1
0
Fork 0
forked from suyu/suyu

hle: kernel: Migrate more of KThread to KAutoObject.

This commit is contained in:
bunnei 2021-04-03 19:11:46 -07:00
parent 6fca1c82fd
commit da7e9553de
18 changed files with 451 additions and 294 deletions

View file

@ -168,6 +168,8 @@ add_library(core STATIC
hle/kernel/k_auto_object_container.cpp hle/kernel/k_auto_object_container.cpp
hle/kernel/k_auto_object_container.h hle/kernel/k_auto_object_container.h
hle/kernel/k_affinity_mask.h hle/kernel/k_affinity_mask.h
hle/kernel/k_class_token.cpp
hle/kernel/k_class_token.h
hle/kernel/k_condition_variable.cpp hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h hle/kernel/k_condition_variable.h
hle/kernel/k_event.cpp hle/kernel/k_event.cpp

View file

@ -72,6 +72,33 @@ ResultVal<Handle> HandleTable::Create(std::shared_ptr<Object> obj) {
return MakeResult<Handle>(handle); return MakeResult<Handle>(handle);
} }
ResultCode HandleTable::Add(Handle* out_handle, KAutoObject* obj, u16 type) {
ASSERT(obj != nullptr);
const u16 slot = next_free_slot;
if (slot >= table_size) {
LOG_ERROR(Kernel, "Unable to allocate Handle, too many slots in use.");
return ResultHandleTableFull;
}
next_free_slot = generations[slot];
const u16 generation = next_generation++;
// Overflow count so it fits in the 15 bits dedicated to the generation in the handle.
// Horizon OS uses zero to represent an invalid handle, so skip to 1.
if (next_generation >= (1 << 15)) {
next_generation = 1;
}
generations[slot] = generation;
objects_new[slot] = obj;
obj->Open();
*out_handle = generation | (slot << 15);
return RESULT_SUCCESS;
}
ResultVal<Handle> HandleTable::Duplicate(Handle handle) { ResultVal<Handle> HandleTable::Duplicate(Handle handle) {
std::shared_ptr<Object> object = GetGeneric(handle); std::shared_ptr<Object> object = GetGeneric(handle);
if (object == nullptr) { if (object == nullptr) {
@ -81,30 +108,36 @@ ResultVal<Handle> HandleTable::Duplicate(Handle handle) {
return Create(std::move(object)); return Create(std::move(object));
} }
ResultCode HandleTable::Close(Handle handle) { bool HandleTable::Remove(Handle handle) {
if (!IsValid(handle)) { if (!IsValid(handle)) {
LOG_ERROR(Kernel, "Handle is not valid! handle={:08X}", handle); LOG_ERROR(Kernel, "Handle is not valid! handle={:08X}", handle);
return ResultInvalidHandle; return {};
} }
const u16 slot = GetSlot(handle); const u16 slot = GetSlot(handle);
if (objects[slot].use_count() == 1) { if (objects[slot]) {
objects[slot]->Finalize(); objects[slot]->Close();
}
if (objects_new[slot]) {
objects_new[slot]->Close();
} }
objects[slot] = nullptr; objects[slot] = nullptr;
objects_new[slot] = nullptr;
generations[slot] = next_free_slot; generations[slot] = next_free_slot;
next_free_slot = slot; next_free_slot = slot;
return RESULT_SUCCESS;
return true;
} }
bool HandleTable::IsValid(Handle handle) const { bool HandleTable::IsValid(Handle handle) const {
const std::size_t slot = GetSlot(handle); const std::size_t slot = GetSlot(handle);
const u16 generation = GetGeneration(handle); const u16 generation = GetGeneration(handle);
const bool is_object_valid = (objects[slot] != nullptr) || (objects_new[slot] != nullptr);
return slot < table_size && objects[slot] != nullptr && generations[slot] == generation; return slot < table_size && is_object_valid && generations[slot] == generation;
} }
std::shared_ptr<Object> HandleTable::GetGeneric(Handle handle) const { std::shared_ptr<Object> HandleTable::GetGeneric(Handle handle) const {
@ -124,6 +157,7 @@ void HandleTable::Clear() {
for (u16 i = 0; i < table_size; ++i) { for (u16 i = 0; i < table_size; ++i) {
generations[i] = static_cast<u16>(i + 1); generations[i] = static_cast<u16>(i + 1);
objects[i] = nullptr; objects[i] = nullptr;
objects_new[i] = nullptr;
} }
next_free_slot = 0; next_free_slot = 0;
} }

View file

@ -9,6 +9,8 @@
#include <memory> #include <memory>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/result.h" #include "core/hle/result.h"
@ -87,7 +89,7 @@ public:
* @return `RESULT_SUCCESS` or one of the following errors: * @return `RESULT_SUCCESS` or one of the following errors:
* - `ERR_INVALID_HANDLE`: an invalid handle was passed in. * - `ERR_INVALID_HANDLE`: an invalid handle was passed in.
*/ */
ResultCode Close(Handle handle); bool Remove(Handle handle);
/// Checks if a handle is valid and points to an existing object. /// Checks if a handle is valid and points to an existing object.
bool IsValid(Handle handle) const; bool IsValid(Handle handle) const;
@ -108,12 +110,48 @@ public:
return DynamicObjectCast<T>(GetGeneric(handle)); return DynamicObjectCast<T>(GetGeneric(handle));
} }
template <typename T = KAutoObject>
KScopedAutoObject<T> GetObject(Handle handle) const {
if (handle == CurrentThread) {
return kernel.CurrentScheduler()->GetCurrentThread()->DynamicCast<T*>();
} else if (handle == CurrentProcess) {
return kernel.CurrentProcess()->DynamicCast<T*>();
}
if (!IsValid(handle)) {
return nullptr;
}
auto* obj = objects_new[static_cast<u16>(handle >> 15)];
return obj->DynamicCast<T*>();
}
template <typename T = KAutoObject>
KScopedAutoObject<T> GetObjectWithoutPseudoHandle(Handle handle) const {
if (!IsValid(handle)) {
return nullptr;
}
auto* obj = objects_new[static_cast<u16>(handle >> 15)];
return obj->DynamicCast<T*>();
}
/// Closes all handles held in this table. /// Closes all handles held in this table.
void Clear(); void Clear();
// NEW IMPL
template <typename T>
ResultCode Add(Handle* out_handle, T* obj) {
static_assert(std::is_base_of<KAutoObject, T>::value);
return this->Add(out_handle, obj, obj->GetTypeObj().GetClassToken());
}
ResultCode Add(Handle* out_handle, KAutoObject* obj, u16 type);
private: private:
/// Stores the Object referenced by the handle or null if the slot is empty. /// Stores the Object referenced by the handle or null if the slot is empty.
std::array<std::shared_ptr<Object>, MAX_COUNT> objects; std::array<std::shared_ptr<Object>, MAX_COUNT> objects;
std::array<KAutoObject*, MAX_COUNT> objects_new{};
/** /**
* The value of `next_generation` when the handle was created, used to check for validity. For * The value of `next_generation` when the handle was created, used to check for validity. For

