
||||||
const CoreManager& GetCurrentCoreManager() const;
|
std::function<void(void*)> GetIdleThreadStartFunc();
|
||||||
|
std::function<void(void*)> GetSuspendThreadStartFunc();
|
||||||
std::size_t GetActiveCoreIndex() const {
|
void* GetStartFuncParamater();
|
||||||
return active_core;
|
|
||||||
}
|
|
||||||
|
|
||||||
void RunLoop(bool tight_loop);
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::array<std::unique_ptr<CoreManager>, Hardware::NUM_CPU_CORES> core_managers;
|
static void GuestThreadFunction(void* cpu_manager);
|
||||||
std::size_t active_core{}; ///< Active core, only used in single thread mode
|
static void IdleThreadFunction(void* cpu_manager);
|
||||||
|
static void SuspendThreadFunction(void* cpu_manager);
|
||||||
|
|
||||||
|
void RunGuestThread();
|
||||||
|
void RunIdleThread();
|
||||||
|
void RunSuspendThread();
|
||||||
|
|
||||||
|
static void ThreadStart(CpuManager& cpu_manager, std::size_t core);
|
||||||
|
|
||||||
|
void RunThread(std::size_t core);
|
||||||
|
|
||||||
|
struct CoreData {
|
||||||
|
std::shared_ptr<Common::Fiber> host_context;
|
||||||
|
std::unique_ptr<Common::Event> enter_barrier;
|
||||||
|
std::unique_ptr<Common::Event> exit_barrier;
|
||||||
|
std::atomic<bool> is_running;
|
||||||
|
std::atomic<bool> is_paused;
|
||||||
|
std::atomic<bool> initialized;
|
||||||
|
std::unique_ptr<std::thread> host_thread;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::atomic<bool> running_mode{};
|
||||||
|
std::atomic<bool> paused_state{};
|
||||||
|
|
||||||
|
std::array<CoreData, Core::Hardware::NUM_CPU_CORES> core_data{};
|
||||||
|
|
||||||
System& system;
|
System& system;
|
||||||
};
|
};
|
||||||
|
|
|
@ -13,11 +13,13 @@
|
||||||
|
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
#include "common/logging/log.h"
|
#include "common/logging/log.h"
|
||||||
|
#include "common/thread.h"
|
||||||
#include "core/arm/arm_interface.h"
|
#include "core/arm/arm_interface.h"
|
||||||
#include "core/arm/exclusive_monitor.h"
|
#include "core/arm/exclusive_monitor.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
#include "core/core_timing_util.h"
|
#include "core/core_timing_util.h"
|
||||||
|
#include "core/cpu_manager.h"
|
||||||
#include "core/device_memory.h"
|
#include "core/device_memory.h"
|
||||||
#include "core/hardware_properties.h"
|
#include "core/hardware_properties.h"
|
||||||
#include "core/hle/kernel/client_port.h"
|
#include "core/hle/kernel/client_port.h"
|
||||||
|
@ -117,7 +119,9 @@ struct KernelCore::Impl {
|
||||||
InitializeSystemResourceLimit(kernel);
|
InitializeSystemResourceLimit(kernel);
|
||||||
InitializeMemoryLayout();
|
InitializeMemoryLayout();
|
||||||
InitializeThreads();
|
InitializeThreads();
|
||||||
InitializePreemption();
|
InitializePreemption(kernel);
|
||||||
|
InitializeSchedulers();
|
||||||
|
InitializeSuspendThreads();
|
||||||
}
|
}
|
||||||
|
|
||||||
void Shutdown() {
|
void Shutdown() {
|
||||||
|
@ -155,6 +159,12 @@ struct KernelCore::Impl {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void InitializeSchedulers() {
|
||||||
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||||
|
cores[i].Scheduler().Initialize();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Creates the default system resource limit
|
// Creates the default system resource limit
|
||||||
void InitializeSystemResourceLimit(KernelCore& kernel) {
|
void InitializeSystemResourceLimit(KernelCore& kernel) {
|
||||||
system_resource_limit = ResourceLimit::Create(kernel);
|
system_resource_limit = ResourceLimit::Create(kernel);
|
||||||
|
@ -178,10 +188,13 @@ struct KernelCore::Impl {
|
||||||
Core::Timing::CreateEvent("ThreadWakeupCallback", ThreadWakeupCallback);
|
Core::Timing::CreateEvent("ThreadWakeupCallback", ThreadWakeupCallback);
|
||||||
}
|
}
|
||||||
|
|
||||||
void InitializePreemption() {
|
void InitializePreemption(KernelCore& kernel) {
|
||||||
preemption_event =
|
preemption_event = Core::Timing::CreateEvent(
|
||||||
Core::Timing::CreateEvent("PreemptionCallback", [this](u64 userdata, s64 cycles_late) {
|
"PreemptionCallback", [this, &kernel](u64 userdata, s64 cycles_late) {
|
||||||
|
{
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
global_scheduler.PreemptThreads();
|
global_scheduler.PreemptThreads();
|
||||||
|
}
|
||||||
s64 time_interval = Core::Timing::msToCycles(std::chrono::milliseconds(10));
|
s64 time_interval = Core::Timing::msToCycles(std::chrono::milliseconds(10));
|
||||||
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
||||||
});
|
});
|
||||||
|
@ -190,6 +203,20 @@ struct KernelCore::Impl {
|
||||||
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void InitializeSuspendThreads() {
|
||||||
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||||
|
std::string name = "Suspend Thread Id:" + std::to_string(i);
|
||||||
|
std::function<void(void*)> init_func =
|
||||||
|
system.GetCpuManager().GetSuspendThreadStartFunc();
|
||||||
|
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
|
||||||
|
ThreadType type =
|
||||||
|
static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_SUSPEND);
|
||||||
|
auto thread_res = Thread::Create(system, type, name, 0, 0, 0, static_cast<u32>(i), 0,
|
||||||
|
nullptr, std::move(init_func), init_func_parameter);
|
||||||
|
suspend_threads[i] = std::move(thread_res).Unwrap();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void MakeCurrentProcess(Process* process) {
|
void MakeCurrentProcess(Process* process) {
|
||||||
current_process = process;
|
current_process = process;
|
||||||
|
|
||||||
|
@ -201,7 +228,10 @@ struct KernelCore::Impl {
|
||||||
core.SetIs64Bit(process->Is64BitProcess());
|
core.SetIs64Bit(process->Is64BitProcess());
|
||||||
}
|
}
|
||||||
|
|
||||||
system.Memory().SetCurrentPageTable(*process);
|
u32 core_id = GetCurrentHostThreadID();
|
||||||
|
if (core_id < Core::Hardware::NUM_CPU_CORES) {
|
||||||
|
system.Memory().SetCurrentPageTable(*process, core_id);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void RegisterCoreThread(std::size_t core_id) {
|
void RegisterCoreThread(std::size_t core_id) {
|
||||||
|
@ -219,7 +249,9 @@ struct KernelCore::Impl {
|
||||||
std::unique_lock lock{register_thread_mutex};
|
std::unique_lock lock{register_thread_mutex};
|
||||||
const std::thread::id this_id = std::this_thread::get_id();
|
const std::thread::id this_id = std::this_thread::get_id();
|
||||||
const auto it = host_thread_ids.find(this_id);
|
const auto it = host_thread_ids.find(this_id);
|
||||||
ASSERT(it == host_thread_ids.end());
|
if (it != host_thread_ids.end()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
host_thread_ids[this_id] = registered_thread_ids++;
|
host_thread_ids[this_id] = registered_thread_ids++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -343,6 +375,8 @@ struct KernelCore::Impl {
|
||||||
std::shared_ptr<Kernel::SharedMemory> irs_shared_mem;
|
std::shared_ptr<Kernel::SharedMemory> irs_shared_mem;
|
||||||
std::shared_ptr<Kernel::SharedMemory> time_shared_mem;
|
std::shared_ptr<Kernel::SharedMemory> time_shared_mem;
|
||||||
|
|
||||||
|
std::array<std::shared_ptr<Thread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{};
|
||||||
|
|
||||||
// System context
|
// System context
|
||||||
Core::System& system;
|
Core::System& system;
|
||||||
};
|
};
|
||||||
|
@ -412,6 +446,26 @@ const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
|
||||||
return impl->cores[id];
|
return impl->cores[id];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
|
||||||
|
u32 core_id = impl->GetCurrentHostThreadID();
|
||||||
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
||||||
|
return impl->cores[core_id];
|
||||||
|
}
|
||||||
|
|
||||||
|
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
|
||||||
|
u32 core_id = impl->GetCurrentHostThreadID();
|
||||||
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
||||||
|
return impl->cores[core_id];
|
||||||
|
}
|
||||||
|
|
||||||
|
Kernel::Scheduler& KernelCore::CurrentScheduler() {
|
||||||
|
return CurrentPhysicalCore().Scheduler();
|
||||||
|
}
|
||||||
|
|
||||||
|
const Kernel::Scheduler& KernelCore::CurrentScheduler() const {
|
||||||
|
return CurrentPhysicalCore().Scheduler();
|
||||||
|
}
|
||||||
|
|
||||||
Kernel::Synchronization& KernelCore::Synchronization() {
|
Kernel::Synchronization& KernelCore::Synchronization() {
|
||||||
return impl->synchronization;
|
return impl->synchronization;
|
||||||
}
|
}
|
||||||
|
@ -557,4 +611,20 @@ const Kernel::SharedMemory& KernelCore::GetTimeSharedMem() const {
|
||||||
return *impl->time_shared_mem;
|
return *impl->time_shared_mem;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void KernelCore::Suspend(bool in_suspention) {
|
||||||
|
const bool should_suspend = exception_exited || in_suspention;
|
||||||
|
{
|
||||||
|
SchedulerLock lock(*this);
|
||||||
|
ThreadStatus status = should_suspend ? ThreadStatus::Ready : ThreadStatus::WaitSleep;
|
||||||
|
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
||||||
|
impl->suspend_threads[i]->SetStatus(status);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void KernelCore::ExceptionalExit() {
|
||||||
|
exception_exited = true;
|
||||||
|
Suspend(true);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace Kernel
|
} // namespace Kernel
|
||||||
|
|
|
@ -110,6 +110,18 @@ public:
|
||||||
/// Gets the an instance of the respective physical CPU core.
|
/// Gets the an instance of the respective physical CPU core.
|
||||||
const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const;
|
const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const;
|
||||||
|
|
||||||
|
/// Gets the sole instance of the Scheduler at the current running core.
|
||||||
|
Kernel::Scheduler& CurrentScheduler();
|
||||||
|
|
||||||
|
/// Gets the sole instance of the Scheduler at the current running core.
|
||||||
|
const Kernel::Scheduler& CurrentScheduler() const;
|
||||||
|
|
||||||
|
/// Gets the an instance of the current physical CPU core.
|
||||||
|
Kernel::PhysicalCore& CurrentPhysicalCore();
|
||||||
|
|
||||||
|
/// Gets the an instance of the current physical CPU core.
|
||||||
|
const Kernel::PhysicalCore& CurrentPhysicalCore() const;
|
||||||
|
|
||||||
/// Gets the an instance of the Synchronization Interface.
|
/// Gets the an instance of the Synchronization Interface.
|
||||||
Kernel::Synchronization& Synchronization();
|
Kernel::Synchronization& Synchronization();
|
||||||
|
|
||||||
|
@ -191,6 +203,12 @@ public:
|
||||||
/// Gets the shared memory object for Time services.
|
/// Gets the shared memory object for Time services.
|
||||||
const Kernel::SharedMemory& GetTimeSharedMem() const;
|
const Kernel::SharedMemory& GetTimeSharedMem() const;
|
||||||
|
|
||||||
|
/// Suspend/unsuspend the OS.
|
||||||
|
void Suspend(bool in_suspention);
|
||||||
|
|
||||||
|
/// Exceptional exit the OS.
|
||||||
|
void ExceptionalExit();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
friend class Object;
|
friend class Object;
|
||||||
friend class Process;
|
friend class Process;
|
||||||
|
@ -219,6 +237,7 @@ private:
|
||||||
|
|
||||||
struct Impl;
|
struct Impl;
|
||||||
std::unique_ptr<Impl> impl;
|
std::unique_ptr<Impl> impl;
|
||||||
|
bool exception_exited{};
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace Kernel
|
} // namespace Kernel
|
||||||
|
|
|
@ -2,12 +2,15 @@
|
||||||
// Licensed under GPLv2 or any later version
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include "common/assert.h"
|
||||||
#include "common/logging/log.h"
|
#include "common/logging/log.h"
|
||||||
|
#include "common/spin_lock.h"
|
||||||
#include "core/arm/arm_interface.h"
|
#include "core/arm/arm_interface.h"
|
||||||
#ifdef ARCHITECTURE_x86_64
|
#ifdef ARCHITECTURE_x86_64
|
||||||
#include "core/arm/dynarmic/arm_dynarmic_32.h"
|
#include "core/arm/dynarmic/arm_dynarmic_32.h"
|
||||||
#include "core/arm/dynarmic/arm_dynarmic_64.h"
|
#include "core/arm/dynarmic/arm_dynarmic_64.h"
|
||||||
#endif
|
#endif
|
||||||
|
#include "core/arm/cpu_interrupt_handler.h"
|
||||||
#include "core/arm/exclusive_monitor.h"
|
#include "core/arm/exclusive_monitor.h"
|
||||||
#include "core/arm/unicorn/arm_unicorn.h"
|
#include "core/arm/unicorn/arm_unicorn.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
|
@ -19,21 +22,23 @@ namespace Kernel {
|
||||||
|
|
||||||
PhysicalCore::PhysicalCore(Core::System& system, std::size_t id,
|
PhysicalCore::PhysicalCore(Core::System& system, std::size_t id,
|
||||||
Core::ExclusiveMonitor& exclusive_monitor)
|
Core::ExclusiveMonitor& exclusive_monitor)
|
||||||
: core_index{id} {
|
: interrupt_handler{}, core_index{id} {
|
||||||
#ifdef ARCHITECTURE_x86_64
|
#ifdef ARCHITECTURE_x86_64
|
||||||
arm_interface_32 =
|
arm_interface_32 = std::make_unique<Core::ARM_Dynarmic_32>(system, interrupt_handler,
|
||||||
std::make_unique<Core::ARM_Dynarmic_32>(system, exclusive_monitor, core_index);
|
exclusive_monitor, core_index);
|
||||||
arm_interface_64 =
|
arm_interface_64 = std::make_unique<Core::ARM_Dynarmic_64>(system, interrupt_handler,
|
||||||
std::make_unique<Core::ARM_Dynarmic_64>(system, exclusive_monitor, core_index);
|
exclusive_monitor, core_index);
|
||||||
|
|
||||||
#else
|
#else
|
||||||
using Core::ARM_Unicorn;
|
using Core::ARM_Unicorn;
|
||||||
arm_interface_32 = std::make_unique<ARM_Unicorn>(system, ARM_Unicorn::Arch::AArch32);
|
arm_interface_32 =
|
||||||
arm_interface_64 = std::make_unique<ARM_Unicorn>(system, ARM_Unicorn::Arch::AArch64);
|
std::make_unique<ARM_Unicorn>(system, interrupt_handler, ARM_Unicorn::Arch::AArch32);
|
||||||
|
arm_interface_64 =
|
||||||
|
std::make_unique<ARM_Unicorn>(system, interrupt_handler, ARM_Unicorn::Arch::AArch64);
|
||||||
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
|
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
scheduler = std::make_unique<Kernel::Scheduler>(system, core_index);
|
scheduler = std::make_unique<Kernel::Scheduler>(system, core_index);
|
||||||
|
guard = std::make_unique<Common::SpinLock>();
|
||||||
}
|
}
|
||||||
|
|
||||||
PhysicalCore::~PhysicalCore() = default;
|
PhysicalCore::~PhysicalCore() = default;
|
||||||
|
@ -47,6 +52,10 @@ void PhysicalCore::Step() {
|
||||||
arm_interface->Step();
|
arm_interface->Step();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void PhysicalCore::Idle() {
|
||||||
|
interrupt_handler.AwaitInterrupt();
|
||||||
|
}
|
||||||
|
|
||||||
void PhysicalCore::Stop() {
|
void PhysicalCore::Stop() {
|
||||||
arm_interface->PrepareReschedule();
|
arm_interface->PrepareReschedule();
|
||||||
}
|
}
|
||||||
|
@ -63,4 +72,16 @@ void PhysicalCore::SetIs64Bit(bool is_64_bit) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void PhysicalCore::Interrupt() {
|
||||||
|
guard->lock();
|
||||||
|
interrupt_handler.SetInterrupt(true);
|
||||||
|
guard->unlock();
|
||||||
|
}
|
||||||
|
|
||||||
|
void PhysicalCore::ClearInterrupt() {
|
||||||
|
guard->lock();
|
||||||
|
interrupt_handler.SetInterrupt(false);
|
||||||
|
guard->unlock();
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace Kernel
|
} // namespace Kernel
|
||||||
|
|
|
@ -7,6 +7,12 @@
|
||||||
#include <cstddef>
|
#include <cstddef>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
|
||||||
|
#include "core/arm/cpu_interrupt_handler.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
class SpinLock;
|
||||||
|
}
|
||||||
|
|
||||||
namespace Kernel {
|
namespace Kernel {
|
||||||
class Scheduler;
|
class Scheduler;
|
||||||
} // namespace Kernel
|
} // namespace Kernel
|
||||||
|
@ -32,11 +38,24 @@ public:
|
||||||
|
|
||||||
/// Execute current jit state
|
/// Execute current jit state
|
||||||
void Run();
|
void Run();
|
||||||
|
/// Set this core in IdleState.
|
||||||
|
void Idle();
|
||||||
/// Execute a single instruction in current jit.
|
/// Execute a single instruction in current jit.
|
||||||
void Step();
|
void Step();
|
||||||
/// Stop JIT execution/exit
|
/// Stop JIT execution/exit
|
||||||
void Stop();
|
void Stop();
|
||||||
|
|
||||||
|
/// Interrupt this physical core.
|
||||||
|
void Interrupt();
|
||||||
|
|
||||||
|
/// Clear this core's interrupt
|
||||||
|
void ClearInterrupt();
|
||||||
|
|
||||||
|
/// Check if this core is interrupted
|
||||||
|
bool IsInterrupted() const {
|
||||||
|
return interrupt_handler.IsInterrupted();
|
||||||
|
}
|
||||||
|
|
||||||
// Shutdown this physical core.
|
// Shutdown this physical core.
|
||||||
void Shutdown();
|
void Shutdown();
|
||||||
|
|
||||||
|
@ -71,11 +90,13 @@ public:
|
||||||
void SetIs64Bit(bool is_64_bit);
|
void SetIs64Bit(bool is_64_bit);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
Core::CPUInterruptHandler interrupt_handler;
|
||||||
std::size_t core_index;
|
std::size_t core_index;
|
||||||
std::unique_ptr<Core::ARM_Interface> arm_interface_32;
|
std::unique_ptr<Core::ARM_Interface> arm_interface_32;
|
||||||
std::unique_ptr<Core::ARM_Interface> arm_interface_64;
|
std::unique_ptr<Core::ARM_Interface> arm_interface_64;
|
||||||
std::unique_ptr<Kernel::Scheduler> scheduler;
|
std::unique_ptr<Kernel::Scheduler> scheduler;
|
||||||
Core::ARM_Interface* arm_interface{};
|
Core::ARM_Interface* arm_interface{};
|
||||||
|
std::unique_ptr<Common::SpinLock> guard;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace Kernel
|
} // namespace Kernel
|
||||||
|
|
|
@ -30,14 +30,15 @@ namespace {
|
||||||
/**
|
/**
|
||||||
* Sets up the primary application thread
|
* Sets up the primary application thread
|
||||||
*
|
*
|
||||||
|
* @param system The system instance to create the main thread under.
|
||||||
* @param owner_process The parent process for the main thread
|
* @param owner_process The parent process for the main thread
|
||||||
* @param kernel The kernel instance to create the main thread under.
|
|
||||||
* @param priority The priority to give the main thread
|
* @param priority The priority to give the main thread
|
||||||
*/
|
*/
|
||||||
void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority, VAddr stack_top) {
|
void SetupMainThread(Core::System& system, Process& owner_process, u32 priority, VAddr stack_top) {
|
||||||
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
|
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
|
||||||
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0,
|
ThreadType type = THREADTYPE_USER;
|
||||||
owner_process.GetIdealCore(), stack_top, owner_process);
|
auto thread_res = Thread::Create(system, type, "main", entry_point, priority, 0,
|
||||||
|
owner_process.GetIdealCore(), stack_top, &owner_process);
|
||||||
|
|
||||||
std::shared_ptr<Thread> thread = std::move(thread_res).Unwrap();
|
std::shared_ptr<Thread> thread = std::move(thread_res).Unwrap();
|
||||||
|
|
||||||
|
@ -48,8 +49,12 @@ void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority, V
|
||||||
thread->GetContext32().cpu_registers[1] = thread_handle;
|
thread->GetContext32().cpu_registers[1] = thread_handle;
|
||||||
thread->GetContext64().cpu_registers[1] = thread_handle;
|
thread->GetContext64().cpu_registers[1] = thread_handle;
|
||||||
|
|
||||||
|
auto& kernel = system.Kernel();
|
||||||
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
||||||
thread->ResumeFromWait();
|
{
|
||||||
|
SchedulerLock lock{kernel};
|
||||||
|
thread->SetStatus(ThreadStatus::Ready);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
} // Anonymous namespace
|
} // Anonymous namespace
|
||||||
|
|
||||||
|
@ -294,7 +299,7 @@ void Process::Run(s32 main_thread_priority, u64 stack_size) {
|
||||||
|
|
||||||
ChangeStatus(ProcessStatus::Running);
|
ChangeStatus(ProcessStatus::Running);
|
||||||
|
|
||||||
SetupMainThread(*this, kernel, main_thread_priority, main_thread_stack_top);
|
SetupMainThread(system, *this, main_thread_priority, main_thread_stack_top);
|
||||||
resource_limit->Reserve(ResourceType::Threads, 1);
|
resource_limit->Reserve(ResourceType::Threads, 1);
|
||||||
resource_limit->Reserve(ResourceType::PhysicalMemory, main_thread_stack_size);
|
resource_limit->Reserve(ResourceType::PhysicalMemory, main_thread_stack_size);
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,11 +11,15 @@
|
||||||
#include <utility>
|
#include <utility>
|
||||||
|
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
|
#include "common/bit_util.h"
|
||||||
|
#include "common/fiber.h"
|
||||||
#include "common/logging/log.h"
|
#include "common/logging/log.h"
|
||||||
#include "core/arm/arm_interface.h"
|
#include "core/arm/arm_interface.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
|
#include "core/cpu_manager.h"
|
||||||
#include "core/hle/kernel/kernel.h"
|
#include "core/hle/kernel/kernel.h"
|
||||||
|
#include "core/hle/kernel/physical_core.h"
|
||||||
#include "core/hle/kernel/process.h"
|
#include "core/hle/kernel/process.h"
|
||||||
#include "core/hle/kernel/scheduler.h"
|
#include "core/hle/kernel/scheduler.h"
|
||||||
#include "core/hle/kernel/time_manager.h"
|
#include "core/hle/kernel/time_manager.h"
|
||||||
|
@ -27,78 +31,108 @@ GlobalScheduler::GlobalScheduler(KernelCore& kernel) : kernel{kernel} {}
|
||||||
GlobalScheduler::~GlobalScheduler() = default;
|
GlobalScheduler::~GlobalScheduler() = default;
|
||||||
|
|
||||||
void GlobalScheduler::AddThread(std::shared_ptr<Thread> thread) {
|
void GlobalScheduler::AddThread(std::shared_ptr<Thread> thread) {
|
||||||
|
global_list_guard.lock();
|
||||||
thread_list.push_back(std::move(thread));
|
thread_list.push_back(std::move(thread));
|
||||||
|
global_list_guard.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void GlobalScheduler::RemoveThread(std::shared_ptr<Thread> thread) {
|
void GlobalScheduler::RemoveThread(std::shared_ptr<Thread> thread) {
|
||||||
|
global_list_guard.lock();
|
||||||
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
|
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
|
||||||
thread_list.end());
|
thread_list.end());
|
||||||
|
global_list_guard.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void GlobalScheduler::UnloadThread(std::size_t core) {
|
u32 GlobalScheduler::SelectThreads() {
|
||||||
Scheduler& sched = kernel.Scheduler(core);
|
|
||||||
sched.UnloadThread();
|
|
||||||
}
|
|
||||||
|
|
||||||
void GlobalScheduler::SelectThread(std::size_t core) {
|
|
||||||
const auto update_thread = [](Thread* thread, Scheduler& sched) {
|
const auto update_thread = [](Thread* thread, Scheduler& sched) {
|
||||||
|
sched.guard.lock();
|
||||||
if (thread != sched.selected_thread.get()) {
|
if (thread != sched.selected_thread.get()) {
|
||||||
if (thread == nullptr) {
|
if (thread == nullptr) {
|
||||||
++sched.idle_selection_count;
|
++sched.idle_selection_count;
|
||||||
}
|
}
|
||||||
sched.selected_thread = SharedFrom(thread);
|
sched.selected_thread = SharedFrom(thread);
|
||||||
}
|
}
|
||||||
sched.is_context_switch_pending = sched.selected_thread != sched.current_thread;
|
const bool reschedule_pending = sched.selected_thread != sched.current_thread;
|
||||||
|
sched.is_context_switch_pending = reschedule_pending;
|
||||||
std::atomic_thread_fence(std::memory_order_seq_cst);
|
std::atomic_thread_fence(std::memory_order_seq_cst);
|
||||||
|
sched.guard.unlock();
|
||||||
|
return reschedule_pending;
|
||||||
};
|
};
|
||||||
Scheduler& sched = kernel.Scheduler(core);
|
if (!is_reselection_pending.load()) {
|
||||||
Thread* current_thread = nullptr;
|
return 0;
|
||||||
|
}
|
||||||
|
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> top_threads{};
|
||||||
|
|
||||||
|
u32 idle_cores{};
|
||||||
|
|
||||||
// Step 1: Get top thread in schedule queue.
|
// Step 1: Get top thread in schedule queue.
|
||||||
current_thread = scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
if (current_thread) {
|
Thread* top_thread =
|
||||||
update_thread(current_thread, sched);
|
scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
|
||||||
return;
|
if (top_thread != nullptr) {
|
||||||
|
// TODO(Blinkhawk): Implement Thread Pinning
|
||||||
|
} else {
|
||||||
|
idle_cores |= (1ul << core);
|
||||||
}
|
}
|
||||||
|
top_threads[core] = top_thread;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (idle_cores != 0) {
|
||||||
|
u32 core_id = Common::CountTrailingZeroes32(idle_cores);
|
||||||
|
|
||||||
|
if (!suggested_queue[core_id].empty()) {
|
||||||
|
std::array<s32, Core::Hardware::NUM_CPU_CORES> migration_candidates{};
|
||||||
|
std::size_t num_candidates = 0;
|
||||||
|
auto iter = suggested_queue[core_id].begin();
|
||||||
|
Thread* suggested = nullptr;
|
||||||
// Step 2: Try selecting a suggested thread.
|
// Step 2: Try selecting a suggested thread.
|
||||||
Thread* winner = nullptr;
|
while (iter != suggested_queue[core_id].end()) {
|
||||||
std::set<s32> sug_cores;
|
suggested = *iter;
|
||||||
for (auto thread : suggested_queue[core]) {
|
iter++;
|
||||||
s32 this_core = thread->GetProcessorID();
|
s32 suggested_core_id = suggested->GetProcessorID();
|
||||||
Thread* thread_on_core = nullptr;
|
Thread* top_thread =
|
||||||
if (this_core >= 0) {
|
suggested_core_id > 0 ? top_threads[suggested_core_id] : nullptr;
|
||||||
thread_on_core = scheduled_queue[this_core].front();
|
if (top_thread != suggested) {
|
||||||
|
if (top_thread != nullptr &&
|
||||||
|
top_thread->GetPriority() < THREADPRIO_MAX_CORE_MIGRATION) {
|
||||||
|
suggested = nullptr;
|
||||||
|
break;
|
||||||
|
// There's a too high thread to do core migration, cancel
|
||||||
}
|
}
|
||||||
if (this_core < 0 || thread != thread_on_core) {
|
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), suggested);
|
||||||
winner = thread;
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sug_cores.insert(this_core);
|
migration_candidates[num_candidates++] = suggested_core_id;
|
||||||
}
|
|
||||||
// if we got a suggested thread, select it, else do a second pass.