View file

@ -291,8 +291,8 @@ private:
// TODO(yuriks): Check common usage of this and optimize size accordingly // TODO(yuriks): Check common usage of this and optimize size accordingly
boost::container::small_vector<Handle, 8> move_handles; boost::container::small_vector<Handle, 8> move_handles;
boost::container::small_vector<Handle, 8> copy_handles; boost::container::small_vector<Handle, 8> copy_handles;
boost::container::small_vector<std::shared_ptr<Object>, 8> move_objects; boost::container::small_vector<Object*, 8> move_objects;
boost::container::small_vector<std::shared_ptr<Object>, 8> copy_objects; boost::container::small_vector<Object*, 8> copy_objects;
boost::container::small_vector<std::shared_ptr<SessionRequestHandler>, 8> domain_objects; boost::container::small_vector<std::shared_ptr<SessionRequestHandler>, 8> domain_objects;
std::optional<IPC::CommandHeader> command_header; std::optional<IPC::CommandHeader> command_header;

View file

@ -11,9 +11,11 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/intrusive_red_black_tree.h" #include "common/intrusive_red_black_tree.h"
#include "core/hle/kernel/k_class_token.h" #include "core/hle/kernel/k_class_token.h"
#include "core/hle/kernel/object.h"
namespace Kernel { namespace Kernel {
class KernelCore;
class Process; class Process;
#define KERNEL_AUTOOBJECT_TRAITS(CLASS, BASE_CLASS) \ #define KERNEL_AUTOOBJECT_TRAITS(CLASS, BASE_CLASS) \
@ -46,7 +48,7 @@ public:
\ \
private: private:
class KAutoObject { class KAutoObject : public Object {
protected: protected:
class TypeObj { class TypeObj {
private: private:
@ -84,11 +86,14 @@ private:
private: private:
std::atomic<u32> m_ref_count; std::atomic<u32> m_ref_count;
protected:
KernelCore& kernel;
public: public:
static KAutoObject* Create(KAutoObject* ptr); static KAutoObject* Create(KAutoObject* ptr);
public: public:
constexpr explicit KAutoObject() : m_ref_count(0) {} explicit KAutoObject(KernelCore& kernel_) : Object{kernel_}, m_ref_count(0), kernel(kernel_) {}
virtual ~KAutoObject() {} virtual ~KAutoObject() {}
// Destroy is responsible for destroying the auto object's resources when ref_count hits zero. // Destroy is responsible for destroying the auto object's resources when ref_count hits zero.
@ -97,9 +102,7 @@ public:
} }
// Finalize is responsible for cleaning up resource, but does not destroy the object. // Finalize is responsible for cleaning up resource, but does not destroy the object.
virtual void Finalize() { virtual void Finalize() {}
UNIMPLEMENTED();
}
virtual Process* GetOwner() const { virtual Process* GetOwner() const {
return nullptr; return nullptr;
@ -179,7 +182,12 @@ private:
private: private:
Common::IntrusiveRedBlackTreeNode list_node; Common::IntrusiveRedBlackTreeNode list_node;
protected:
KernelCore& kernel;
public: public:
explicit KAutoObjectWithList(KernelCore& kernel_) : KAutoObject(kernel_), kernel(kernel_) {}
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) { static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
const u64 lid = lhs.GetId(); const u64 lid = lhs.GetId();
const u64 rid = rhs.GetId(); const u64 rid = rhs.GetId();
@ -208,7 +216,7 @@ private:
friend class KScopedAutoObject; friend class KScopedAutoObject;
private: private:
T* m_obj; T* m_obj{};
private: private:
constexpr void Swap(KScopedAutoObject& rhs) { constexpr void Swap(KScopedAutoObject& rhs) {
@ -216,8 +224,8 @@ private:
} }
public: public:
constexpr KScopedAutoObject() : m_obj(nullptr) { // ... constexpr KScopedAutoObject() = default;
}
constexpr KScopedAutoObject(T* o) : m_obj(o) { constexpr KScopedAutoObject(T* o) : m_obj(o) {
if (m_obj != nullptr) { if (m_obj != nullptr) {
m_obj->Open(); m_obj->Open();
@ -273,6 +281,10 @@ public:
return m_obj; return m_obj;
} }
constexpr T* GetPointerUnsafe() const {
return m_obj;
}
constexpr T* ReleasePointerUnsafe() { constexpr T* ReleasePointerUnsafe() {
T* ret = m_obj; T* ret = m_obj;
m_obj = nullptr; m_obj = nullptr;

View file

@ -0,0 +1,7 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/hle/kernel/k_class_token.h"
namespace Kernel {} // namespace Kernel

View file

@ -0,0 +1,131 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
namespace Kernel {
class KAutoObject;
class KClassTokenGenerator {
public:
using TokenBaseType = u16;
public:
static constexpr size_t BaseClassBits = 8;
static constexpr size_t FinalClassBits = (sizeof(TokenBaseType) * CHAR_BIT) - BaseClassBits;
// One bit per base class.
static constexpr size_t NumBaseClasses = BaseClassBits;
// Final classes are permutations of three bits.
static constexpr size_t NumFinalClasses = [] {
TokenBaseType index = 0;
for (size_t i = 0; i < FinalClassBits; i++) {
for (size_t j = i + 1; j < FinalClassBits; j++) {
for (size_t k = j + 1; k < FinalClassBits; k++) {
index++;
}
}
}
return index;
}();
private:
template <TokenBaseType Index>
static constexpr inline TokenBaseType BaseClassToken = BIT(Index);
template <TokenBaseType Index>
static constexpr inline TokenBaseType FinalClassToken = [] {
TokenBaseType index = 0;
for (size_t i = 0; i < FinalClassBits; i++) {
for (size_t j = i + 1; j < FinalClassBits; j++) {
for (size_t k = j + 1; k < FinalClassBits; k++) {
if ((index++) == Index) {
return static_cast<TokenBaseType>(((1ULL << i) | (1ULL << j) | (1ULL << k))
<< BaseClassBits);
}
}
}
}
}();
template <typename T>
static constexpr inline TokenBaseType GetClassToken() {
static_assert(std::is_base_of<KAutoObject, T>::value);
if constexpr (std::is_same<T, KAutoObject>::value) {
static_assert(T::ObjectType == ObjectType::KAutoObject);
return 0;
} else if constexpr (!std::is_final<T>::value) {
static_assert(ObjectType::BaseClassesStart <= T::ObjectType &&
T::ObjectType < ObjectType::BaseClassesEnd);
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
static_cast<TokenBaseType>(ObjectType::BaseClassesStart);
return BaseClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
} else if constexpr (ObjectType::FinalClassesStart <= T::ObjectType &&
T::ObjectType < ObjectType::FinalClassesEnd) {
constexpr auto ClassIndex = static_cast<TokenBaseType>(T::ObjectType) -
static_cast<TokenBaseType>(ObjectType::FinalClassesStart);
return FinalClassToken<ClassIndex> | GetClassToken<typename T::BaseClass>();
} else {
static_assert(!std::is_same<T, T>::value, "GetClassToken: Invalid Type");
}
};
public:
enum class ObjectType {
KAutoObject,
BaseClassesStart,
KSynchronizationObject = BaseClassesStart,
KReadableEvent,
BaseClassesEnd,
FinalClassesStart = BaseClassesEnd,
KInterruptEvent = FinalClassesStart,
KDebug,
KThread,
KServerPort,
KServerSession,
KClientPort,
KClientSession,
Process,
KResourceLimit,
KLightSession,
KPort,
KSession,
KSharedMemory,
KEvent,
KWritableEvent,
KLightClientSession,
KLightServerSession,
KTransferMemory,
KDeviceAddressSpace,
KSessionRequest,
KCodeMemory,
// NOTE: True order for these has not been determined yet.
KAlpha,
KBeta,
FinalClassesEnd = FinalClassesStart + NumFinalClasses,
};
template <typename T>
static constexpr inline TokenBaseType ClassToken = GetClassToken<T>();
};
using ClassTokenType = KClassTokenGenerator::TokenBaseType;
template <typename T>
static constexpr inline ClassTokenType ClassToken = KClassTokenGenerator::ClassToken<T>;
} // namespace Kernel

View file

@ -7,6 +7,7 @@
#include "core/arm/exclusive_monitor.h" #include "core/arm/exclusive_monitor.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/k_condition_variable.h" #include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_linked_list.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h" #include "core/hle/kernel/k_synchronization_object.h"
@ -107,8 +108,8 @@ ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 val
// Wait for the address. // Wait for the address.
{ {
std::shared_ptr<KThread> owner_thread; KScopedAutoObject<KThread> owner_thread;
ASSERT(!owner_thread); ASSERT(owner_thread.IsNull());
{ {
KScopedSchedulerLock sl(kernel); KScopedSchedulerLock sl(kernel);
cur_thread->SetSyncedObject(nullptr, RESULT_SUCCESS); cur_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
@ -126,8 +127,10 @@ ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 val
R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), RESULT_SUCCESS); R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), RESULT_SUCCESS);
// Get the lock owner thread. // Get the lock owner thread.
owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<KThread>(handle); owner_thread =
R_UNLESS(owner_thread, ResultInvalidHandle); kernel.CurrentProcess()->GetHandleTable().GetObjectWithoutPseudoHandle<KThread>(
handle);
R_UNLESS(owner_thread.IsNotNull(), ResultInvalidHandle);
// Update the lock. // Update the lock.
cur_thread->SetAddressKey(addr, value); cur_thread->SetAddressKey(addr, value);
@ -137,7 +140,7 @@ ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 val
cur_thread->SetMutexWaitAddressForDebugging(addr); cur_thread->SetMutexWaitAddressForDebugging(addr);
} }
} }
ASSERT(owner_thread); ASSERT(owner_thread.IsNotNull());
} }
// Remove the thread as a waiter from the lock owner. // Remove the thread as a waiter from the lock owner.
@ -182,13 +185,16 @@ KThread* KConditionVariable::SignalImpl(KThread* thread) {
thread->Wakeup(); thread->Wakeup();
} else { } else {
// Get the previous owner. // Get the previous owner.
auto owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<KThread>( KThread* owner_thread =
prev_tag & ~Svc::HandleWaitMask); kernel.CurrentProcess()->GetHandleTable()
.GetObjectWithoutPseudoHandle<KThread>(
static_cast<Handle>(prev_tag & ~Svc::HandleWaitMask))
.ReleasePointerUnsafe();
if (owner_thread) { if (owner_thread) {
// Add the thread as a waiter on the owner. // Add the thread as a waiter on the owner.
owner_thread->AddWaiter(thread); owner_thread->AddWaiter(thread);
thread_to_close = owner_thread.get(); thread_to_close = owner_thread;
} else { } else {
// The lock was tagged with a thread that doesn't exist. // The lock was tagged with a thread that doesn't exist.
thread->SetSyncedObject(nullptr, ResultInvalidState); thread->SetSyncedObject(nullptr, ResultInvalidState);
@ -208,9 +214,7 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
// Prepare for signaling. // Prepare for signaling.
constexpr int MaxThreads = 16; constexpr int MaxThreads = 16;
// TODO(bunnei): This should just be Thread once we implement KAutoObject instead of using KLinkedList<KThread> thread_list;
// std::shared_ptr.
std::vector<std::shared_ptr<KThread>> thread_list;
std::array<KThread*, MaxThreads> thread_array; std::array<KThread*, MaxThreads> thread_array;
s32 num_to_close{}; s32 num_to_close{};
@ -228,7 +232,7 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
if (num_to_close < MaxThreads) { if (num_to_close < MaxThreads) {
thread_array[num_to_close++] = thread; thread_array[num_to_close++] = thread;
} else { } else {
thread_list.push_back(SharedFrom(thread)); thread_list.push_back(*thread);
} }
} }
@ -251,7 +255,7 @@ void KConditionVariable::Signal(u64 cv_key, s32 count) {
// Close threads in the list. // Close threads in the list.
for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) { for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) {
(*it)->Close(); (*it).Close();
} }
} }

View file

@ -148,6 +148,14 @@ public:
return obj; return obj;
} }
T* AllocateWithKernel(KernelCore& kernel) {
T* obj = static_cast<T*>(AllocateImpl());
if (obj != nullptr) {
new (obj) T(kernel);
}
return obj;
}
void Free(T* obj) { void Free(T* obj) {
FreeImpl(obj); FreeImpl(obj);
} }

View file

@ -13,6 +13,11 @@
namespace Kernel { namespace Kernel {
void KSynchronizationObject::Finalize() {
this->OnFinalizeSynchronizationObject();
KAutoObject::Finalize();
}
ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index, ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
KSynchronizationObject** objects, const s32 num_objects, KSynchronizationObject** objects, const s32 num_objects,
s64 timeout) { s64 timeout) {
@ -130,10 +135,7 @@ ResultCode KSynchronizationObject::Wait(KernelCore& kernel, s32* out_index,
return wait_result; return wait_result;
} }
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel) : Object{kernel} {} KSynchronizationObject::KSynchronizationObject(KernelCore& kernel) : KAutoObjectWithList{kernel} {}
KSynchronizationObject::KSynchronizationObject(KernelCore& kernel, std::string&& name)
: Object{kernel, std::move(name)} {}
KSynchronizationObject::~KSynchronizationObject() = default; KSynchronizationObject::~KSynchronizationObject() = default;