|
|
||||||
if (winner && winner->GetPriority() > 2) {
|
|
||||||
if (winner->IsRunning()) {
|
|
||||||
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
|
|
||||||
}
|
|
||||||
TransferToCore(winner->GetPriority(), static_cast<s32>(core), winner);
|
|
||||||
update_thread(winner, sched);
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
// Step 3: Select a suggested thread from another core
|
// Step 3: Select a suggested thread from another core
|
||||||
for (auto& src_core : sug_cores) {
|
if (suggested == nullptr) {
|
||||||
auto it = scheduled_queue[src_core].begin();
|
for (std::size_t i = 0; i < num_candidates; i++) {
|
||||||
|
s32 candidate_core = migration_candidates[i];
|
||||||
|
suggested = top_threads[candidate_core];
|
||||||
|
auto it = scheduled_queue[candidate_core].begin();
|
||||||
it++;
|
it++;
|
||||||
if (it != scheduled_queue[src_core].end()) {
|
Thread* next = it != scheduled_queue[candidate_core].end() ? *it : nullptr;
|
||||||
Thread* thread_on_core = scheduled_queue[src_core].front();
|
if (next != nullptr) {
|
||||||
Thread* to_change = *it;
|
TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id),
|
||||||
if (thread_on_core->IsRunning() || to_change->IsRunning()) {
|
suggested);
|
||||||
UnloadThread(static_cast<u32>(src_core));
|
top_threads[candidate_core] = next;
|
||||||
}
|
|
||||||
TransferToCore(thread_on_core->GetPriority(), static_cast<s32>(core), thread_on_core);
|
|
||||||
current_thread = thread_on_core;
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
update_thread(current_thread, sched);
|
}
|
||||||
|
top_threads[core_id] = suggested;
|
||||||
|
}
|
||||||
|
|
||||||
|
idle_cores &= ~(1ul << core_id);
|
||||||
|
}
|
||||||
|
u32 cores_needing_context_switch{};
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
Scheduler& sched = kernel.Scheduler(core);
|
||||||
|
if (update_thread(top_threads[core], sched)) {
|
||||||
|
cores_needing_context_switch |= (1ul << core);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return cores_needing_context_switch;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
|
bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
|
||||||
|
@ -153,9 +187,6 @@ bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
|
||||||
|
|
||||||
if (winner != nullptr) {
|
if (winner != nullptr) {
|
||||||
if (winner != yielding_thread) {
|
if (winner != yielding_thread) {
|
||||||
if (winner->IsRunning()) {
|
|
||||||
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
|
|
||||||
}
|
|
||||||
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -195,9 +226,6 @@ bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread
|
||||||
}
|
}
|
||||||
if (winner != nullptr) {
|
if (winner != nullptr) {
|
||||||
if (winner != yielding_thread) {
|
if (winner != yielding_thread) {
|
||||||
if (winner->IsRunning()) {
|
|
||||||
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
|
|
||||||
}
|
|
||||||
TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
|
TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -213,7 +241,9 @@ void GlobalScheduler::PreemptThreads() {
|
||||||
const u32 priority = preemption_priorities[core_id];
|
const u32 priority = preemption_priorities[core_id];
|
||||||
|
|
||||||
if (scheduled_queue[core_id].size(priority) > 0) {
|
if (scheduled_queue[core_id].size(priority) > 0) {
|
||||||
|
if (scheduled_queue[core_id].size(priority) > 1) {
|
||||||
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
|
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
|
||||||
|
}
|
||||||
scheduled_queue[core_id].yield(priority);
|
scheduled_queue[core_id].yield(priority);
|
||||||
if (scheduled_queue[core_id].size(priority) > 1) {
|
if (scheduled_queue[core_id].size(priority) > 1) {
|
||||||
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
|
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
|
||||||
|
@ -247,9 +277,6 @@ void GlobalScheduler::PreemptThreads() {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (winner != nullptr) {
|
if (winner != nullptr) {
|
||||||
if (winner->IsRunning()) {
|
|
||||||
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
|
|
||||||
}
|
|
||||||
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
||||||
current_thread =
|
current_thread =
|
||||||
winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
|
winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
|
||||||
|
@ -280,9 +307,6 @@ void GlobalScheduler::PreemptThreads() {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (winner != nullptr) {
|
if (winner != nullptr) {
|
||||||
if (winner->IsRunning()) {
|
|
||||||
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
|
|
||||||
}
|
|
||||||
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
TransferToCore(winner->GetPriority(), s32(core_id), winner);
|
||||||
current_thread = winner;
|
current_thread = winner;
|
||||||
}
|
}
|
||||||
|
@ -292,6 +316,28 @@ void GlobalScheduler::PreemptThreads() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule,
|
||||||
|
Core::EmuThreadHandle global_thread) {
|
||||||
|
u32 current_core = global_thread.host_handle;
|
||||||
|
bool must_context_switch = global_thread.guest_handle != InvalidHandle &&
|
||||||
|
(current_core < Core::Hardware::NUM_CPU_CORES);
|
||||||
|
while (cores_pending_reschedule != 0) {
|
||||||
|
u32 core = Common::CountTrailingZeroes32(cores_pending_reschedule);
|
||||||
|
ASSERT(core < Core::Hardware::NUM_CPU_CORES);
|
||||||
|
if (!must_context_switch || core != current_core) {
|
||||||
|
auto& phys_core = kernel.PhysicalCore(core);
|
||||||
|
phys_core.Interrupt();
|
||||||
|
} else {
|
||||||
|
must_context_switch = true;
|
||||||
|
}
|
||||||
|
cores_pending_reschedule &= ~(1ul << core);
|
||||||
|
}
|
||||||
|
if (must_context_switch) {
|
||||||
|
auto& core_scheduler = kernel.CurrentScheduler();
|
||||||
|
core_scheduler.TryDoContextSwitch();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void GlobalScheduler::Suggest(u32 priority, std::size_t core, Thread* thread) {
|
void GlobalScheduler::Suggest(u32 priority, std::size_t core, Thread* thread) {
|
||||||
suggested_queue[core].add(thread, priority);
|
suggested_queue[core].add(thread, priority);
|
||||||
}
|
}
|
||||||
|
@ -349,6 +395,108 @@ bool GlobalScheduler::AskForReselectionOrMarkRedundant(Thread* current_thread,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void GlobalScheduler::AdjustSchedulingOnStatus(Thread* thread, u32 old_flags) {
|
||||||
|
if (old_flags == thread->scheduling_state) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (static_cast<ThreadSchedStatus>(old_flags & static_cast<u32>(ThreadSchedMasks::LowMask)) ==
|
||||||
|
ThreadSchedStatus::Runnable) {
|
||||||
|
// In this case the thread was running, now it's pausing/exitting
|
||||||
|
if (thread->processor_id >= 0) {
|
||||||
|
Unschedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (core != static_cast<u32>(thread->processor_id) &&
|
||||||
|
((thread->affinity_mask >> core) & 1) != 0) {
|
||||||
|
Unsuggest(thread->current_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable) {
|
||||||
|
// The thread is now set to running from being stopped
|
||||||
|
if (thread->processor_id >= 0) {
|
||||||
|
Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (core != static_cast<u32>(thread->processor_id) &&
|
||||||
|
((thread->affinity_mask >> core) & 1) != 0) {
|
||||||
|
Suggest(thread->current_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
SetReselectionPending();
|
||||||
|
}
|
||||||
|
|
||||||
|
void GlobalScheduler::AdjustSchedulingOnPriority(Thread* thread, u32 old_priority) {
|
||||||
|
if (thread->GetSchedulingStatus() != ThreadSchedStatus::Runnable) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (thread->processor_id >= 0) {
|
||||||
|
Unschedule(old_priority, static_cast<u32>(thread->processor_id), thread);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (core != static_cast<u32>(thread->processor_id) &&
|
||||||
|
((thread->affinity_mask >> core) & 1) != 0) {
|
||||||
|
Unsuggest(old_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (thread->processor_id >= 0) {
|
||||||
|
// TODO(Blinkhawk): compare it with current thread running on current core, instead of
|
||||||
|
// checking running
|
||||||
|
if (thread->IsRunning()) {
|
||||||
|
SchedulePrepend(thread->current_priority, static_cast<u32>(thread->processor_id),
|
||||||
|
thread);
|
||||||
|
} else {
|
||||||
|
Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (core != static_cast<u32>(thread->processor_id) &&
|
||||||
|
((thread->affinity_mask >> core) & 1) != 0) {
|
||||||
|
Suggest(thread->current_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
thread->IncrementYieldCount();
|
||||||
|
SetReselectionPending();
|
||||||
|
}
|
||||||
|
|
||||||
|
void GlobalScheduler::AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask,
|
||||||
|
s32 old_core) {
|
||||||
|
if (thread->GetSchedulingStatus() != ThreadSchedStatus::Runnable ||
|
||||||
|
thread->current_priority >= THREADPRIO_COUNT) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (((old_affinity_mask >> core) & 1) != 0) {
|
||||||
|
if (core == static_cast<u32>(old_core)) {
|
||||||
|
Unschedule(thread->current_priority, core, thread);
|
||||||
|
} else {
|
||||||
|
Unsuggest(thread->current_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
|
if (((thread->affinity_mask >> core) & 1) != 0) {
|
||||||
|
if (core == static_cast<u32>(thread->processor_id)) {
|
||||||
|
Schedule(thread->current_priority, core, thread);
|
||||||
|
} else {
|
||||||
|
Suggest(thread->current_priority, core, thread);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
thread->IncrementYieldCount();
|
||||||
|
SetReselectionPending();
|
||||||
|
}
|
||||||
|
|
||||||
void GlobalScheduler::Shutdown() {
|
void GlobalScheduler::Shutdown() {
|
||||||
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
||||||
scheduled_queue[core].clear();
|
scheduled_queue[core].clear();
|
||||||
|
@ -374,13 +522,12 @@ void GlobalScheduler::Unlock() {
|
||||||
ASSERT(scope_lock > 0);
|
ASSERT(scope_lock > 0);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
u32 cores_pending_reschedule = SelectThreads();
|
||||||
SelectThread(i);
|
Core::EmuThreadHandle leaving_thread = current_owner;
|
||||||
}
|
|
||||||
current_owner = Core::EmuThreadHandle::InvalidHandle();
|
current_owner = Core::EmuThreadHandle::InvalidHandle();
|
||||||
scope_lock = 1;
|
scope_lock = 1;
|
||||||
inner_lock.unlock();
|
inner_lock.unlock();
|
||||||
// TODO(Blinkhawk): Setup the interrupts and change context on current core.
|
EnableInterruptAndSchedule(cores_pending_reschedule, leaving_thread);
|
||||||
}
|
}
|
||||||
|
|
||||||
Scheduler::Scheduler(Core::System& system, std::size_t core_id)
|
Scheduler::Scheduler(Core::System& system, std::size_t core_id)
|
||||||
|
@ -393,56 +540,83 @@ bool Scheduler::HaveReadyThreads() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
Thread* Scheduler::GetCurrentThread() const {
|
Thread* Scheduler::GetCurrentThread() const {
|
||||||
|
if (current_thread) {
|
||||||
return current_thread.get();
|
return current_thread.get();
|
||||||
}
|
}
|
||||||
|
return idle_thread.get();
|
||||||
|
}
|
||||||
|
|
||||||
Thread* Scheduler::GetSelectedThread() const {
|
Thread* Scheduler::GetSelectedThread() const {
|
||||||
return selected_thread.get();
|
return selected_thread.get();
|
||||||
}
|
}
|
||||||
|
|
||||||
void Scheduler::SelectThreads() {
|
|
||||||
system.GlobalScheduler().SelectThread(core_id);
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 Scheduler::GetLastContextSwitchTicks() const {
|
u64 Scheduler::GetLastContextSwitchTicks() const {
|
||||||
return last_context_switch_time;
|
return last_context_switch_time;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Scheduler::TryDoContextSwitch() {
|
void Scheduler::TryDoContextSwitch() {
|
||||||
|
auto& phys_core = system.Kernel().CurrentPhysicalCore();
|
||||||
|
if (phys_core.IsInterrupted()) {
|
||||||
|
phys_core.ClearInterrupt();
|
||||||
|
}
|
||||||
|
guard.lock();
|
||||||
if (is_context_switch_pending) {
|
if (is_context_switch_pending) {
|
||||||
SwitchContext();
|
SwitchContext();
|
||||||
|
} else {
|
||||||
|
guard.unlock();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void Scheduler::UnloadThread() {
|
void Scheduler::OnThreadStart() {
|
||||||
Thread* const previous_thread = GetCurrentThread();
|
SwitchContextStep2();
|
||||||
Process* const previous_process = system.Kernel().CurrentProcess();
|
|
||||||
|
|
||||||
UpdateLastContextSwitchTime(previous_thread, previous_process);
|
|
||||||
|
|
||||||
// Save context for previous thread
|
|
||||||
if (previous_thread) {
|
|
||||||
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext32());
|
|
||||||
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext64());
|
|
||||||
// Save the TPIDR_EL0 system register in case it was modified.
|
|
||||||
previous_thread->SetTPIDR_EL0(system.ArmInterface(core_id).GetTPIDR_EL0());
|
|
||||||
|
|
||||||
if (previous_thread->GetStatus() == ThreadStatus::Running) {
|
|
||||||
// This is only the case when a reschedule is triggered without the current thread
|
|
||||||
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
|
|
||||||
previous_thread->SetStatus(ThreadStatus::Ready);
|
|
||||||
}
|
}
|
||||||
previous_thread->SetIsRunning(false);
|
|
||||||
|
void Scheduler::SwitchContextStep2() {
|
||||||
|
Thread* previous_thread = current_thread.get();
|
||||||
|
Thread* new_thread = selected_thread.get();
|
||||||
|
|
||||||
|
// Load context of new thread
|
||||||
|
Process* const previous_process =
|
||||||
|
previous_thread != nullptr ? previous_thread->GetOwnerProcess() : nullptr;
|
||||||
|
|
||||||
|
if (new_thread) {
|
||||||
|
new_thread->context_guard.lock();
|
||||||
|
ASSERT_MSG(new_thread->GetProcessorID() == s32(this->core_id),
|
||||||
|
"Thread must be assigned to this core.");
|
||||||
|
ASSERT_MSG(new_thread->GetStatus() == ThreadStatus::Ready,
|
||||||
|
"Thread must be ready to become running.");
|
||||||
|
|
||||||
|
// Cancel any outstanding wakeup events for this thread
|
||||||
|
current_thread = SharedFrom(new_thread);
|
||||||
|
new_thread->SetStatus(ThreadStatus::Running);
|
||||||
|
new_thread->SetIsRunning(true);
|
||||||
|
|
||||||
|
auto* const thread_owner_process = current_thread->GetOwnerProcess();
|
||||||
|
if (previous_process != thread_owner_process && thread_owner_process != nullptr) {
|
||||||
|
system.Kernel().MakeCurrentProcess(thread_owner_process);
|
||||||
}
|
}
|
||||||
|
if (!new_thread->IsHLEThread()) {
|
||||||
|
auto& cpu_core = system.ArmInterface(core_id);
|
||||||
|
cpu_core.LoadContext(new_thread->GetContext32());
|
||||||
|
cpu_core.LoadContext(new_thread->GetContext64());
|
||||||
|
cpu_core.SetTlsAddress(new_thread->GetTLSAddress());
|
||||||
|
cpu_core.SetTPIDR_EL0(new_thread->GetTPIDR_EL0());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
current_thread = nullptr;
|
current_thread = nullptr;
|
||||||
|
// Note: We do not reset the current process and current page table when idling because
|
||||||
|
// technically we haven't changed processes, our threads are just paused.
|
||||||
|
}
|
||||||
|
guard.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
void Scheduler::SwitchContext() {
|
void Scheduler::SwitchContext() {
|
||||||
Thread* const previous_thread = GetCurrentThread();
|
Thread* previous_thread = current_thread.get();
|
||||||
Thread* const new_thread = GetSelectedThread();
|
Thread* new_thread = selected_thread.get();
|
||||||
|
|
||||||
is_context_switch_pending = false;
|
is_context_switch_pending = false;
|
||||||
if (new_thread == previous_thread) {
|
if (new_thread == previous_thread) {
|
||||||
|
guard.unlock();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -452,51 +626,44 @@ void Scheduler::SwitchContext() {
|
||||||
|
|
||||||
// Save context for previous thread
|
// Save context for previous thread
|
||||||
if (previous_thread) {
|
if (previous_thread) {
|
||||||
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext32());
|
if (!previous_thread->IsHLEThread()) {
|
||||||
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext64());
|
auto& cpu_core = system.ArmInterface(core_id);
|
||||||
|
cpu_core.SaveContext(previous_thread->GetContext32());
|
||||||
|
cpu_core.SaveContext(previous_thread->GetContext64());
|
||||||
// Save the TPIDR_EL0 system register in case it was modified.
|
// Save the TPIDR_EL0 system register in case it was modified.
|
||||||
previous_thread->SetTPIDR_EL0(system.ArmInterface(core_id).GetTPIDR_EL0());
|
previous_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
|
||||||
|
|
||||||
|
}
|
||||||
if (previous_thread->GetStatus() == ThreadStatus::Running) {
|
if (previous_thread->GetStatus() == ThreadStatus::Running) {
|
||||||
// This is only the case when a reschedule is triggered without the current thread
|
|
||||||
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
|
|
||||||
previous_thread->SetStatus(ThreadStatus::Ready);
|
previous_thread->SetStatus(ThreadStatus::Ready);
|
||||||
}
|
}
|
||||||
previous_thread->SetIsRunning(false);
|
previous_thread->SetIsRunning(false);
|
||||||
|
previous_thread->context_guard.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Load context of new thread
|
std::shared_ptr<Common::Fiber> old_context;
|
||||||
if (new_thread) {
|
if (previous_thread != nullptr) {
|
||||||
ASSERT_MSG(new_thread->GetProcessorID() == s32(this->core_id),
|
old_context = previous_thread->GetHostContext();
|
||||||
"Thread must be assigned to this core.");
|
|
||||||
ASSERT_MSG(new_thread->GetStatus() == ThreadStatus::Ready,
|
|
||||||
"Thread must be ready to become running.");
|
|
||||||
|
|
||||||
// Cancel any outstanding wakeup events for this thread
|
|
||||||
new_thread->CancelWakeupTimer();
|
|
||||||
current_thread = SharedFrom(new_thread);
|
|
||||||
new_thread->SetStatus(ThreadStatus::Running);
|
|
||||||
new_thread->SetIsRunning(true);
|
|
||||||
|
|
||||||
auto* const thread_owner_process = current_thread->GetOwnerProcess();
|
|
||||||
if (previous_process != thread_owner_process) {
|
|
||||||
system.Kernel().MakeCurrentProcess(thread_owner_process);
|
|
||||||
}
|
|
||||||
|
|
||||||
system.ArmInterface(core_id).LoadContext(new_thread->GetContext32());
|
|
||||||
system.ArmInterface(core_id).LoadContext(new_thread->GetContext64());
|
|
||||||
system.ArmInterface(core_id).SetTlsAddress(new_thread->GetTLSAddress());
|
|
||||||
system.ArmInterface(core_id).SetTPIDR_EL0(new_thread->GetTPIDR_EL0());
|
|
||||||
} else {
|
} else {
|
||||||
current_thread = nullptr;
|
old_context = idle_thread->GetHostContext();
|
||||||
// Note: We do not reset the current process and current page table when idling because
|
|
||||||
// technically we haven't changed processes, our threads are just paused.
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::shared_ptr<Common::Fiber> next_context;
|
||||||
|
if (new_thread != nullptr) {
|
||||||
|
next_context = new_thread->GetHostContext();
|
||||||
|
} else {
|
||||||
|
next_context = idle_thread->GetHostContext();
|
||||||
|
}
|
||||||
|
|
||||||
|
Common::Fiber::YieldTo(old_context, next_context);
|
||||||
|
/// When a thread wakes up, the scheduler may have changed to other in another core.
|
||||||
|
auto& next_scheduler = system.Kernel().CurrentScheduler();
|
||||||
|
next_scheduler.SwitchContextStep2();
|
||||||
}
|
}
|
||||||
|
|
||||||
void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
|
void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
|
||||||
const u64 prev_switch_ticks = last_context_switch_time;
|
const u64 prev_switch_ticks = last_context_switch_time;
|
||||||
const u64 most_recent_switch_ticks = system.CoreTiming().GetTicks();
|
const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
|
||||||
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
|
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
|
||||||
|
|
||||||
if (thread != nullptr) {
|
if (thread != nullptr) {
|
||||||
|
@ -510,6 +677,16 @@ void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
|
||||||
last_context_switch_time = most_recent_switch_ticks;
|
last_context_switch_time = most_recent_switch_ticks;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Scheduler::Initialize() {
|
||||||
|
std::string name = "Idle Thread Id:" + std::to_string(core_id);
|
||||||
|
std::function<void(void*)> init_func = system.GetCpuManager().GetIdleThreadStartFunc();
|
||||||
|
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
|
||||||
|
ThreadType type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE);
|
||||||
|
auto thread_res = Thread::Create(system, type, name, 0, 64, 0, static_cast<u32>(core_id), 0,
|
||||||
|
nullptr, std::move(init_func), init_func_parameter);
|
||||||
|
idle_thread = std::move(thread_res).Unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
void Scheduler::Shutdown() {
|
void Scheduler::Shutdown() {
|
||||||
current_thread = nullptr;
|
current_thread = nullptr;
|
||||||
selected_thread = nullptr;
|
selected_thread = nullptr;
|
||||||
|
|
|
@ -11,6 +11,7 @@
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
#include "common/multi_level_queue.h"
|
#include "common/multi_level_queue.h"
|
||||||
|
#include "common/spin_lock.h"
|
||||||
#include "core/hardware_properties.h"
|
#include "core/hardware_properties.h"
|
||||||
#include "core/hle/kernel/thread.h"
|
#include "core/hle/kernel/thread.h"
|
||||||
|
|
||||||
|
@ -41,41 +42,17 @@ public:
|
||||||
return thread_list;
|
return thread_list;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/// Notify the scheduler a thread's status has changed.
|
||||||
* Add a thread to the suggested queue of a cpu core. Suggested threads may be
|
void AdjustSchedulingOnStatus(Thread* thread, u32 old_flags);
|
||||||
* picked if no thread is scheduled to run on the core.
|
|
||||||
*/
|
/// Notify the scheduler a thread's priority has changed.
|
||||||
void Suggest(u32 priority, std::size_t core, Thread* thread);
|
void AdjustSchedulingOnPriority(Thread* thread, u32 old_priority);
|
||||||
|
|
||||||
|
/// Notify the scheduler a thread's core and/or affinity mask has changed.
|
||||||
|
void AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask, s32 old_core);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Remove a thread to the suggested queue of a cpu core. Suggested threads may be
|
* Takes care of selecting the new scheduled threads in three steps:
|
||||||
* picked if no thread is scheduled to run on the core.
|
|
||||||
*/
|
|
||||||
void Unsuggest(u32 priority, std::size_t core, Thread* thread);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
|
|
||||||
* back the queue in its priority level.
|
|
||||||
*/
|
|
||||||
void Schedule(u32 priority, std::size_t core, Thread* thread);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
|
|
||||||
* front the queue in its priority level.
|
|
||||||
*/
|
|
||||||
void SchedulePrepend(u32 priority, std::size_t core, Thread* thread);
|
|
||||||
|
|
||||||
/// Reschedule an already scheduled thread based on a new priority
|
|
||||||
void Reschedule(u32 priority, std::size_t core, Thread* thread);
|
|
||||||
|
|
||||||
/// Unschedules a thread.
|
|
||||||
void Unschedule(u32 priority, std::size_t core, Thread* thread);
|
|
||||||
|
|
||||||
/// Selects a core and forces it to unload its current thread's context
|
|
||||||
void UnloadThread(std::size_t core);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Takes care of selecting the new scheduled thread in three steps:
|
|
||||||
*
|
*
|
||||||
* 1. First a thread is selected from the top of the priority queue. If no thread
|
* 1. First a thread is selected from the top of the priority queue. If no thread
|
||||||
* is obtained then we move to step two, else we are done.
|
* is obtained then we move to step two, else we are done.
|
||||||
|
@ -85,8 +62,10 @@ public:
|
||||||
*
|
*
|
||||||
* 3. Third is no suggested thread is found, we do a second pass and pick a running
|
* 3. Third is no suggested thread is found, we do a second pass and pick a running
|
||||||
* thread in another core and swap it with its current thread.
|
* thread in another core and swap it with its current thread.
|
||||||
|
*
|
||||||
|
* returns the cores needing scheduling.
|
||||||
*/
|
*/
|
||||||
void SelectThread(std::size_t core);
|
u32 SelectThreads();
|
||||||
|
|
||||||
bool HaveReadyThreads(std::size_t core_id) const {
|
bool HaveReadyThreads(std::size_t core_id) const {
|
||||||
return !scheduled_queue[core_id].empty();
|
return !scheduled_queue[core_id].empty();
|
||||||
|
@ -149,6 +128,39 @@ private:
|
||||||
/// Unlocks the scheduler, reselects threads, interrupts cores for rescheduling
|
/// Unlocks the scheduler, reselects threads, interrupts cores for rescheduling
|
||||||
/// and reschedules current core if needed.
|
/// and reschedules current core if needed.
|
||||||
void Unlock();
|
void Unlock();
|
||||||
|
|
||||||
|
void EnableInterruptAndSchedule(u32 cores_pending_reschedule, Core::EmuThreadHandle global_thread);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a thread to the suggested queue of a cpu core. Suggested threads may be
|
||||||
|
* picked if no thread is scheduled to run on the core.
|
||||||
|
*/
|
||||||
|
void Suggest(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Remove a thread to the suggested queue of a cpu core. Suggested threads may be
|
||||||
|
* picked if no thread is scheduled to run on the core.
|
||||||
|
*/
|
||||||
|
void Unsuggest(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
|
||||||
|
* back the queue in its priority level.
|
||||||
|
*/
|
||||||
|
void Schedule(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
|
||||||
|
* front the queue in its priority level.
|
||||||
|
*/
|
||||||
|
void SchedulePrepend(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
|
/// Reschedule an already scheduled thread based on a new priority
|
||||||
|
void Reschedule(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
|
/// Unschedules a thread.
|
||||||
|
void Unschedule(u32 priority, std::size_t core, Thread* thread);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Transfers a thread into an specific core. If the destination_core is -1
|
* Transfers a thread into an specific core. If the destination_core is -1
|
||||||
* it will be unscheduled from its source code and added into its suggested
|
* it will be unscheduled from its source code and added into its suggested
|
||||||
|
@ -174,6 +186,8 @@ private:
|
||||||
std::atomic<s64> scope_lock{};
|
std::atomic<s64> scope_lock{};
|
||||||
Core::EmuThreadHandle current_owner{Core::EmuThreadHandle::InvalidHandle()};
|
Core::EmuThreadHandle current_owner{Core::EmuThreadHandle::InvalidHandle()};
|
||||||
|
|
||||||
|
Common::SpinLock global_list_guard{};
|
||||||
|
|
||||||
/// Lists all thread ids that aren't deleted/etc.
|
/// Lists all thread ids that aren't deleted/etc.
|
||||||
std::vector<std::shared_ptr<Thread>> thread_list;
|
std::vector<std::shared_ptr<Thread>> thread_list;
|
||||||
KernelCore& kernel;
|
KernelCore& kernel;
|
||||||
|
@ -190,12 +204,6 @@ public:
|
||||||
/// Reschedules to the next available thread (call after current thread is suspended)
|
/// Reschedules to the next available thread (call after current thread is suspended)
|
||||||
void TryDoContextSwitch();
|
void TryDoContextSwitch();
|
||||||
|
|
||||||
/// Unloads currently running thread
|
|
||||||
void UnloadThread();
|
|
||||||
|
|
||||||
/// Select the threads in top of the scheduling multilist.
|
|
||||||
void SelectThreads();
|
|
||||||
|
|
||||||
/// Gets the current running thread
|
/// Gets the current running thread
|
||||||
Thread* GetCurrentThread() const;
|
Thread* GetCurrentThread() const;
|
||||||
|
|
||||||
|
@ -209,15 +217,22 @@ public:
|
||||||
return is_context_switch_pending;
|
return is_context_switch_pending;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Initialize();
|
||||||
|
|
||||||
/// Shutdowns the scheduler.
|
/// Shutdowns the scheduler.
|
||||||
void Shutdown();
|
void Shutdown();
|
||||||
|
|
||||||
|
void OnThreadStart();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
friend class GlobalScheduler;
|
friend class GlobalScheduler;
|
||||||
|
|
||||||
/// Switches the CPU's active thread context to that of the specified thread
|
/// Switches the CPU's active thread context to that of the specified thread
|
||||||
void SwitchContext();
|
void SwitchContext();
|
||||||
|
|
||||||
|
/// When a thread wakes up, it must run this through it's new scheduler
|
||||||
|
void SwitchContextStep2();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Called on every context switch to update the internal timestamp
|
* Called on every context switch to update the internal timestamp
|
||||||
* This also updates the running time ticks for the given thread and
|
* This also updates the running time ticks for the given thread and
|
||||||
|
@ -233,12 +248,15 @@ private:
|
||||||
|
|
||||||
std::shared_ptr<Thread> current_thread = nullptr;
|
std::shared_ptr<Thread> current_thread = nullptr;
|
||||||
std::shared_ptr<Thread> selected_thread = nullptr;
|
std::shared_ptr<Thread> selected_thread = nullptr;
|
||||||
|
std::shared_ptr<Thread> idle_thread = nullptr;
|
||||||
|
|
||||||
Core::System& system;
|
Core::System& system;
|
||||||
u64 last_context_switch_time = 0;
|
u64 last_context_switch_time = 0;
|
||||||
u64 idle_selection_count = 0;
|
u64 idle_selection_count = 0;
|
||||||
const std::size_t core_id;
|
const std::size_t core_id;
|
||||||
|
|
||||||
|
Common::SpinLock guard{};
|
||||||
|
|
||||||
bool is_context_switch_pending = false;
|
bool is_context_switch_pending = false;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -863,9 +863,9 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
|
||||||
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
|
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
|
||||||
const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();
|
const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();
|
||||||
|
|
||||||
out_ticks = thread_ticks + (core_timing.GetTicks() - prev_ctx_ticks);
|
out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks);
|
||||||
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
|
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
|
||||||
out_ticks = core_timing.GetTicks() - prev_ctx_ticks;
|
out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks;
|
||||||
}
|
}
|
||||||
|
|
||||||
*result = out_ticks;
|
*result = out_ticks;
|
||||||
|
@ -1428,9 +1428,10 @@ static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr e
|
||||||
|
|
||||||
ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Threads, 1));
|
ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Threads, 1));
|
||||||
|
|
||||||
|
ThreadType type = THREADTYPE_USER;
|
||||||
CASCADE_RESULT(std::shared_ptr<Thread> thread,
|
CASCADE_RESULT(std::shared_ptr<Thread> thread,
|
||||||
Thread::Create(kernel, "", entry_point, priority, arg, processor_id, stack_top,
|
Thread::Create(system, type, "", entry_point, priority, arg, processor_id, stack_top,
|
||||||
*current_process));
|
current_process));
|
||||||
|
|
||||||
const auto new_thread_handle = current_process->GetHandleTable().Create(thread);
|
const auto new_thread_handle = current_process->GetHandleTable().Create(thread);
|
||||||
if (new_thread_handle.Failed()) {
|
if (new_thread_handle.Failed()) {
|
||||||
|
@ -1513,13 +1514,6 @@ static void SleepThread(Core::System& system, s64 nanoseconds) {
|
||||||
} else {
|
} else {
|
||||||
current_thread->Sleep(nanoseconds);
|
current_thread->Sleep(nanoseconds);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (is_redundant) {
|
|
||||||
// If it's redundant, the core is pretty much idle. Some games keep idling
|
|
||||||
// a core while it's doing nothing, we advance timing to avoid costly continuous
|
|
||||||
// calls.
|
|
||||||
system.CoreTiming().AddTicks(2000);
|
|
||||||
}
|
|
||||||
system.PrepareReschedule(current_thread->GetProcessorID());
|
system.PrepareReschedule(current_thread->GetProcessorID());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1725,10 +1719,7 @@ static u64 GetSystemTick(Core::System& system) {
|
||||||
auto& core_timing = system.CoreTiming();
|
auto& core_timing = system.CoreTiming();
|
||||||
|
|
||||||
// Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick)
|
// Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick)
|
||||||
const u64 result{Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks())};
|
const u64 result{system.CoreTiming().GetClockTicks()};
|
||||||
|
|
||||||
// Advance time to defeat dumb games that busy-wait for the frame to end.
|
|
||||||
core_timing.AddTicks(400);
|
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
|
@ -9,12 +9,14 @@
|
||||||
|
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
#include "common/fiber.h"
|
||||||
#include "common/logging/log.h"
|
#include "common/logging/log.h"
|
||||||
#include "common/thread_queue_list.h"
|
#include "common/thread_queue_list.h"
|
||||||
#include "core/arm/arm_interface.h"
|
#include "core/arm/arm_interface.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
#include "core/core_timing_util.h"
|
#include "core/core_timing_util.h"
|
||||||
|
#include "core/cpu_manager.h"
|
||||||
#include "core/hardware_properties.h"
|
#include "core/hardware_properties.h"
|
||||||
#include "core/hle/kernel/errors.h"
|
#include "core/hle/kernel/errors.h"
|
||||||
#include "core/hle/kernel/handle_table.h"
|
#include "core/hle/kernel/handle_table.h"
|
||||||
|
@ -23,6 +25,7 @@
|
||||||
#include "core/hle/kernel/process.h"
|
#include "core/hle/kernel/process.h"
|
||||||
#include "core/hle/kernel/scheduler.h"
|
#include "core/hle/kernel/scheduler.h"
|
||||||
#include "core/hle/kernel/thread.h"
|
#include "core/hle/kernel/thread.h"
|
||||||
|
#include "core/hle/kernel/time_manager.h"
|
||||||
#include "core/hle/result.h"
|
#include "core/hle/result.h"
|
||||||
#include "core/memory.h"
|
#include "core/memory.h"
|
||||||
|
|
||||||
|
@ -44,6 +47,7 @@ Thread::Thread(KernelCore& kernel) : SynchronizationObject{kernel} {}
|
||||||
Thread::~Thread() = default;
|
Thread::~Thread() = default;
|
||||||
|
|
||||||
void Thread::Stop() {
|
void Thread::Stop() {
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
// Cancel any outstanding wakeup events for this thread
|
// Cancel any outstanding wakeup events for this thread
|
||||||
Core::System::GetInstance().CoreTiming().UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(),
|
Core::System::GetInstance().CoreTiming().UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(),
|
||||||
global_handle);
|
global_handle);
|
||||||
|
@ -71,9 +75,8 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
|
||||||
|
|
||||||
// This function might be called from any thread so we have to be cautious and use the
|
// This function might be called from any thread so we have to be cautious and use the
|
||||||
// thread-safe version of ScheduleEvent.
|
// thread-safe version of ScheduleEvent.