View file

@ -6,7 +6,7 @@
#include <vector> #include <vector>
#include "core/hle/kernel/object.h" #include "core/hle/kernel/k_auto_object.h"
#include "core/hle/result.h" #include "core/hle/result.h"
namespace Kernel { namespace Kernel {
@ -16,7 +16,9 @@ class Synchronization;
class KThread; class KThread;
/// Class that represents a Kernel object that a thread can be waiting on /// Class that represents a Kernel object that a thread can be waiting on
class KSynchronizationObject : public Object { class KSynchronizationObject : public KAutoObjectWithList {
KERNEL_AUTOOBJECT_TRAITS(KSynchronizationObject, KAutoObject);
public: public:
struct ThreadListNode { struct ThreadListNode {
ThreadListNode* next{}; ThreadListNode* next{};
@ -27,15 +29,18 @@ public:
KSynchronizationObject** objects, const s32 num_objects, KSynchronizationObject** objects, const s32 num_objects,
s64 timeout); s64 timeout);
virtual void Finalize() override;
[[nodiscard]] virtual bool IsSignaled() const = 0; [[nodiscard]] virtual bool IsSignaled() const = 0;
[[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const; [[nodiscard]] std::vector<KThread*> GetWaitingThreadsForDebugging() const;
protected: protected:
explicit KSynchronizationObject(KernelCore& kernel); explicit KSynchronizationObject(KernelCore& kernel);
explicit KSynchronizationObject(KernelCore& kernel, std::string&& name);
virtual ~KSynchronizationObject(); virtual ~KSynchronizationObject();
virtual void OnFinalizeSynchronizationObject() {}
void NotifyAvailable(ResultCode result); void NotifyAvailable(ResultCode result);
void NotifyAvailable() { void NotifyAvailable() {
return this->NotifyAvailable(RESULT_SUCCESS); return this->NotifyAvailable(RESULT_SUCCESS);

View file

@ -28,6 +28,7 @@
#include "core/hardware_properties.h" #include "core/hardware_properties.h"
#include "core/hle/kernel/client_port.h" #include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/init/init_slab_setup.h"
#include "core/hle/kernel/k_memory_layout.h" #include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h" #include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_resource_limit.h" #include "core/hle/kernel/k_resource_limit.h"
@ -51,7 +52,8 @@ namespace Kernel {
struct KernelCore::Impl { struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel) explicit Impl(Core::System& system, KernelCore& kernel)
: time_manager{system}, global_handle_table{kernel}, system{system} {} : time_manager{system}, global_handle_table{kernel},
object_list_container{kernel}, system{system} {}
void SetMulticore(bool is_multicore) { void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore; this->is_multicore = is_multicore;
@ -69,9 +71,12 @@ struct KernelCore::Impl {
// Derive the initial memory layout from the emulated board // Derive the initial memory layout from the emulated board
KMemoryLayout memory_layout; KMemoryLayout memory_layout;
DeriveInitialMemoryLayout(memory_layout); DeriveInitialMemoryLayout(memory_layout);
Init::InitializeSlabHeaps(system, memory_layout);
// Initialize kernel memory and resources.
InitializeMemoryLayout(memory_layout); InitializeMemoryLayout(memory_layout);
InitializeSystemResourceLimit(kernel, system.CoreTiming(), memory_layout); InitializeSystemResourceLimit(kernel, system.CoreTiming(), memory_layout);
InitializeSlabHeaps(); InitializePageSlab();
InitializeSchedulers(); InitializeSchedulers();
InitializeSuspendThreads(); InitializeSuspendThreads();
InitializePreemption(kernel); InitializePreemption(kernel);
@ -99,7 +104,7 @@ struct KernelCore::Impl {
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
if (suspend_threads[i]) { if (suspend_threads[i]) {
suspend_threads[i].reset(); suspend_threads[i]->Close();
} }
} }
@ -189,15 +194,12 @@ struct KernelCore::Impl {
} }
void InitializeSuspendThreads() { void InitializeSuspendThreads() {
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (s32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
std::string name = "Suspend Thread Id:" + std::to_string(i); suspend_threads[core_id] = KThread::CreateWithKernel(system.Kernel());
std::function<void(void*)> init_func = Core::CpuManager::GetSuspendThreadStartFunc(); ASSERT(KThread::InitializeHighPriorityThread(system, suspend_threads[core_id], {}, {},
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater(); core_id)
auto thread_res = KThread::CreateThread( .IsSuccess());
system, ThreadType::HighPriority, std::move(name), 0, 0, 0, static_cast<u32>(i), 0, suspend_threads[core_id]->SetName(fmt::format("SuspendThread:{}", core_id));
nullptr, std::move(init_func), init_func_parameter);
suspend_threads[i] = std::move(thread_res).Unwrap();
} }
} }
@ -232,12 +234,15 @@ struct KernelCore::Impl {
// Gets the dummy KThread for the caller, allocating a new one if this is the first time // Gets the dummy KThread for the caller, allocating a new one if this is the first time
KThread* GetHostDummyThread() { KThread* GetHostDummyThread() {
const thread_local auto thread = auto make_thread = [this]() {
KThread::CreateThread( KThread* thread = KThread::CreateWithKernel(system.Kernel());
system, ThreadType::Main, fmt::format("DummyThread:{}", GetHostThreadId()), 0, ASSERT(KThread::InitializeDummyThread(thread).IsSuccess());
KThread::DefaultThreadPriority, 0, static_cast<u32>(3), 0, nullptr) thread->SetName(fmt::format("DummyThread:{}", GetHostThreadId()));
.Unwrap(); return thread;
return thread.get(); };
thread_local auto thread = make_thread();
return thread;
} }
/// Registers a CPU core thread by allocating a host thread ID for it /// Registers a CPU core thread by allocating a host thread ID for it
@ -371,7 +376,8 @@ struct KernelCore::Impl {
const size_t resource_region_size = memory_layout.GetResourceRegionSizeForInit(); const size_t resource_region_size = memory_layout.GetResourceRegionSizeForInit();
// Determine the size of the slab region. // Determine the size of the slab region.
const size_t slab_region_size = Common::AlignUp(KernelSlabHeapSize, PageSize); const size_t slab_region_size =
Common::AlignUp(Init::CalculateTotalSlabHeapSize(), PageSize);
ASSERT(slab_region_size <= resource_region_size); ASSERT(slab_region_size <= resource_region_size);
// Setup the slab region. // Setup the slab region.
@ -587,7 +593,7 @@ struct KernelCore::Impl {
"Time:SharedMemory"); "Time:SharedMemory");
} }
void InitializeSlabHeaps() { void InitializePageSlab() {
// Allocate slab heaps // Allocate slab heaps
user_slab_heap_pages = std::make_unique<KSlabHeap<Page>>(); user_slab_heap_pages = std::make_unique<KSlabHeap<Page>>();
@ -596,7 +602,7 @@ struct KernelCore::Impl {
// Reserve slab heaps // Reserve slab heaps
ASSERT( ASSERT(
system_resource_limit->Reserve(LimitableResource::PhysicalMemory, user_slab_heap_size)); system_resource_limit->Reserve(LimitableResource::PhysicalMemory, user_slab_heap_size));
// Initialize slab heaps // Initialize slab heap
user_slab_heap_pages->Initialize( user_slab_heap_pages->Initialize(
system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase), system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase),
user_slab_heap_size); user_slab_heap_size);
@ -621,6 +627,8 @@ struct KernelCore::Impl {
// stores all the objects in place. // stores all the objects in place.
HandleTable global_handle_table; HandleTable global_handle_table;
KAutoObjectWithListContainer object_list_container;
/// Map of named ports managed by the kernel, which can be retrieved using /// Map of named ports managed by the kernel, which can be retrieved using
/// the ConnectToPort SVC. /// the ConnectToPort SVC.
NamedPortTable named_ports; NamedPortTable named_ports;
@ -648,7 +656,7 @@ struct KernelCore::Impl {
// the release of itself // the release of itself
std::unique_ptr<Common::ThreadWorker> service_thread_manager; std::unique_ptr<Common::ThreadWorker> service_thread_manager;
std::array<std::shared_ptr<KThread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{}; std::array<KThread*, Core::Hardware::NUM_CPU_CORES> suspend_threads{};
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{}; std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{};
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{}; std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
@ -687,8 +695,8 @@ std::shared_ptr<KResourceLimit> KernelCore::GetSystemResourceLimit() const {
return impl->system_resource_limit; return impl->system_resource_limit;
} }
std::shared_ptr<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const { KScopedAutoObject<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
return impl->global_handle_table.Get<KThread>(handle); return impl->global_handle_table.GetObject<KThread>(handle);
} }
void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) { void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) {
@ -781,6 +789,14 @@ const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor; return *impl->exclusive_monitor;
} }
KAutoObjectWithListContainer& KernelCore::ObjectListContainer() {
return impl->object_list_container;
}
const KAutoObjectWithListContainer& KernelCore::ObjectListContainer() const {
return impl->object_list_container;
}
void KernelCore::InvalidateAllInstructionCaches() { void KernelCore::InvalidateAllInstructionCaches() {
for (auto& physical_core : impl->cores) { for (auto& physical_core : impl->cores) {
physical_core.ArmInterface().ClearInstructionCache(); physical_core.ArmInterface().ClearInstructionCache();
@ -960,4 +976,12 @@ void KernelCore::SetIsPhantomModeForSingleCore(bool value) {
impl->SetIsPhantomModeForSingleCore(value); impl->SetIsPhantomModeForSingleCore(value);
} }
Core::System& KernelCore::System() {
return impl->system;
}
const Core::System& KernelCore::System() const {
return impl->system;
}
} // namespace Kernel } // namespace Kernel

View file

@ -13,6 +13,7 @@
#include "core/hardware_properties.h" #include "core/hardware_properties.h"
#include "core/hle/kernel/memory_types.h" #include "core/hle/kernel/memory_types.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/kernel/k_auto_object.h"
namespace Core { namespace Core {
class CPUInterruptHandler; class CPUInterruptHandler;
@ -30,6 +31,7 @@ namespace Kernel {
class ClientPort; class ClientPort;
class GlobalSchedulerContext; class GlobalSchedulerContext;
class HandleTable; class HandleTable;
class KAutoObjectWithListContainer;
class KMemoryManager; class KMemoryManager;
class KResourceLimit; class KResourceLimit;
class KScheduler; class KScheduler;
@ -86,7 +88,7 @@ public:
std::shared_ptr<KResourceLimit> GetSystemResourceLimit() const; std::shared_ptr<KResourceLimit> GetSystemResourceLimit() const;
/// Retrieves a shared pointer to a Thread instance within the thread wakeup handle table. /// Retrieves a shared pointer to a Thread instance within the thread wakeup handle table.
std::shared_ptr<KThread> RetrieveThreadFromGlobalHandleTable(Handle handle) const; KScopedAutoObject<KThread> RetrieveThreadFromGlobalHandleTable(Handle handle) const;
/// Adds the given shared pointer to an internal list of active processes. /// Adds the given shared pointer to an internal list of active processes.
void AppendNewProcess(std::shared_ptr<Process> process); void AppendNewProcess(std::shared_ptr<Process> process);
@ -143,6 +145,10 @@ public:
const Core::ExclusiveMonitor& GetExclusiveMonitor() const; const Core::ExclusiveMonitor& GetExclusiveMonitor() const;
KAutoObjectWithListContainer& ObjectListContainer();
const KAutoObjectWithListContainer& ObjectListContainer() const;
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Interrupts(); std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Interrupts();
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Interrupts() const; const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Interrupts() const;
@ -243,6 +249,9 @@ public:
bool IsPhantomModeForSingleCore() const; bool IsPhantomModeForSingleCore() const;
void SetIsPhantomModeForSingleCore(bool value); void SetIsPhantomModeForSingleCore(bool value);
Core::System& System();
const Core::System& System() const;
private: private:
friend class Object; friend class Object;
friend class Process; friend class Process;

View file

@ -40,14 +40,15 @@ namespace {
void SetupMainThread(Core::System& system, Process& owner_process, u32 priority, VAddr stack_top) { void SetupMainThread(Core::System& system, Process& owner_process, u32 priority, VAddr stack_top) {
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart(); const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::Threads, 1)); ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::Threads, 1));
auto thread_res =
KThread::CreateUserThread(system, ThreadType::User, "main", entry_point, priority, 0,
owner_process.GetIdealCoreId(), stack_top, &owner_process);
std::shared_ptr<KThread> thread = std::move(thread_res).Unwrap(); KThread* thread = KThread::CreateWithKernel(system.Kernel());
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
owner_process.GetIdealCoreId(), &owner_process)
.IsSuccess());
// Register 1 must be a handle to the main thread // Register 1 must be a handle to the main thread
const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap(); Handle thread_handle{};
owner_process.GetHandleTable().Add(&thread_handle, thread);
thread->GetContext32().cpu_registers[0] = 0; thread->GetContext32().cpu_registers[0] = 0;
thread->GetContext64().cpu_registers[0] = 0; thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle; thread->GetContext32().cpu_registers[1] = thread_handle;
@ -337,12 +338,12 @@ void Process::Run(s32 main_thread_priority, u64 stack_size) {
void Process::PrepareForTermination() { void Process::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting); ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<std::shared_ptr<KThread>>& thread_list) { const auto stop_threads = [this](const std::vector<KThread*>& thread_list) {
for (auto& thread : thread_list) { for (auto& thread : thread_list) {
if (thread->GetOwnerProcess() != this) if (thread->GetOwnerProcess() != this)
continue; continue;
if (thread.get() == kernel.CurrentScheduler()->GetCurrentThread()) if (thread == kernel.CurrentScheduler()->GetCurrentThread())
continue; continue;
// TODO(Subv): When are the other running/ready threads terminated? // TODO(Subv): When are the other running/ready threads terminated?