|
||||||
const s64 cycles = Core::Timing::nsToCycles(std::chrono::nanoseconds{nanoseconds});
|
|
||||||
Core::System::GetInstance().CoreTiming().ScheduleEvent(
|
Core::System::GetInstance().CoreTiming().ScheduleEvent(
|
||||||
cycles, kernel.ThreadWakeupCallbackEventType(), global_handle);
|
nanoseconds, kernel.ThreadWakeupCallbackEventType(), global_handle);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Thread::CancelWakeupTimer() {
|
void Thread::CancelWakeupTimer() {
|
||||||
|
@ -125,6 +128,16 @@ void Thread::ResumeFromWait() {
|
||||||
SetStatus(ThreadStatus::Ready);
|
SetStatus(ThreadStatus::Ready);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Thread::OnWakeUp() {
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
|
if (activity == ThreadActivity::Paused) {
|
||||||
|
SetStatus(ThreadStatus::Paused);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
SetStatus(ThreadStatus::Ready);
|
||||||
|
}
|
||||||
|
|
||||||
void Thread::CancelWait() {
|
void Thread::CancelWait() {
|
||||||
if (GetSchedulingStatus() != ThreadSchedStatus::Paused) {
|
if (GetSchedulingStatus() != ThreadSchedStatus::Paused) {
|
||||||
is_sync_cancelled = true;
|
is_sync_cancelled = true;
|
||||||
|
@ -153,12 +166,29 @@ static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context,
|
||||||
context.fpcr = 0;
|
context.fpcr = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
ResultVal<std::shared_ptr<Thread>> Thread::Create(KernelCore& kernel, std::string name,
|
std::shared_ptr<Common::Fiber> Thread::GetHostContext() const {
|
||||||
VAddr entry_point, u32 priority, u64 arg,
|
return host_context;
|
||||||
s32 processor_id, VAddr stack_top,
|
}
|
||||||
Process& owner_process) {
|
|
||||||
|
ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
|
||||||
|
std::string name, VAddr entry_point, u32 priority,
|
||||||
|
u64 arg, s32 processor_id, VAddr stack_top,
|
||||||
|
Process* owner_process) {
|
||||||
|
std::function<void(void*)> init_func = system.GetCpuManager().GetGuestThreadStartFunc();
|
||||||
|
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
|
||||||
|
return Create(system, type_flags, name, entry_point, priority, arg, processor_id, stack_top,
|
||||||
|
owner_process, std::move(init_func), init_func_parameter);
|
||||||
|
}
|
||||||
|
|
||||||
|
ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
|
||||||
|
std::string name, VAddr entry_point, u32 priority,
|
||||||
|
u64 arg, s32 processor_id, VAddr stack_top,
|
||||||
|
Process* owner_process,
|
||||||
|
std::function<void(void*)>&& thread_start_func,
|
||||||
|
void* thread_start_parameter) {
|
||||||
|
auto& kernel = system.Kernel();
|
||||||
// Check if priority is in ranged. Lowest priority -> highest priority id.
|
// Check if priority is in ranged. Lowest priority -> highest priority id.
|
||||||
if (priority > THREADPRIO_LOWEST) {
|
if (priority > THREADPRIO_LOWEST && (type_flags & THREADTYPE_IDLE == 0)) {
|
||||||
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
|
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
|
||||||
return ERR_INVALID_THREAD_PRIORITY;
|
return ERR_INVALID_THREAD_PRIORITY;
|
||||||
}
|
}
|
||||||
|
@ -168,12 +198,13 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(KernelCore& kernel, std::strin
|
||||||
return ERR_INVALID_PROCESSOR_ID;
|
return ERR_INVALID_PROCESSOR_ID;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto& system = Core::System::GetInstance();
|
if (owner_process) {
|
||||||
if (!system.Memory().IsValidVirtualAddress(owner_process, entry_point)) {
|
if (!system.Memory().IsValidVirtualAddress(*owner_process, entry_point)) {
|
||||||
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
|
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
|
||||||
// TODO (bunnei): Find the correct error code to use here
|
// TODO (bunnei): Find the correct error code to use here
|
||||||
return RESULT_UNKNOWN;
|
return RESULT_UNKNOWN;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);
|
std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);
|
||||||
|
|
||||||
|
@ -183,7 +214,7 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(KernelCore& kernel, std::strin
|
||||||
thread->stack_top = stack_top;
|
thread->stack_top = stack_top;
|
||||||
thread->tpidr_el0 = 0;
|
thread->tpidr_el0 = 0;
|
||||||
thread->nominal_priority = thread->current_priority = priority;
|
thread->nominal_priority = thread->current_priority = priority;
|
||||||
thread->last_running_ticks = system.CoreTiming().GetTicks();
|
thread->last_running_ticks = 0;
|
||||||
thread->processor_id = processor_id;
|
thread->processor_id = processor_id;
|
||||||
thread->ideal_core = processor_id;
|
thread->ideal_core = processor_id;
|
||||||
thread->affinity_mask = 1ULL << processor_id;
|
thread->affinity_mask = 1ULL << processor_id;
|
||||||
|
@ -193,16 +224,27 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(KernelCore& kernel, std::strin
|
||||||
thread->wait_handle = 0;
|
thread->wait_handle = 0;
|
||||||
thread->name = std::move(name);
|
thread->name = std::move(name);
|
||||||
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
|
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
|
||||||
thread->owner_process = &owner_process;
|
thread->owner_process = owner_process;
|
||||||
|
thread->type = type_flags;
|
||||||
|
if ((type_flags & THREADTYPE_IDLE) == 0) {
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
auto& scheduler = kernel.GlobalScheduler();
|
||||||
scheduler.AddThread(thread);
|
scheduler.AddThread(thread);
|
||||||
|
}
|
||||||
|
if (owner_process) {
|
||||||
thread->tls_address = thread->owner_process->CreateTLSRegion();
|
thread->tls_address = thread->owner_process->CreateTLSRegion();
|
||||||
|
|
||||||
thread->owner_process->RegisterThread(thread.get());
|
thread->owner_process->RegisterThread(thread.get());
|
||||||
|
} else {
|
||||||
|
thread->tls_address = 0;
|
||||||
|
}
|
||||||
|
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
|
||||||
|
// to initialize the context
|
||||||
|
if ((type_flags & THREADTYPE_HLE) == 0) {
|
||||||
ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
|
ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
|
||||||
static_cast<u32>(entry_point), static_cast<u32>(arg));
|
static_cast<u32>(entry_point), static_cast<u32>(arg));
|
||||||
ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
|
ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
|
||||||
|
}
|
||||||
|
thread->host_context =
|
||||||
|
std::make_shared<Common::Fiber>(std::move(thread_start_func), thread_start_parameter);
|
||||||
|
|
||||||
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
|
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
|
||||||
}
|
}
|
||||||
|
@ -258,7 +300,7 @@ void Thread::SetStatus(ThreadStatus new_status) {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (status == ThreadStatus::Running) {
|
if (status == ThreadStatus::Running) {
|
||||||
last_running_ticks = Core::System::GetInstance().CoreTiming().GetTicks();
|
last_running_ticks = Core::System::GetInstance().CoreTiming().GetCPUTicks();
|
||||||
}
|
}
|
||||||
|
|
||||||
status = new_status;
|
status = new_status;
|
||||||
|
@ -375,38 +417,55 @@ void Thread::SetActivity(ThreadActivity value) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void Thread::Sleep(s64 nanoseconds) {
|
void Thread::Sleep(s64 nanoseconds) {
|
||||||
// Sleep current thread and check for next thread to schedule
|
Handle event_handle{};
|
||||||
|
{
|
||||||
|
SchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
|
||||||
SetStatus(ThreadStatus::WaitSleep);
|
SetStatus(ThreadStatus::WaitSleep);
|
||||||
|
}
|
||||||
|
|
||||||
// Create an event to wake the thread up after the specified nanosecond delay has passed
|
if (event_handle != InvalidHandle) {
|
||||||
WakeAfterDelay(nanoseconds);
|
auto& time_manager = kernel.TimeManager();
|
||||||
|
time_manager.UnscheduleTimeEvent(event_handle);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Thread::YieldSimple() {
|
bool Thread::YieldSimple() {
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
bool result{};
|
||||||
return scheduler.YieldThread(this);
|
{
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
|
result = kernel.GlobalScheduler().YieldThread(this);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Thread::YieldAndBalanceLoad() {
|
bool Thread::YieldAndBalanceLoad() {
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
bool result{};
|
||||||
return scheduler.YieldThreadAndBalanceLoad(this);
|
{
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
|
result = kernel.GlobalScheduler().YieldThreadAndBalanceLoad(this);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Thread::YieldAndWaitForLoadBalancing() {
|
bool Thread::YieldAndWaitForLoadBalancing() {
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
bool result{};
|
||||||
return scheduler.YieldThreadAndWaitForLoadBalancing(this);
|
{
|
||||||
|
SchedulerLock lock(kernel);
|
||||||
|
result = kernel.GlobalScheduler().YieldThreadAndWaitForLoadBalancing(this);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Thread::SetSchedulingStatus(ThreadSchedStatus new_status) {
|
void Thread::SetSchedulingStatus(ThreadSchedStatus new_status) {
|
||||||
const u32 old_flags = scheduling_state;
|
const u32 old_flags = scheduling_state;
|
||||||
scheduling_state = (scheduling_state & static_cast<u32>(ThreadSchedMasks::HighMask)) |
|
scheduling_state = (scheduling_state & static_cast<u32>(ThreadSchedMasks::HighMask)) |
|
||||||
static_cast<u32>(new_status);
|
static_cast<u32>(new_status);
|
||||||
AdjustSchedulingOnStatus(old_flags);
|
kernel.GlobalScheduler().AdjustSchedulingOnStatus(this, old_flags);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Thread::SetCurrentPriority(u32 new_priority) {
|
void Thread::SetCurrentPriority(u32 new_priority) {
|
||||||
const u32 old_priority = std::exchange(current_priority, new_priority);
|
const u32 old_priority = std::exchange(current_priority, new_priority);
|
||||||
AdjustSchedulingOnPriority(old_priority);
|
kernel.GlobalScheduler().AdjustSchedulingOnPriority(this, old_priority);
|
||||||
}
|
}
|
||||||
|
|
||||||
ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
|
ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
|
||||||
|
@ -443,111 +502,12 @@ ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
|
||||||
processor_id = ideal_core;
|
processor_id = ideal_core;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
AdjustSchedulingOnAffinity(old_affinity_mask, old_core);
|
kernel.GlobalScheduler().AdjustSchedulingOnAffinity(this, old_affinity_mask, old_core);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return RESULT_SUCCESS;
|
return RESULT_SUCCESS;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Thread::AdjustSchedulingOnStatus(u32 old_flags) {
|
|
||||||
if (old_flags == scheduling_state) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
|
||||||
if (static_cast<ThreadSchedStatus>(old_flags & static_cast<u32>(ThreadSchedMasks::LowMask)) ==
|
|
||||||
ThreadSchedStatus::Runnable) {
|
|
||||||
// In this case the thread was running, now it's pausing/exitting
|
|
||||||
if (processor_id >= 0) {
|
|
||||||
scheduler.Unschedule(current_priority, static_cast<u32>(processor_id), this);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (core != static_cast<u32>(processor_id) && ((affinity_mask >> core) & 1) != 0) {
|
|
||||||
scheduler.Unsuggest(current_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (GetSchedulingStatus() == ThreadSchedStatus::Runnable) {
|
|
||||||
// The thread is now set to running from being stopped
|
|
||||||
if (processor_id >= 0) {
|
|
||||||
scheduler.Schedule(current_priority, static_cast<u32>(processor_id), this);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (core != static_cast<u32>(processor_id) && ((affinity_mask >> core) & 1) != 0) {
|
|
||||||
scheduler.Suggest(current_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
scheduler.SetReselectionPending();
|
|
||||||
}
|
|
||||||
|
|
||||||
void Thread::AdjustSchedulingOnPriority(u32 old_priority) {
|
|
||||||
if (GetSchedulingStatus() != ThreadSchedStatus::Runnable) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
|
||||||
if (processor_id >= 0) {
|
|
||||||
scheduler.Unschedule(old_priority, static_cast<u32>(processor_id), this);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (core != static_cast<u32>(processor_id) && ((affinity_mask >> core) & 1) != 0) {
|
|
||||||
scheduler.Unsuggest(old_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add thread to the new priority queues.
|
|
||||||
Thread* current_thread = GetCurrentThread();
|
|
||||||
|
|
||||||
if (processor_id >= 0) {
|
|
||||||
if (current_thread == this) {
|
|
||||||
scheduler.SchedulePrepend(current_priority, static_cast<u32>(processor_id), this);
|
|
||||||
} else {
|
|
||||||
scheduler.Schedule(current_priority, static_cast<u32>(processor_id), this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (core != static_cast<u32>(processor_id) && ((affinity_mask >> core) & 1) != 0) {
|
|
||||||
scheduler.Suggest(current_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
scheduler.SetReselectionPending();
|
|
||||||
}
|
|
||||||
|
|
||||||
void Thread::AdjustSchedulingOnAffinity(u64 old_affinity_mask, s32 old_core) {
|
|
||||||
auto& scheduler = kernel.GlobalScheduler();
|
|
||||||
if (GetSchedulingStatus() != ThreadSchedStatus::Runnable ||
|
|
||||||
current_priority >= THREADPRIO_COUNT) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (((old_affinity_mask >> core) & 1) != 0) {
|
|
||||||
if (core == static_cast<u32>(old_core)) {
|
|
||||||
scheduler.Unschedule(current_priority, core, this);
|
|
||||||
} else {
|
|
||||||
scheduler.Unsuggest(current_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
|
|
||||||
if (((affinity_mask >> core) & 1) != 0) {
|
|
||||||
if (core == static_cast<u32>(processor_id)) {
|
|
||||||
scheduler.Schedule(current_priority, core, this);
|
|
||||||
} else {
|
|
||||||
scheduler.Suggest(current_priority, core, this);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
scheduler.SetReselectionPending();
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -9,25 +9,44 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
#include "common/spin_lock.h"
|
||||||
#include "core/arm/arm_interface.h"
|
#include "core/arm/arm_interface.h"
|
||||||
#include "core/hle/kernel/object.h"
|
#include "core/hle/kernel/object.h"
|
||||||
#include "core/hle/kernel/synchronization_object.h"
|
#include "core/hle/kernel/synchronization_object.h"
|
||||||
#include "core/hle/result.h"
|
#include "core/hle/result.h"
|
||||||
|
|
||||||
|
namespace Common {
|
||||||
|
class Fiber;
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace Core {
|
||||||
|
class System;
|
||||||
|
}
|
||||||
|
|
||||||
namespace Kernel {
|
namespace Kernel {
|
||||||
|
|
||||||
|
class GlobalScheduler;
|
||||||
class KernelCore;
|
class KernelCore;
|
||||||
class Process;
|
class Process;
|
||||||
class Scheduler;
|
class Scheduler;
|
||||||
|
|
||||||
enum ThreadPriority : u32 {
|
enum ThreadPriority : u32 {
|
||||||
THREADPRIO_HIGHEST = 0, ///< Highest thread priority
|
THREADPRIO_HIGHEST = 0, ///< Highest thread priority
|
||||||
|
THREADPRIO_MAX_CORE_MIGRATION = 2, ///< Highest priority for a core migration
|
||||||
THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps
|
THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps
|
||||||
THREADPRIO_DEFAULT = 44, ///< Default thread priority for userland apps
|
THREADPRIO_DEFAULT = 44, ///< Default thread priority for userland apps
|
||||||
THREADPRIO_LOWEST = 63, ///< Lowest thread priority
|
THREADPRIO_LOWEST = 63, ///< Lowest thread priority
|
||||||
THREADPRIO_COUNT = 64, ///< Total number of possible thread priorities.
|
THREADPRIO_COUNT = 64, ///< Total number of possible thread priorities.
|
||||||
};
|
};
|
||||||
|
|
||||||
|
enum ThreadType : u32 {
|
||||||
|
THREADTYPE_USER = 0x1,
|
||||||
|
THREADTYPE_KERNEL = 0x2,
|
||||||
|
THREADTYPE_HLE = 0x4,
|
||||||
|
THREADTYPE_IDLE = 0x8,
|
||||||
|
THREADTYPE_SUSPEND = 0x10,
|
||||||
|
};
|
||||||
|
|
||||||
enum ThreadProcessorId : s32 {
|
enum ThreadProcessorId : s32 {
|
||||||
/// Indicates that no particular processor core is preferred.
|
/// Indicates that no particular processor core is preferred.
|
||||||
THREADPROCESSORID_DONT_CARE = -1,
|
THREADPROCESSORID_DONT_CARE = -1,
|
||||||
|
@ -113,20 +132,41 @@ public:
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Creates and returns a new thread. The new thread is immediately scheduled
|
* Creates and returns a new thread. The new thread is immediately scheduled
|
||||||
* @param kernel The kernel instance this thread will be created under.