View file

@ -14,6 +14,7 @@
#include "core/hle/kernel/k_auto_object_container.h" #include "core/hle/kernel/k_auto_object_container.h"
#include "core/hle/kernel/k_light_lock.h" #include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_slab_heap.h" #include "core/hle/kernel/k_slab_heap.h"
#include "core/hle/kernel/kernel.h"
namespace Kernel { namespace Kernel {
@ -66,13 +67,17 @@ class KAutoObjectWithSlabHeapAndContainer : public Base {
private: private:
static inline KSlabHeap<Derived> s_slab_heap; static inline KSlabHeap<Derived> s_slab_heap;
static inline KAutoObjectWithListContainer s_container; KernelCore& m_kernel;
private: private:
static Derived* Allocate() { static Derived* Allocate() {
return s_slab_heap.Allocate(); return s_slab_heap.Allocate();
} }
static Derived* AllocateWithKernel(KernelCore& kernel) {
return s_slab_heap.AllocateWithKernel(kernel);
}
static void Free(Derived* obj) { static void Free(Derived* obj) {
s_slab_heap.Free(obj); s_slab_heap.Free(obj);
} }
@ -80,19 +85,20 @@ private:
public: public:
class ListAccessor : public KAutoObjectWithListContainer::ListAccessor { class ListAccessor : public KAutoObjectWithListContainer::ListAccessor {
public: public:
ListAccessor() : KAutoObjectWithListContainer::ListAccessor(s_container) {} ListAccessor()
: KAutoObjectWithListContainer::ListAccessor(m_kernel.ObjectListContainer()) {}
~ListAccessor() = default; ~ListAccessor() = default;
}; };
public: public:
constexpr KAutoObjectWithSlabHeapAndContainer() : Base() {} KAutoObjectWithSlabHeapAndContainer(KernelCore& kernel) : Base(kernel), m_kernel(kernel) {}
virtual ~KAutoObjectWithSlabHeapAndContainer() {} virtual ~KAutoObjectWithSlabHeapAndContainer() {}
virtual void Destroy() override { virtual void Destroy() override {
const bool is_initialized = this->IsInitialized(); const bool is_initialized = this->IsInitialized();
uintptr_t arg = 0; uintptr_t arg = 0;
if (is_initialized) { if (is_initialized) {
s_container.Unregister(this); m_kernel.ObjectListContainer().Unregister(this);
arg = this->GetPostDestroyArgument(); arg = this->GetPostDestroyArgument();
this->Finalize(); this->Finalize();
} }
@ -114,21 +120,29 @@ public:
} }
public: public:
static void InitializeSlabHeap(void* memory, size_t memory_size) { static void InitializeSlabHeap(KernelCore& kernel, void* memory, size_t memory_size) {
s_slab_heap.Initialize(memory, memory_size); s_slab_heap.Initialize(memory, memory_size);
s_container.Initialize(); kernel.ObjectListContainer().Initialize();
} }
static Derived* Create() { static Derived* Create() {
Derived* obj = Allocate(); Derived* obj = Allocate();
if (AMS_LIKELY(obj != nullptr)) { if (obj != nullptr) {
KAutoObject::Create(obj); KAutoObject::Create(obj);
} }
return obj; return obj;
} }
static void Register(Derived* obj) { static Derived* CreateWithKernel(KernelCore& kernel) {
return s_container.Register(obj); Derived* obj = AllocateWithKernel(kernel);
if (obj != nullptr) {
KAutoObject::Create(obj);
}
return obj;
}
static void Register(KernelCore& kernel, Derived* obj) {
return kernel.ObjectListContainer().Register(obj);
} }
static size_t GetObjectSize() { static size_t GetObjectSize() {

View file

@ -355,7 +355,7 @@ static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
KScopedSchedulerLock lock(kernel); KScopedSchedulerLock lock(kernel);
thread->SetState(ThreadState::Waiting); thread->SetState(ThreadState::Waiting);
thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC); thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::IPC);
session->SendSyncRequest(SharedFrom(thread), system.Memory(), system.CoreTiming()); session->SendSyncRequest(thread, system.Memory(), system.CoreTiming());
} }
KSynchronizationObject* dummy{}; KSynchronizationObject* dummy{};
@ -368,18 +368,13 @@ static ResultCode SendSyncRequest32(Core::System& system, Handle handle) {
/// Get the ID for the specified thread. /// Get the ID for the specified thread.
static ResultCode GetThreadId(Core::System& system, u64* out_thread_id, Handle thread_handle) { static ResultCode GetThreadId(Core::System& system, u64* out_thread_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
// Get the thread from its handle. // Get the thread from its handle.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject thread =
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(thread_handle); system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
if (!thread) { R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
LOG_ERROR(Kernel_SVC, "Invalid thread handle provided (handle={:08X})", thread_handle);
return ResultInvalidHandle;
}
// Get the thread's id. // Get the thread's id.
*out_thread_id = thread->GetThreadID(); *out_thread_id = thread->GetId();
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -396,30 +391,7 @@ static ResultCode GetThreadId32(Core::System& system, u32* out_thread_id_low,
/// Gets the ID of the specified process or a specified thread's owning process. /// Gets the ID of the specified process or a specified thread's owning process.
static ResultCode GetProcessId(Core::System& system, u64* process_id, Handle handle) { static ResultCode GetProcessId(Core::System& system, u64* process_id, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle); __debugbreak();
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Process> process = handle_table.Get<Process>(handle);
if (process) {
*process_id = process->GetProcessID();
return RESULT_SUCCESS;
}
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(handle);
if (thread) {
const Process* const owner_process = thread->GetOwnerProcess();
if (!owner_process) {
LOG_ERROR(Kernel_SVC, "Non-existent owning process encountered.");
return ResultInvalidHandle;
}
*process_id = owner_process->GetProcessID();
return RESULT_SUCCESS;
}
// NOTE: This should also handle debug objects before returning.
LOG_ERROR(Kernel_SVC, "Handle does not exist, handle=0x{:08X}", handle);
return ResultInvalidHandle; return ResultInvalidHandle;
} }
@ -460,14 +432,30 @@ static ResultCode WaitSynchronization(Core::System& system, s32* index, VAddr ha
for (u64 i = 0; i < handle_count; ++i) { for (u64 i = 0; i < handle_count; ++i) {
const Handle handle = memory.Read32(handles_address + i * sizeof(Handle)); const Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
const auto object = handle_table.Get<KSynchronizationObject>(handle);
if (object == nullptr) { bool succeeded{};
{
auto object = handle_table.Get<KSynchronizationObject>(handle);
if (object) {
objects[i] = object.get();
succeeded = true;
}
}
// TODO(bunnei): WORKAROUND WHILE WE HAVE TWO HANDLE TABLES
if (!succeeded) {
{
auto object = handle_table.GetObject<KSynchronizationObject>(handle);
if (object.IsNull()) {
LOG_ERROR(Kernel_SVC, "Object is a nullptr"); LOG_ERROR(Kernel_SVC, "Object is a nullptr");
return ResultInvalidHandle; return ResultInvalidHandle;
} }
objects[i] = object.get(); objects[i] = object.GetPointerUnsafe();
succeeded = true;
}
}
} }
return KSynchronizationObject::Wait(kernel, index, objects.data(), return KSynchronizationObject::Wait(kernel, index, objects.data(),
static_cast<s32>(objects.size()), nano_seconds); static_cast<s32>(objects.size()), nano_seconds);
@ -481,19 +469,7 @@ static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u
/// Resumes a thread waiting on WaitSynchronization /// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Core::System& system, Handle thread_handle) { static ResultCode CancelSynchronization(Core::System& system, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle); __debugbreak();
// Get the thread from its handle.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
std::shared_ptr<KThread> thread = handle_table.Get<KThread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Invalid thread handle provided (handle={:08X})", thread_handle);
return ResultInvalidHandle;
}
// Cancel the thread's wait.
thread->WaitCancel();
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -899,9 +875,10 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
return ResultInvalidCombination; return ResultInvalidCombination;
} }
const auto thread = system.Kernel().CurrentProcess()->GetHandleTable().Get<KThread>( KScopedAutoObject thread =
system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(
static_cast<Handle>(handle)); static_cast<Handle>(handle));
if (!thread) { if (thread.IsNull()) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
static_cast<Handle>(handle)); static_cast<Handle>(handle));
return ResultInvalidHandle; return ResultInvalidHandle;
@ -910,7 +887,7 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
const auto& core_timing = system.CoreTiming(); const auto& core_timing = system.CoreTiming();
const auto& scheduler = *system.Kernel().CurrentScheduler(); const auto& scheduler = *system.Kernel().CurrentScheduler();
const auto* const current_thread = scheduler.GetCurrentThread(); const auto* const current_thread = scheduler.GetCurrentThread();
const bool same_thread = current_thread == thread.get(); const bool same_thread = current_thread == thread.GetPointerUnsafe();
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks(); const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
u64 out_ticks = 0; u64 out_ticks = 0;
@ -1055,45 +1032,7 @@ static ResultCode UnmapPhysicalMemory32(Core::System& system, u32 addr, u32 size
/// Sets the thread activity /// Sets the thread activity
static ResultCode SetThreadActivity(Core::System& system, Handle thread_handle, static ResultCode SetThreadActivity(Core::System& system, Handle thread_handle,
ThreadActivity thread_activity) { ThreadActivity thread_activity) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", thread_handle, __debugbreak();
thread_activity);
// Validate the activity.
constexpr auto IsValidThreadActivity = [](ThreadActivity activity) {
return activity == ThreadActivity::Runnable || activity == ThreadActivity::Paused;
};
if (!IsValidThreadActivity(thread_activity)) {
LOG_ERROR(Kernel_SVC, "Invalid thread activity value provided (activity={})",
thread_activity);
return ResultInvalidEnumValue;
}
// Get the thread from its handle.
auto& kernel = system.Kernel();
const auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Invalid thread handle provided (handle={:08X})", thread_handle);
return ResultInvalidHandle;
}
// Check that the activity is being set on a non-current thread for the current process.
if (thread->GetOwnerProcess() != kernel.CurrentProcess()) {
LOG_ERROR(Kernel_SVC, "Invalid owning process for the created thread.");
return ResultInvalidHandle;
}
if (thread.get() == GetCurrentThreadPointer(kernel)) {
LOG_ERROR(Kernel_SVC, "Thread is busy");
return ResultBusy;
}
// Set the activity.
const auto set_result = thread->SetActivity(thread_activity);
if (set_result.IsError()) {
LOG_ERROR(Kernel_SVC, "Failed to set thread activity.");
return set_result;
}
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -1107,36 +1046,7 @@ static ResultCode GetThreadContext(Core::System& system, VAddr out_context, Hand
LOG_DEBUG(Kernel_SVC, "called, out_context=0x{:08X}, thread_handle=0x{:X}", out_context, LOG_DEBUG(Kernel_SVC, "called, out_context=0x{:08X}, thread_handle=0x{:X}", out_context,
thread_handle); thread_handle);
// Get the thread from its handle. __debugbreak();
const auto* current_process = system.Kernel().CurrentProcess();
const std::shared_ptr<KThread> thread =
current_process->GetHandleTable().Get<KThread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Invalid thread handle provided (handle={})", thread_handle);
return ResultInvalidHandle;
}
// Require the handle be to a non-current thread in the current process.
if (thread->GetOwnerProcess() != current_process) {
LOG_ERROR(Kernel_SVC, "Thread owning process is not the current process.");
return ResultInvalidHandle;
}
if (thread.get() == system.Kernel().CurrentScheduler()->GetCurrentThread()) {
LOG_ERROR(Kernel_SVC, "Current thread is busy.");
return ResultBusy;
}
// Get the thread context.
std::vector<u8> context;
const auto context_result = thread->GetThreadContext3(context);
if (context_result.IsError()) {
LOG_ERROR(Kernel_SVC, "Unable to successfully retrieve thread context (result: {})",
context_result.raw);
return context_result;
}
// Copy the thread context to user space.
system.Memory().WriteBlock(out_context, context.data(), context.size());
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -1164,30 +1074,26 @@ static ResultCode GetThreadPriority32(Core::System& system, u32* out_priority, H
} }
/// Sets the priority for the specified thread /// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Core::System& system, Handle handle, u32 priority) { static ResultCode SetThreadPriority(Core::System& system, Handle thread_handle, u32 priority) {
LOG_TRACE(Kernel_SVC, "called"); // Get the current process.
Process& process = *system.Kernel().CurrentProcess();
// Validate the priority. // Validate the priority.
if (HighestThreadPriority > priority || priority > LowestThreadPriority) { R_UNLESS(HighestThreadPriority <= priority && priority <= LowestThreadPriority,
LOG_ERROR(Kernel_SVC, "Invalid thread priority specified (priority={})", priority); ResultInvalidPriority);
return ResultInvalidPriority; R_UNLESS(process.CheckThreadPriority(priority), ResultInvalidPriority);
}
// Get the thread from its handle. // Get the thread from its handle.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject thread = process.GetHandleTable().GetObject<KThread>(thread_handle);
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Invalid handle provided (handle={:08X})", handle);
return ResultInvalidHandle;
}
// Set the thread priority. // Set the thread priority.
thread->SetBasePriority(priority); thread->SetBasePriority(priority);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
static ResultCode SetThreadPriority32(Core::System& system, Handle handle, u32 priority) { static ResultCode SetThreadPriority32(Core::System& system, Handle thread_handle, u32 priority) {
return SetThreadPriority(system, handle, priority); return SetThreadPriority(system, thread_handle, priority);
} }
/// Get which CPU core is executing the current thread /// Get which CPU core is executing the current thread
@ -1480,7 +1386,7 @@ static void ExitProcess32(Core::System& system) {
ExitProcess(system); ExitProcess(system);
} }
static constexpr bool IsValidCoreId(int32_t core_id) { static constexpr bool IsValidVirtualCoreId(int32_t core_id) {
return (0 <= core_id && core_id < static_cast<int32_t>(Core::Hardware::NUM_CPU_CORES)); return (0 <= core_id && core_id < static_cast<int32_t>(Core::Hardware::NUM_CPU_CORES));
} }
@ -1500,7 +1406,7 @@ static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr e
} }
// Validate arguments. // Validate arguments.
if (!IsValidCoreId(core_id)) { if (!IsValidVirtualCoreId(core_id)) {
LOG_ERROR(Kernel_SVC, "Invalid Core ID specified (id={})", core_id); LOG_ERROR(Kernel_SVC, "Invalid Core ID specified (id={})", core_id);
return ResultInvalidCoreId; return ResultInvalidCoreId;
} }
@ -1822,8 +1728,11 @@ static void GetSystemTick32(Core::System& system, u32* time_low, u32* time_high)
static ResultCode CloseHandle(Core::System& system, Handle handle) { static ResultCode CloseHandle(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle); LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); // Remove the handle.
return handle_table.Close(handle); R_UNLESS(system.Kernel().CurrentProcess()->GetHandleTable().Remove(handle),
ResultInvalidHandle);
return RESULT_SUCCESS;
} }
static ResultCode CloseHandle32(Core::System& system, Handle handle) { static ResultCode CloseHandle32(Core::System& system, Handle handle) {
@ -1925,23 +1834,7 @@ static ResultCode CreateTransferMemory32(Core::System& system, Handle* handle, u
static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, s32* out_core_id, static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, s32* out_core_id,
u64* out_affinity_mask) { u64* out_affinity_mask) {
LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle); __debugbreak();
// Get the thread from its handle.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Invalid thread handle specified (handle={:08X})", thread_handle);
return ResultInvalidHandle;
}
// Get the core mask.
const auto result = thread->GetCoreMask(out_core_id, out_affinity_mask);
if (result.IsError()) {
LOG_ERROR(Kernel_SVC, "Unable to successfully retrieve core mask (result={})", result.raw);
return result;
}
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -1956,58 +1849,33 @@ static ResultCode GetThreadCoreMask32(Core::System& system, Handle thread_handle
static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle, s32 core_id, static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle, s32 core_id,
u64 affinity_mask) { u64 affinity_mask) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, core_id=0x{:X}, affinity_mask=0x{:016X}",
thread_handle, core_id, affinity_mask);
const auto& current_process = *system.Kernel().CurrentProcess();
// Determine the core id/affinity mask. // Determine the core id/affinity mask.
if (core_id == Svc::IdealCoreUseProcessValue) { if (core_id == IdealCoreUseProcessValue) {
core_id = current_process.GetIdealCoreId(); core_id = system.Kernel().CurrentProcess()->GetIdealCoreId();
affinity_mask = (1ULL << core_id); affinity_mask = (1ULL << core_id);
} else { } else {
// Validate the affinity mask. // Validate the affinity mask.
const u64 process_core_mask = current_process.GetCoreMask(); const u64 process_core_mask = system.Kernel().CurrentProcess()->GetCoreMask();
if ((affinity_mask | process_core_mask) != process_core_mask) { R_UNLESS((affinity_mask | process_core_mask) == process_core_mask, ResultInvalidCoreId);
LOG_ERROR(Kernel_SVC, R_UNLESS(affinity_mask != 0, ResultInvalidCombination);
"Affinity mask does match the process core mask (affinity mask={:016X}, core "
"mask={:016X})",
affinity_mask, process_core_mask);
return ResultInvalidCoreId;
}
if (affinity_mask == 0) {
LOG_ERROR(Kernel_SVC, "Affinity mask is zero.");
return ResultInvalidCombination;
}
// Validate the core id. // Validate the core id.
if (IsValidCoreId(core_id)) { if (IsValidVirtualCoreId(core_id)) {
if (((1ULL << core_id) & affinity_mask) == 0) { R_UNLESS(((1ULL << core_id) & affinity_mask) != 0, ResultInvalidCombination);
LOG_ERROR(Kernel_SVC, "Invalid core ID (ID={})", core_id);
return ResultInvalidCombination;
}
} else { } else {
if (core_id != IdealCoreNoUpdate && core_id != IdealCoreDontCare) { R_UNLESS(core_id == IdealCoreNoUpdate || core_id == IdealCoreDontCare,
LOG_ERROR(Kernel_SVC, "Invalid core ID (ID={})", core_id); ResultInvalidCoreId);
return ResultInvalidCoreId;
}
} }
} }
// Get the thread from its handle. // Get the thread from its handle.
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject thread =
const std::shared_ptr<KThread> thread = handle_table.Get<KThread>(thread_handle); system.Kernel().CurrentProcess()->GetHandleTable().GetObject<KThread>(thread_handle);
if (!thread) { R_UNLESS(thread.IsNotNull(), ResultInvalidHandle);
LOG_ERROR(Kernel_SVC, "Invalid thread handle (handle={:08X})", thread_handle);
return ResultInvalidHandle;
}
// Set the core mask. // Set the core mask.
const auto set_result = thread->SetCoreMask(core_id, affinity_mask); R_TRY(thread->SetCoreMask(core_id, affinity_mask));
if (set_result.IsError()) {
LOG_ERROR(Kernel_SVC, "Unable to successfully set core mask (result={})", set_result.raw);
return set_result;
}
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -2105,7 +1973,7 @@ static ResultCode CreateEvent(Core::System& system, Handle* out_write, Handle* o
*out_write = *write_create_result; *out_write = *write_create_result;
// Add the writable event to the handle table. // Add the writable event to the handle table.
auto handle_guard = SCOPE_GUARD({ handle_table.Close(*write_create_result); }); auto handle_guard = SCOPE_GUARD({ handle_table.Remove(*write_create_result); });
// Add the readable event to the handle table. // Add the readable event to the handle table.
const auto read_create_result = handle_table.Create(event->GetReadableEvent()); const auto read_create_result = handle_table.Create(event->GetReadableEvent());