|
* @param system The instance of the whole system
|
||||||
* @param name The friendly name desired for the thread
|
* @param name The friendly name desired for the thread
|
||||||
* @param entry_point The address at which the thread should start execution
|
* @param entry_point The address at which the thread should start execution
|
||||||
* @param priority The thread's priority
|
* @param priority The thread's priority
|
||||||
* @param arg User data to pass to the thread
|
* @param arg User data to pass to the thread
|
||||||
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
|
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
|
||||||
* @param stack_top The address of the thread's stack top
|
* @param stack_top The address of the thread's stack top
|
||||||
* @param owner_process The parent process for the thread
|
* @param owner_process The parent process for the thread, if null, it's a kernel thread
|
||||||
* @return A shared pointer to the newly created thread
|
* @return A shared pointer to the newly created thread
|
||||||
*/
|
*/
|
||||||
static ResultVal<std::shared_ptr<Thread>> Create(KernelCore& kernel, std::string name,
|
static ResultVal<std::shared_ptr<Thread>> Create(Core::System& system, ThreadType type_flags, std::string name,
|
||||||
VAddr entry_point, u32 priority, u64 arg,
|
VAddr entry_point, u32 priority, u64 arg,
|
||||||
s32 processor_id, VAddr stack_top,
|
s32 processor_id, VAddr stack_top,
|
||||||
Process& owner_process);
|
Process* owner_process);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates and returns a new thread. The new thread is immediately scheduled
|
||||||
|
* @param system The instance of the whole system
|
||||||
|
* @param name The friendly name desired for the thread
|
||||||
|
* @param entry_point The address at which the thread should start execution
|
||||||
|
* @param priority The thread's priority
|
||||||
|
* @param arg User data to pass to the thread
|
||||||
|
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
|
||||||
|
* @param stack_top The address of the thread's stack top
|
||||||
|
* @param owner_process The parent process for the thread, if null, it's a kernel thread
|
||||||
|
* @param thread_start_func The function where the host context will start.
|
||||||
|
* @param thread_start_parameter The parameter which will passed to host context on init
|
||||||
|
* @return A shared pointer to the newly created thread
|
||||||
|
*/
|
||||||
|
static ResultVal<std::shared_ptr<Thread>> Create(Core::System& system, ThreadType type_flags, std::string name,
|
||||||
|
VAddr entry_point, u32 priority, u64 arg,
|
||||||
|
s32 processor_id, VAddr stack_top,
|
||||||
|
Process* owner_process,
|
||||||
|
std::function<void(void*)>&& thread_start_func,
|
||||||
|
void* thread_start_parameter);
|
||||||
|
|
||||||
std::string GetName() const override {
|
std::string GetName() const override {
|
||||||
return name;
|
return name;
|
||||||
|
@ -192,7 +232,9 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Resumes a thread from waiting
|
/// Resumes a thread from waiting
|
||||||
void ResumeFromWait();
|
void /* deprecated */ ResumeFromWait();
|
||||||
|
|
||||||
|
void OnWakeUp();
|
||||||
|
|
||||||
/// Cancels a waiting operation that this thread may or may not be within.
|
/// Cancels a waiting operation that this thread may or may not be within.
|
||||||
///
|
///
|
||||||
|
@ -206,10 +248,10 @@ public:
|
||||||
* Schedules an event to wake up the specified thread after the specified delay
|
* Schedules an event to wake up the specified thread after the specified delay
|
||||||
* @param nanoseconds The time this thread will be allowed to sleep for
|
* @param nanoseconds The time this thread will be allowed to sleep for
|
||||||
*/
|
*/
|
||||||
void WakeAfterDelay(s64 nanoseconds);
|
void /* deprecated */ WakeAfterDelay(s64 nanoseconds);
|
||||||
|
|
||||||
/// Cancel any outstanding wakeup events for this thread
|
/// Cancel any outstanding wakeup events for this thread
|
||||||
void CancelWakeupTimer();
|
void /* deprecated */ CancelWakeupTimer();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sets the result after the thread awakens (from svcWaitSynchronization)
|
* Sets the result after the thread awakens (from svcWaitSynchronization)
|
||||||
|
@ -290,6 +332,12 @@ public:
|
||||||
return context_64;
|
return context_64;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool IsHLEThread() const {
|
||||||
|
return (type & THREADTYPE_HLE) != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::shared_ptr<Common::Fiber> GetHostContext() const;
|
||||||
|
|
||||||
ThreadStatus GetStatus() const {
|
ThreadStatus GetStatus() const {
|
||||||
return status;
|
return status;
|
||||||
}
|
}
|
||||||
|
@ -467,16 +515,19 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
friend class GlobalScheduler;
|
||||||
|
friend class Scheduler;
|
||||||
|
|
||||||
void SetSchedulingStatus(ThreadSchedStatus new_status);
|
void SetSchedulingStatus(ThreadSchedStatus new_status);
|
||||||
void SetCurrentPriority(u32 new_priority);
|
void SetCurrentPriority(u32 new_priority);
|
||||||
ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
|
ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
|
||||||
|
|
||||||
void AdjustSchedulingOnStatus(u32 old_flags);
|
|
||||||
void AdjustSchedulingOnPriority(u32 old_priority);
|
|
||||||
void AdjustSchedulingOnAffinity(u64 old_affinity_mask, s32 old_core);
|
void AdjustSchedulingOnAffinity(u64 old_affinity_mask, s32 old_core);
|
||||||
|
|
||||||
ThreadContext32 context_32{};
|
ThreadContext32 context_32{};
|
||||||
ThreadContext64 context_64{};
|
ThreadContext64 context_64{};
|
||||||
|
Common::SpinLock context_guard{};
|
||||||
|
std::shared_ptr<Common::Fiber> host_context{};
|
||||||
|
|
||||||
u64 thread_id = 0;
|
u64 thread_id = 0;
|
||||||
|
|
||||||
|
@ -485,6 +536,8 @@ private:
|
||||||
VAddr entry_point = 0;
|
VAddr entry_point = 0;
|
||||||
VAddr stack_top = 0;
|
VAddr stack_top = 0;
|
||||||
|
|
||||||
|
ThreadType type;
|
||||||
|
|
||||||
/// Nominal thread priority, as set by the emulated application.
|
/// Nominal thread priority, as set by the emulated application.
|
||||||
/// The nominal priority is the thread priority without priority
|
/// The nominal priority is the thread priority without priority
|
||||||
/// inheritance taken into account.
|
/// inheritance taken into account.
|
||||||
|
|
|
@ -19,7 +19,7 @@ TimeManager::TimeManager(Core::System& system) : system{system} {
|
||||||
Handle proper_handle = static_cast<Handle>(thread_handle);
|
Handle proper_handle = static_cast<Handle>(thread_handle);
|
||||||
std::shared_ptr<Thread> thread =
|
std::shared_ptr<Thread> thread =
|
||||||
this->system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
|
this->system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
|
||||||
thread->ResumeFromWait();
|
thread->OnWakeUp();
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@ void Controller_DebugPad::OnRelease() {}
|
||||||
|
|
||||||
void Controller_DebugPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_DebugPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
shared_memory.header.timestamp = core_timing.GetTicks();
|
shared_memory.header.timestamp = core_timing.GetCPUTicks();
|
||||||
shared_memory.header.total_entry_count = 17;
|
shared_memory.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
|
|
@ -19,7 +19,7 @@ void Controller_Gesture::OnRelease() {}
|
||||||
|
|
||||||
void Controller_Gesture::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_Gesture::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
shared_memory.header.timestamp = core_timing.GetTicks();
|
shared_memory.header.timestamp = core_timing.GetCPUTicks();
|
||||||
shared_memory.header.total_entry_count = 17;
|
shared_memory.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
|
|
@ -21,7 +21,7 @@ void Controller_Keyboard::OnRelease() {}
|
||||||
|
|
||||||
void Controller_Keyboard::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_Keyboard::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
shared_memory.header.timestamp = core_timing.GetTicks();
|
shared_memory.header.timestamp = core_timing.GetCPUTicks();
|
||||||
shared_memory.header.total_entry_count = 17;
|
shared_memory.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
|
|
@ -19,7 +19,7 @@ void Controller_Mouse::OnRelease() {}
|
||||||
|
|
||||||
void Controller_Mouse::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_Mouse::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
shared_memory.header.timestamp = core_timing.GetTicks();
|
shared_memory.header.timestamp = core_timing.GetCPUTicks();
|
||||||
shared_memory.header.total_entry_count = 17;
|
shared_memory.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
|
|
@ -328,7 +328,7 @@ void Controller_NPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8*
|
||||||
const auto& last_entry =
|
const auto& last_entry =
|
||||||
main_controller->npad[main_controller->common.last_entry_index];
|
main_controller->npad[main_controller->common.last_entry_index];
|
||||||
|
|
||||||
main_controller->common.timestamp = core_timing.GetTicks();
|
main_controller->common.timestamp = core_timing.GetCPUTicks();
|
||||||
main_controller->common.last_entry_index =
|
main_controller->common.last_entry_index =
|
||||||
(main_controller->common.last_entry_index + 1) % 17;
|
(main_controller->common.last_entry_index + 1) % 17;
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@ void Controller_Stubbed::OnUpdate(const Core::Timing::CoreTiming& core_timing, u
|
||||||
}
|
}
|
||||||
|
|
||||||
CommonHeader header{};
|
CommonHeader header{};
|
||||||
header.timestamp = core_timing.GetTicks();
|
header.timestamp = core_timing.GetCPUTicks();
|
||||||
header.total_entry_count = 17;
|
header.total_entry_count = 17;
|
||||||
header.entry_count = 0;
|
header.entry_count = 0;
|
||||||
header.last_entry_index = 0;
|
header.last_entry_index = 0;
|
||||||
|
|
|
@ -22,7 +22,7 @@ void Controller_Touchscreen::OnRelease() {}
|
||||||
|
|
||||||
void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
shared_memory.header.timestamp = core_timing.GetTicks();
|
shared_memory.header.timestamp = core_timing.GetCPUTicks();
|
||||||
shared_memory.header.total_entry_count = 17;
|
shared_memory.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
@ -49,7 +49,7 @@ void Controller_Touchscreen::OnUpdate(const Core::Timing::CoreTiming& core_timin
|
||||||
touch_entry.diameter_x = Settings::values.touchscreen.diameter_x;
|
touch_entry.diameter_x = Settings::values.touchscreen.diameter_x;
|
||||||
touch_entry.diameter_y = Settings::values.touchscreen.diameter_y;
|
touch_entry.diameter_y = Settings::values.touchscreen.diameter_y;
|
||||||
touch_entry.rotation_angle = Settings::values.touchscreen.rotation_angle;
|
touch_entry.rotation_angle = Settings::values.touchscreen.rotation_angle;
|
||||||
const u64 tick = core_timing.GetTicks();
|
const u64 tick = core_timing.GetCPUTicks();
|
||||||
touch_entry.delta_time = tick - last_touch;
|
touch_entry.delta_time = tick - last_touch;
|
||||||
last_touch = tick;
|
last_touch = tick;
|
||||||
touch_entry.finger = Settings::values.touchscreen.finger;
|
touch_entry.finger = Settings::values.touchscreen.finger;
|
||||||
|
|
|
@ -20,7 +20,7 @@ void Controller_XPad::OnRelease() {}
|
||||||
void Controller_XPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
void Controller_XPad::OnUpdate(const Core::Timing::CoreTiming& core_timing, u8* data,
|
||||||
std::size_t size) {
|
std::size_t size) {
|
||||||
for (auto& xpad_entry : shared_memory.shared_memory_entries) {
|
for (auto& xpad_entry : shared_memory.shared_memory_entries) {
|
||||||
xpad_entry.header.timestamp = core_timing.GetTicks();
|
xpad_entry.header.timestamp = core_timing.GetCPUTicks();
|
||||||
xpad_entry.header.total_entry_count = 17;
|
xpad_entry.header.total_entry_count = 17;
|
||||||
|
|
||||||
if (!IsControllerActivated()) {
|
if (!IsControllerActivated()) {
|
||||||
|
|
|
@ -39,11 +39,9 @@ namespace Service::HID {
|
||||||
|
|
||||||
// Updating period for each HID device.
|
// Updating period for each HID device.
|
||||||
// TODO(ogniK): Find actual polling rate of hid
|
// TODO(ogniK): Find actual polling rate of hid
|
||||||
constexpr s64 pad_update_ticks = static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 66);
|
constexpr s64 pad_update_ticks = static_cast<s64>(1000000000 / 66);
|
||||||
[[maybe_unused]] constexpr s64 accelerometer_update_ticks =
|
[[maybe_unused]] constexpr s64 accelerometer_update_ticks = static_cast<s64>(1000000000 / 100);
|
||||||
static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 100);
|
[[maybe_unused]] constexpr s64 gyroscope_update_ticks = static_cast<s64>(1000000000 / 100);
|
||||||
[[maybe_unused]] constexpr s64 gyroscope_update_ticks =
|
|
||||||
static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 100);
|
|
||||||
constexpr std::size_t SHARED_MEMORY_SIZE = 0x40000;
|
constexpr std::size_t SHARED_MEMORY_SIZE = 0x40000;
|
||||||
|
|
||||||
IAppletResource::IAppletResource(Core::System& system)
|
IAppletResource::IAppletResource(Core::System& system)
|
||||||
|
@ -78,8 +76,8 @@ IAppletResource::IAppletResource(Core::System& system)
|
||||||
|
|
||||||
// Register update callbacks
|
// Register update callbacks
|
||||||
pad_update_event =
|
pad_update_event =
|
||||||
Core::Timing::CreateEvent("HID::UpdatePadCallback", [this](u64 userdata, s64 cycles_late) {
|
Core::Timing::CreateEvent("HID::UpdatePadCallback", [this](u64 userdata, s64 ns_late) {
|
||||||
UpdateControllers(userdata, cycles_late);
|
UpdateControllers(userdata, ns_late);
|
||||||
});
|
});
|
||||||
|
|
||||||
// TODO(shinyquagsire23): Other update callbacks? (accel, gyro?)
|
// TODO(shinyquagsire23): Other update callbacks? (accel, gyro?)
|
||||||
|
@ -109,7 +107,7 @@ void IAppletResource::GetSharedMemoryHandle(Kernel::HLERequestContext& ctx) {
|
||||||
rb.PushCopyObjects(shared_mem);
|
rb.PushCopyObjects(shared_mem);
|
||||||
}
|
}
|
||||||
|
|
||||||
void IAppletResource::UpdateControllers(u64 userdata, s64 cycles_late) {
|
void IAppletResource::UpdateControllers(u64 userdata, s64 ns_late) {
|
||||||
auto& core_timing = system.CoreTiming();
|
auto& core_timing = system.CoreTiming();
|
||||||
|
|
||||||
const bool should_reload = Settings::values.is_device_reload_pending.exchange(false);
|
const bool should_reload = Settings::values.is_device_reload_pending.exchange(false);
|
||||||
|
@ -120,7 +118,7 @@ void IAppletResource::UpdateControllers(u64 userdata, s64 cycles_late) {
|
||||||
controller->OnUpdate(core_timing, shared_mem->GetPointer(), SHARED_MEMORY_SIZE);
|
controller->OnUpdate(core_timing, shared_mem->GetPointer(), SHARED_MEMORY_SIZE);
|
||||||
}
|
}
|
||||||
|
|
||||||
core_timing.ScheduleEvent(pad_update_ticks - cycles_late, pad_update_event);
|
core_timing.ScheduleEvent(pad_update_ticks - ns_late, pad_update_event);
|
||||||
}
|
}
|
||||||
|
|
||||||
class IActiveVibrationDeviceList final : public ServiceFramework<IActiveVibrationDeviceList> {
|
class IActiveVibrationDeviceList final : public ServiceFramework<IActiveVibrationDeviceList> {
|
||||||
|
|
|
@ -98,7 +98,7 @@ void IRS::GetImageTransferProcessorState(Kernel::HLERequestContext& ctx) {
|
||||||
|
|
||||||
IPC::ResponseBuilder rb{ctx, 5};
|
IPC::ResponseBuilder rb{ctx, 5};
|
||||||
rb.Push(RESULT_SUCCESS);
|
rb.Push(RESULT_SUCCESS);
|
||||||
rb.PushRaw<u64>(system.CoreTiming().GetTicks());
|
rb.PushRaw<u64>(system.CoreTiming().GetCPUTicks());
|
||||||
rb.PushRaw<u32>(0);
|
rb.PushRaw<u32>(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -200,8 +200,7 @@ u32 nvhost_ctrl_gpu::GetGpuTime(const std::vector<u8>& input, std::vector<u8>& o
|
||||||
|
|
||||||
IoctlGetGpuTime params{};
|
IoctlGetGpuTime params{};
|
||||||
std::memcpy(¶ms, input.data(), input.size());
|
std::memcpy(¶ms, input.data(), input.size());
|
||||||
const auto ns = Core::Timing::CyclesToNs(system.CoreTiming().GetTicks());
|
params.gpu_time = static_cast<u64_le>(system.CoreTiming().GetGlobalTimeNs().count());
|
||||||
params.gpu_time = static_cast<u64_le>(ns.count());
|
|
||||||
std::memcpy(output.data(), ¶ms, output.size());
|
std::memcpy(output.data(), ¶ms, output.size());
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -27,8 +27,8 @@
|
||||||
|
|
||||||
namespace Service::NVFlinger {
|
namespace Service::NVFlinger {
|
||||||
|
|
||||||
constexpr s64 frame_ticks = static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 60);
|
constexpr s64 frame_ticks = static_cast<s64>(1000000000 / 60);
|
||||||
constexpr s64 frame_ticks_30fps = static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 30);
|
constexpr s64 frame_ticks_30fps = static_cast<s64>(1000000000 / 30);
|
||||||
|
|
||||||
NVFlinger::NVFlinger(Core::System& system) : system(system) {
|
NVFlinger::NVFlinger(Core::System& system) : system(system) {
|
||||||
displays.emplace_back(0, "Default", system);
|
displays.emplace_back(0, "Default", system);
|
||||||
|
@ -39,11 +39,10 @@ NVFlinger::NVFlinger(Core::System& system) : system(system) {
|
||||||
|
|
||||||
// Schedule the screen composition events
|
// Schedule the screen composition events
|
||||||
composition_event =
|
composition_event =
|
||||||
Core::Timing::CreateEvent("ScreenComposition", [this](u64 userdata, s64 cycles_late) {
|
Core::Timing::CreateEvent("ScreenComposition", [this](u64 userdata, s64 ns_late) {
|
||||||
Compose();
|
Compose();
|
||||||
const auto ticks =
|
const auto ticks = GetNextTicks();
|
||||||
Settings::values.force_30fps_mode ? frame_ticks_30fps : GetNextTicks();
|
this->system.CoreTiming().ScheduleEvent(std::max<s64>(0LL, ticks - ns_late),
|
||||||
this->system.CoreTiming().ScheduleEvent(std::max<s64>(0LL, ticks - cycles_late),
|
|
||||||
composition_event);
|
composition_event);
|
||||||
});
|
});
|
||||||
|
|
||||||
|
@ -223,7 +222,7 @@ void NVFlinger::Compose() {
|
||||||
|
|
||||||
s64 NVFlinger::GetNextTicks() const {
|
s64 NVFlinger::GetNextTicks() const {
|
||||||
constexpr s64 max_hertz = 120LL;
|
constexpr s64 max_hertz = 120LL;
|
||||||
return (Core::Hardware::BASE_CLOCK_RATE * (1LL << swap_interval)) / max_hertz;
|
return (1000000000 * (1LL << swap_interval)) / max_hertz;
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Service::NVFlinger
|
} // namespace Service::NVFlinger
|
||||||
|
|
|
@ -11,9 +11,8 @@
|
||||||
namespace Service::Time::Clock {
|
namespace Service::Time::Clock {
|
||||||
|
|
||||||
TimeSpanType StandardSteadyClockCore::GetCurrentRawTimePoint(Core::System& system) {
|
TimeSpanType StandardSteadyClockCore::GetCurrentRawTimePoint(Core::System& system) {
|
||||||
const TimeSpanType ticks_time_span{TimeSpanType::FromTicks(
|
const TimeSpanType ticks_time_span{
|
||||||
Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks()),
|
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
|
||||||
Core::Hardware::CNTFREQ)};
|
|
||||||
TimeSpanType raw_time_point{setup_value.nanoseconds + ticks_time_span.nanoseconds};
|
TimeSpanType raw_time_point{setup_value.nanoseconds + ticks_time_span.nanoseconds};
|
||||||
|
|
||||||
if (raw_time_point.nanoseconds < cached_raw_time_point.nanoseconds) {
|
if (raw_time_point.nanoseconds < cached_raw_time_point.nanoseconds) {
|
||||||
|
|
|
@ -11,9 +11,8 @@
|
||||||
namespace Service::Time::Clock {
|
namespace Service::Time::Clock {
|
||||||
|
|
||||||
SteadyClockTimePoint TickBasedSteadyClockCore::GetTimePoint(Core::System& system) {
|
SteadyClockTimePoint TickBasedSteadyClockCore::GetTimePoint(Core::System& system) {
|
||||||
const TimeSpanType ticks_time_span{TimeSpanType::FromTicks(
|
const TimeSpanType ticks_time_span{
|
||||||
Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks()),
|
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
|
||||||
Core::Hardware::CNTFREQ)};
|
|
||||||
|
|
||||||
return {ticks_time_span.ToSeconds(), GetClockSourceId()};
|
return {ticks_time_span.ToSeconds(), GetClockSourceId()};
|
||||||
}
|
}
|
||||||
|
|
|
@ -234,8 +234,7 @@ void Module::Interface::CalculateMonotonicSystemClockBaseTimePoint(Kernel::HLERe
|
||||||
const auto current_time_point{steady_clock_core.GetCurrentTimePoint(system)};
|
const auto current_time_point{steady_clock_core.GetCurrentTimePoint(system)};
|
||||||
|
|
||||||
if (current_time_point.clock_source_id == context.steady_time_point.clock_source_id) {
|
if (current_time_point.clock_source_id == context.steady_time_point.clock_source_id) {
|
||||||
const auto ticks{Clock::TimeSpanType::FromTicks(
|
const auto ticks{Clock::TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(),
|
||||||
Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks()),
|
|
||||||
Core::Hardware::CNTFREQ)};
|
Core::Hardware::CNTFREQ)};
|
||||||
const s64 base_time_point{context.offset + current_time_point.time_point -
|
const s64 base_time_point{context.offset + current_time_point.time_point -
|
||||||
ticks.ToSeconds()};
|
ticks.ToSeconds()};
|
||||||
|
|
|
@ -30,8 +30,7 @@ void SharedMemory::SetupStandardSteadyClock(Core::System& system,
|
||||||
const Common::UUID& clock_source_id,
|
const Common::UUID& clock_source_id,
|
||||||
Clock::TimeSpanType current_time_point) {
|
Clock::TimeSpanType current_time_point) {
|
||||||
const Clock::TimeSpanType ticks_time_span{Clock::TimeSpanType::FromTicks(
|
const Clock::TimeSpanType ticks_time_span{Clock::TimeSpanType::FromTicks(
|
||||||
Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks()),
|
system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
|
||||||
Core::Hardware::CNTFREQ)};
|
|
||||||
const Clock::SteadyClockContext context{
|
const Clock::SteadyClockContext context{
|
||||||
static_cast<u64>(current_time_point.nanoseconds - ticks_time_span.nanoseconds),
|
static_cast<u64>(current_time_point.nanoseconds - ticks_time_span.nanoseconds),
|
||||||
clock_source_id};
|
clock_source_id};
|
||||||
|
|
|
@ -29,15 +29,12 @@ namespace Core::Memory {
|
||||||
struct Memory::Impl {
|
struct Memory::Impl {
|
||||||
explicit Impl(Core::System& system_) : system{system_} {}
|
explicit Impl(Core::System& system_) : system{system_} {}
|
||||||
|
|
||||||
void SetCurrentPageTable(Kernel::Process& process) {
|
void SetCurrentPageTable(Kernel::Process& process, u32 core_id) {
|
||||||
current_page_table = &process.PageTable().PageTableImpl();
|
current_page_table = &process.PageTable().PageTableImpl();
|
||||||
|
|
||||||
const std::size_t address_space_width = process.PageTable().GetAddressSpaceWidth();
|
const std::size_t address_space_width = process.PageTable().GetAddressSpaceWidth();
|
||||||
|
|
||||||
system.ArmInterface(0).PageTableChanged(*current_page_table, address_space_width);
|
system.ArmInterface(core_id).PageTableChanged(*current_page_table, address_space_width);
|
||||||
system.ArmInterface(1).PageTableChanged(*current_page_table, address_space_width);
|
|
||||||
system.ArmInterface(2).PageTableChanged(*current_page_table, address_space_width);
|
|
||||||
system.ArmInterface(3).PageTableChanged(*current_page_table, address_space_width);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
|
void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
|
||||||
|
@ -689,8 +686,8 @@ struct Memory::Impl {
|
||||||
Memory::Memory(Core::System& system) : impl{std::make_unique<Impl>(system)} {}
|
Memory::Memory(Core::System& system) : impl{std::make_unique<Impl>(system)} {}
|
||||||
Memory::~Memory() = default;
|
Memory::~Memory() = default;
|
||||||
|
|
||||||
void Memory::SetCurrentPageTable(Kernel::Process& process) {
|
void Memory::SetCurrentPageTable(Kernel::Process& process, u32 core_id) {
|
||||||
impl->SetCurrentPageTable(process);
|
impl->SetCurrentPageTable(process, core_id);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
|
void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
|
||||||
|
|
|
@ -64,7 +64,7 @@ public:
|
||||||
*
|
*
|
||||||
* @param process The process to use the page table of.
|
* @param process The process to use the page table of.
|
||||||
*/
|
*/
|
||||||
void SetCurrentPageTable(Kernel::Process& process);
|
void SetCurrentPageTable(Kernel::Process& process, u32 core_id);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Maps an allocated buffer onto a region of the emulated process address space.
|
* Maps an allocated buffer onto a region of the emulated process address space.
|
||||||
|
|
|
@ -20,7 +20,7 @@
|
||||||
|
|
||||||
namespace Core::Memory {
|
namespace Core::Memory {
|
||||||
|
|
||||||
constexpr s64 CHEAT_ENGINE_TICKS = static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 12);
|
constexpr s64 CHEAT_ENGINE_TICKS = static_cast<s64>(1000000000 / 12);
|
||||||
constexpr u32 KEYPAD_BITMASK = 0x3FFFFFF;
|
constexpr u32 KEYPAD_BITMASK = 0x3FFFFFF;
|
||||||
|
|
||||||
StandardVmCallbacks::StandardVmCallbacks(Core::System& system, const CheatProcessMetadata& metadata)
|
StandardVmCallbacks::StandardVmCallbacks(Core::System& system, const CheatProcessMetadata& metadata)
|
||||||
|
@ -190,7 +190,7 @@ CheatEngine::~CheatEngine() {
|
||||||
void CheatEngine::Initialize() {
|
void CheatEngine::Initialize() {
|
||||||
event = Core::Timing::CreateEvent(
|
event = Core::Timing::CreateEvent(
|
||||||
"CheatEngine::FrameCallback::" + Common::HexToString(metadata.main_nso_build_id),
|
"CheatEngine::FrameCallback::" + Common::HexToString(metadata.main_nso_build_id),
|
||||||
[this](u64 userdata, s64 cycles_late) { FrameCallback(userdata, cycles_late); });
|
[this](u64 userdata, s64 ns_late) { FrameCallback(userdata, ns_late); });
|
||||||
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS, event);
|
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS, event);
|
||||||
|
|
||||||
metadata.process_id = system.CurrentProcess()->GetProcessID();
|
metadata.process_id = system.CurrentProcess()->GetProcessID();
|
||||||
|
@ -217,7 +217,7 @@ void CheatEngine::Reload(std::vector<CheatEntry> cheats) {
|
||||||
|
|
||||||
MICROPROFILE_DEFINE(Cheat_Engine, "Add-Ons", "Cheat Engine", MP_RGB(70, 200, 70));
|
MICROPROFILE_DEFINE(Cheat_Engine, "Add-Ons", "Cheat Engine", MP_RGB(70, 200, 70));
|
||||||
|
|
||||||
void CheatEngine::FrameCallback(u64 userdata, s64 cycles_late) {
|
void CheatEngine::FrameCallback(u64 userdata, s64 ns_late) {
|
||||||
if (is_pending_reload.exchange(false)) {
|
if (is_pending_reload.exchange(false)) {
|
||||||
vm.LoadProgram(cheats);
|
vm.LoadProgram(cheats);
|
||||||
}
|
}
|
||||||
|
@ -230,7 +230,7 @@ void CheatEngine::FrameCallback(u64 userdata, s64 cycles_late) {
|
||||||
|
|
||||||
vm.Execute(metadata);
|
vm.Execute(metadata);
|
||||||
|
|
||||||
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS - cycles_late, event);
|
core_timing.ScheduleEvent(CHEAT_ENGINE_TICKS - ns_late, event);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Core::Memory
|
} // namespace Core::Memory
|
||||||
|
|
|
@ -14,7 +14,7 @@
|
||||||
namespace Tools {
|
namespace Tools {
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
constexpr s64 MEMORY_FREEZER_TICKS = static_cast<s64>(Core::Hardware::BASE_CLOCK_RATE / 60);
|
constexpr s64 MEMORY_FREEZER_TICKS = static_cast<s64>(1000000000 / 60);
|
||||||
|
|
||||||
u64 MemoryReadWidth(Core::Memory::Memory& memory, u32 width, VAddr addr) {
|
u64 MemoryReadWidth(Core::Memory::Memory& memory, u32 width, VAddr addr) {
|
||||||
switch (width) {
|
switch (width) {
|
||||||
|
@ -57,7 +57,7 @@ Freezer::Freezer(Core::Timing::CoreTiming& core_timing_, Core::Memory::Memory& m
|
||||||
: core_timing{core_timing_}, memory{memory_} {
|
: core_timing{core_timing_}, memory{memory_} {
|
||||||
event = Core::Timing::CreateEvent(
|
event = Core::Timing::CreateEvent(
|
||||||
"MemoryFreezer::FrameCallback",
|
"MemoryFreezer::FrameCallback",
|
||||||
[this](u64 userdata, s64 cycles_late) { FrameCallback(userdata, cycles_late); });
|
[this](u64 userdata, s64 ns_late) { FrameCallback(userdata, ns_late); });
|
||||||
core_timing.ScheduleEvent(MEMORY_FREEZER_TICKS, event);
|
core_timing.ScheduleEvent(MEMORY_FREEZER_TICKS, event);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -158,7 +158,7 @@ std::vector<Freezer::Entry> Freezer::GetEntries() const {
|
||||||
return entries;
|
return entries;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Freezer::FrameCallback(u64 userdata, s64 cycles_late) {
|
void Freezer::FrameCallback(u64 userdata, s64 ns_late) {
|
||||||
if (!IsActive()) {
|
if (!IsActive()) {
|
||||||
LOG_DEBUG(Common_Memory, "Memory freezer has been deactivated, ending callback events.");
|
LOG_DEBUG(Common_Memory, "Memory freezer has been deactivated, ending callback events.");
|
||||||
return;
|
return;
|
||||||
|
@ -173,7 +173,7 @@ void Freezer::FrameCallback(u64 userdata, s64 cycles_late) {
|
||||||
MemoryWriteWidth(memory, entry.width, entry.address, entry.value);
|
MemoryWriteWidth(memory, entry.width, entry.address, entry.value);
|
||||||
}
|
}
|
||||||
|
|
||||||
core_timing.ScheduleEvent(MEMORY_FREEZER_TICKS - cycles_late, event);
|
core_timing.ScheduleEvent(MEMORY_FREEZER_TICKS - ns_late, event);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Freezer::FillEntryReads() {
|
void Freezer::FillEntryReads() {
|
||||||
|
|
|
@ -8,7 +8,6 @@ add_executable(tests
|
||||||
core/arm/arm_test_common.cpp
|
core/arm/arm_test_common.cpp
|
||||||
core/arm/arm_test_common.h
|
core/arm/arm_test_common.h
|
||||||
core/core_timing.cpp
|
core/core_timing.cpp
|
||||||
core/host_timing.cpp
|
|
||||||
tests.cpp
|
tests.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -16,31 +16,30 @@
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
// Numbers are chosen randomly to make sure the correct one is given.
|
// Numbers are chosen randomly to make sure the correct one is given.
|
||||||
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
||||||
constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
||||||
|
static constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
|
||||||
|
static std::array<s64, 5> delays{};
|
||||||
|
|
||||||
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
||||||
u64 expected_callback = 0;
|
u64 expected_callback = 0;
|
||||||
s64 lateness = 0;
|
s64 lateness = 0;
|
||||||
|
|
||||||
template <unsigned int IDX>
|
template <unsigned int IDX>
|
||||||
void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
void HostCallbackTemplate(u64 userdata, s64 nanoseconds_late) {
|
||||||
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
||||||
callbacks_ran_flags.set(IDX);
|
callbacks_ran_flags.set(IDX);
|
||||||
REQUIRE(CB_IDS[IDX] == userdata);
|
REQUIRE(CB_IDS[IDX] == userdata);
|
||||||
REQUIRE(CB_IDS[IDX] == expected_callback);
|
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
|
||||||
REQUIRE(lateness == cycles_late);
|
delays[IDX] = nanoseconds_late;
|
||||||
|
++expected_callback;
|
||||||
}
|
}
|
||||||
|
|
||||||
u64 callbacks_done = 0;
|
u64 callbacks_done = 0;
|
||||||
|
|
||||||
void EmptyCallback(u64 userdata, s64 cycles_late) {
|
|
||||||
++callbacks_done;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ScopeInit final {
|
struct ScopeInit final {
|
||||||
ScopeInit() {
|
ScopeInit() {
|
||||||
core_timing.Initialize();
|
core_timing.Initialize([]() {});
|
||||||
}
|
}
|
||||||
~ScopeInit() {
|
~ScopeInit() {
|
||||||
core_timing.Shutdown();
|
core_timing.Shutdown();
|
||||||
|
@ -49,110 +48,97 @@ struct ScopeInit final {
|
||||||
Core::Timing::CoreTiming core_timing;
|
Core::Timing::CoreTiming core_timing;
|
||||||
};
|
};
|
||||||
|
|
||||||
void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
|
|
||||||
int expected_lateness = 0, int cpu_downcount = 0) {
|
|
||||||
callbacks_ran_flags = 0;
|
|
||||||
expected_callback = CB_IDS[idx];
|
|
||||||
lateness = expected_lateness;
|
|
||||||
|
|
||||||
// Pretend we executed X cycles of instructions.
|
|
||||||
core_timing.SwitchContext(context);
|
|
||||||
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
|
||||||
core_timing.Advance();
|
|
||||||
core_timing.SwitchContext((context + 1) % 4);
|
|
||||||
|
|
||||||
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
|
||||||
}
|
|
||||||
} // Anonymous namespace
|
|
||||||
|
|
||||||
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
||||||
ScopeInit guard;
|
ScopeInit guard;
|
||||||
auto& core_timing = guard.core_timing;
|
auto& core_timing = guard.core_timing;
|
||||||
|
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
||||||
|
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
||||||
|
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
||||||
|
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
||||||
|
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
||||||
|
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
||||||
|
};
|
||||||
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_a =
|
expected_callback = 0;
|
||||||
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_b =
|
|
||||||
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_c =
|
|
||||||
Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>);
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_d =
|
|
||||||
Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>);
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_e =
|
|
||||||
Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>);
|
|
||||||
|
|
||||||
// Enter slice 0
|
core_timing.SyncPause(true);
|
||||||
core_timing.ResetRun();
|
|
||||||
|
|
||||||
// D -> B -> C -> A -> E
|
u64 one_micro = 1000U;
|
||||||
core_timing.SwitchContext(0);
|
for (std::size_t i = 0; i < events.size(); i++) {
|
||||||
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
u64 order = calls_order[i];
|
||||||
REQUIRE(1000 == core_timing.GetDowncount());
|
core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
|
||||||
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
}
|
||||||
REQUIRE(500 == core_timing.GetDowncount());
|
/// test pause
|
||||||
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
REQUIRE(callbacks_ran_flags.none());
|
||||||
REQUIRE(500 == core_timing.GetDowncount());
|
|
||||||
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
|
||||||
REQUIRE(100 == core_timing.GetDowncount());
|
|
||||||
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
|
||||||
REQUIRE(100 == core_timing.GetDowncount());
|
|
||||||
|
|
||||||
AdvanceAndCheck(core_timing, 3, 0);
|
core_timing.Pause(false); // No need to sync
|
||||||
AdvanceAndCheck(core_timing, 1, 1);
|
|
||||||
AdvanceAndCheck(core_timing, 2, 2);
|
while (core_timing.HasPendingEvents())
|
||||||
AdvanceAndCheck(core_timing, 0, 3);
|
;
|
||||||
AdvanceAndCheck(core_timing, 4, 0);
|
|
||||||
|
REQUIRE(callbacks_ran_flags.all());
|
||||||
|
|
||||||
|
for (std::size_t i = 0; i < delays.size(); i++) {
|
||||||
|
const double delay = static_cast<double>(delays[i]);
|
||||||
|
const double micro = delay / 1000.0f;
|
||||||
|
const double mili = micro / 1000.0f;
|
||||||
|
printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
|
#pragma optimize("", off)
|
||||||
|
u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
|
||||||
|
u64 start = core_timing.GetGlobalTimeNs().count();
|
||||||
|
u64 placebo = 0;
|
||||||
|
for (std::size_t i = 0; i < 1000; i++) {
|
||||||
|
placebo += core_timing.GetGlobalTimeNs().count();
|
||||||
|
}
|
||||||
|
u64 end = core_timing.GetGlobalTimeNs().count();
|
||||||
|
return (end - start);
|
||||||
|
}
|
||||||
|
#pragma optimize("", on)
|
||||||
|
|
||||||
|
TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
|
||||||
ScopeInit guard;
|
ScopeInit guard;
|
||||||
auto& core_timing = guard.core_timing;
|
auto& core_timing = guard.core_timing;
|
||||||
|
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
||||||
|
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
||||||
|
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
||||||
|
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
||||||
|
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
||||||
|
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
||||||
|
};
|
||||||
|
|
||||||
std::shared_ptr<Core::Timing::EventType> empty_callback =
|
core_timing.SyncPause(true);
|
||||||
Core::Timing::CreateEvent("empty_callback", EmptyCallback);
|
core_timing.SyncPause(false);
|
||||||
|
|
||||||
callbacks_done = 0;
|
expected_callback = 0;
|
||||||
u64 MAX_CALLBACKS = 10;
|
|
||||||
for (std::size_t i = 0; i < 10; i++) {
|
u64 start = core_timing.GetGlobalTimeNs().count();
|
||||||
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
|
u64 one_micro = 1000U;
|
||||||
|
for (std::size_t i = 0; i < events.size(); i++) {
|
||||||
|
u64 order = calls_order[i];
|
||||||
|
core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
|
||||||
|
}
|
||||||
|
u64 end = core_timing.GetGlobalTimeNs().count();
|
||||||
|
const double scheduling_time = static_cast<double>(end - start);
|
||||||
|
const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));
|
||||||
|
|
||||||
|
while (core_timing.HasPendingEvents())
|
||||||
|
;
|
||||||
|
|
||||||
|
REQUIRE(callbacks_ran_flags.all());
|
||||||
|
|
||||||
|
for (std::size_t i = 0; i < delays.size(); i++) {
|
||||||
|
const double delay = static_cast<double>(delays[i]);
|
||||||
|
const double micro = delay / 1000.0f;
|
||||||
|
const double mili = micro / 1000.0f;
|
||||||
|
printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
||||||
}
|
}
|
||||||
|
|
||||||
const s64 advances = MAX_SLICE_LENGTH / 10;
|
const double micro = scheduling_time / 1000.0f;
|
||||||
core_timing.ResetRun();
|
const double mili = micro / 1000.0f;
|
||||||
u64 current_time = core_timing.GetTicks();
|
printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
|
||||||
bool keep_running{};
|
printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
|
||||||
do {
|
timer_time / 1000000.f);
|
||||||
keep_running = false;
|
|
||||||
for (u32 active_core = 0; active_core < 4; ++active_core) {
|
|
||||||
core_timing.SwitchContext(active_core);
|
|
||||||
if (core_timing.CanCurrentContextRun()) {
|
|
||||||
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
|
|
||||||
core_timing.Advance();
|
|
||||||
}
|
|
||||||
keep_running |= core_timing.CanCurrentContextRun();
|
|
||||||
}
|
|
||||||
} while (keep_running);
|
|
||||||
u64 current_time_2 = core_timing.GetTicks();
|
|
||||||
|
|
||||||
REQUIRE(MAX_CALLBACKS == callbacks_done);
|
|
||||||
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
|
||||||
ScopeInit guard;
|
|
||||||
auto& core_timing = guard.core_timing;
|
|
||||||
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_a =
|
|
||||||
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
|
||||||
std::shared_ptr<Core::Timing::EventType> cb_b =
|
|
||||||
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
|
||||||
|
|
||||||
// Enter slice 0
|
|
||||||
core_timing.ResetRun();
|
|
||||||
|
|
||||||
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
||||||
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
||||||
|
|
||||||
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
|
|
||||||
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -2,6 +2,8 @@
|
||||||
// Licensed under GPLv2 or any later version
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include <chrono>
|
||||||
|
|
||||||
#include "common/assert.h"
|
#include "common/assert.h"
|
||||||
#include "common/microprofile.h"
|
#include "common/microprofile.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
|
@ -154,8 +156,7 @@ u64 GPU::GetTicks() const {
|
||||||
constexpr u64 gpu_ticks_num = 384;
|
constexpr u64 gpu_ticks_num = 384;
|
||||||
constexpr u64 gpu_ticks_den = 625;
|
constexpr u64 gpu_ticks_den = 625;
|
||||||
|
|
||||||
const u64 cpu_ticks = system.CoreTiming().GetTicks();
|
u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count();
|
||||||
u64 nanoseconds = Core::Timing::CyclesToNs(cpu_ticks).count();
|
|
||||||
if (Settings::values.use_fast_gpu_time) {
|
if (Settings::values.use_fast_gpu_time) {
|
||||||
nanoseconds /= 256;
|
nanoseconds /= 256;
|
||||||
}
|
}
|
||||||
|
|
|
@ -52,6 +52,8 @@ void EmuThread::run() {
|
||||||
|
|
||||||
emit LoadProgress(VideoCore::LoadCallbackStage::Prepare, 0, 0);
|
emit LoadProgress(VideoCore::LoadCallbackStage::Prepare, 0, 0);
|
||||||
|
|
||||||
|
Core::System::GetInstance().RegisterHostThread();
|
||||||
|
|
||||||
Core::System::GetInstance().Renderer().Rasterizer().LoadDiskResources(
|
Core::System::GetInstance().Renderer().Rasterizer().LoadDiskResources(
|
||||||
stop_run, [this](VideoCore::LoadCallbackStage stage, std::size_t value, std::size_t total) {
|
stop_run, [this](VideoCore::LoadCallbackStage stage, std::size_t value, std::size_t total) {
|
||||||
emit LoadProgress(stage, value, total);
|
emit LoadProgress(stage, value, total);
|
||||||
|
@ -65,28 +67,30 @@ void EmuThread::run() {
|
||||||
bool was_active = false;
|
bool was_active = false;
|
||||||
while (!stop_run) {
|
while (!stop_run) {
|
||||||
if (running) {
|
if (running) {
|
||||||
if (!was_active)
|
if (was_active) {
|
||||||
emit DebugModeLeft();
|
emit DebugModeLeft();
|
||||||
|
}
|
||||||
|
|
||||||
Core::System::ResultStatus result = Core::System::GetInstance().RunLoop();
|
running_guard = true;
|
||||||
|
Core::System::ResultStatus result = Core::System::GetInstance().Run();
|
||||||
if (result != Core::System::ResultStatus::Success) {
|
if (result != Core::System::ResultStatus::Success) {
|
||||||
|
running_guard = false;
|
||||||
this->SetRunning(false);
|
this->SetRunning(false);
|
||||||
emit ErrorThrown(result, Core::System::GetInstance().GetStatusDetails());
|
emit ErrorThrown(result, Core::System::GetInstance().GetStatusDetails());
|
||||||
}
|
}
|
||||||
|
running_wait.Wait();
|
||||||
|
result = Core::System::GetInstance().Pause();
|
||||||
|
if (result != Core::System::ResultStatus::Success) {
|
||||||
|
running_guard = false;
|
||||||
|
this->SetRunning(false);
|
||||||
|
emit ErrorThrown(result, Core::System::GetInstance().GetStatusDetails());
|
||||||
|
}
|
||||||
|
running_guard = false;
|
||||||
|
|
||||||
was_active = running || exec_step;
|
was_active = true;
|
||||||
if (!was_active && !stop_run)
|
|
||||||
emit DebugModeEntered();
|
emit DebugModeEntered();
|
||||||
} else if (exec_step) {
|
} else if (exec_step) {
|
||||||
if (!was_active)
|
UNIMPLEMENTED();
|
||||||
emit DebugModeLeft();
|
|
||||||
|
|
||||||
exec_step = false;
|
|
||||||
Core::System::GetInstance().SingleStep();
|
|
||||||
emit DebugModeEntered();
|
|
||||||
yieldCurrentThread();
|
|
||||||
|
|
||||||
was_active = false;
|
|
||||||
} else {
|
} else {
|
||||||
std::unique_lock lock{running_mutex};
|
std::unique_lock lock{running_mutex};
|
||||||
running_cv.wait(lock, [this] { return IsRunning() || exec_step || stop_run; });
|
running_cv.wait(lock, [this] { return IsRunning() || exec_step || stop_run; });
|
||||||
|
|
|
@ -59,6 +59,11 @@ public:
|
||||||
this->running = running;
|
this->running = running;
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
running_cv.notify_all();
|
running_cv.notify_all();
|
||||||
|
if (!running) {
|
||||||
|
running_wait.Set();
|
||||||
|
/// Wait until effectively paused
|
||||||
|
while (running_guard);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -84,6 +89,8 @@ private:
|
||||||
std::atomic_bool stop_run{false};
|
std::atomic_bool stop_run{false};
|
||||||
std::mutex running_mutex;
|
std::mutex running_mutex;
|
||||||
std::condition_variable running_cv;
|
std::condition_variable running_cv;
|
||||||
|
Common::Event running_wait{};
|
||||||
|
std::atomic_bool running_guard{false};
|
||||||
|
|
||||||
signals:
|
signals:
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -59,8 +59,10 @@ std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList()
|
||||||
std::size_t row = 0;
|
std::size_t row = 0;
|
||||||
auto add_threads = [&](const std::vector<std::shared_ptr<Kernel::Thread>>& threads) {
|
auto add_threads = [&](const std::vector<std::shared_ptr<Kernel::Thread>>& threads) {
|
||||||
for (std::size_t i = 0; i < threads.size(); ++i) {
|
for (std::size_t i = 0; i < threads.size(); ++i) {
|
||||||
|
if (!threads[i]->IsHLEThread()) {
|
||||||
item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i]));
|
item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i]));
|
||||||
item_list.back()->row = row;
|
item_list.back()->row = row;
|
||||||
|
}
|
||||||
++row;
|
++row;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
|
@ -237,7 +237,7 @@ int main(int argc, char** argv) {
|
||||||
|
|
||||||
std::thread render_thread([&emu_window] { emu_window->Present(); });
|
std::thread render_thread([&emu_window] { emu_window->Present(); });
|
||||||
while (emu_window->IsOpen()) {
|
while (emu_window->IsOpen()) {
|
||||||
system.RunLoop();
|
//system.RunLoop();
|
||||||
}
|
}
|
||||||
render_thread.join();
|
render_thread.join();
|
||||||
|
|
||||||
|
|
|
@ -256,7 +256,7 @@ int main(int argc, char** argv) {
|
||||||
system.Renderer().Rasterizer().LoadDiskResources();
|
system.Renderer().Rasterizer().LoadDiskResources();
|
||||||
|
|
||||||
while (!finished) {
|
while (!finished) {
|
||||||
system.RunLoop();
|
//system.RunLoop();
|
||||||
}
|
}
|
||||||
|
|
||||||
detached_tasks.WaitForAllTasks();
|
detached_tasks.WaitForAllTasks();
|
||||||
|
|
Loading…
Reference in a new issue