View file

@ -15,14 +15,10 @@
namespace Kernel { namespace Kernel {
TimeManager::TimeManager(Core::System& system_) : system{system_} { TimeManager::TimeManager(Core::System& system_) : system{system_} {
time_manager_event_type = Core::Timing::CreateEvent( time_manager_event_type =
"Kernel::TimeManagerCallback", Core::Timing::CreateEvent("Kernel::TimeManagerCallback",
[this](std::uintptr_t thread_handle, std::chrono::nanoseconds) { [this](std::uintptr_t thread_handle, std::chrono::nanoseconds) {
std::shared_ptr<KThread> thread; KThread* thread = reinterpret_cast<KThread*>(thread_handle);
{
std::lock_guard lock{mutex};
thread = SharedFrom<KThread>(reinterpret_cast<KThread*>(thread_handle));
}
thread->Wakeup(); thread->Wakeup();
}); });
} }

View file

@ -91,7 +91,7 @@ std::size_t WaitTreeItem::Row() const {
std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() { std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() {
std::vector<std::unique_ptr<WaitTreeThread>> item_list; std::vector<std::unique_ptr<WaitTreeThread>> item_list;
std::size_t row = 0; std::size_t row = 0;
auto add_threads = [&](const std::vector<std::shared_ptr<Kernel::KThread>>& threads) { auto add_threads = [&](const std::vector<Kernel::KThread*>& threads) {
for (std::size_t i = 0; i < threads.size(); ++i) { for (std::size_t i = 0; i < threads.size(); ++i) {
if (threads[i]->GetThreadTypeForDebugging() == Kernel::ThreadType::User) { if (threads[i]->GetThreadTypeForDebugging() == Kernel::ThreadType::User) {
item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i])); item_list.push_back(std::make_unique<WaitTreeThread>(*threads[i]));
@ -183,10 +183,12 @@ bool WaitTreeExpandableItem::IsExpandable() const {
} }
QString WaitTreeSynchronizationObject::GetText() const { QString WaitTreeSynchronizationObject::GetText() const {
return tr("[%1]%2 %3") // return tr("[%1]%2 %3")
.arg(object.GetObjectId()) // .arg(object.GetObjectId())
.arg(QString::fromStdString(object.GetTypeName()), // .arg(QString::fromStdString(object.GetTypeName()),
QString::fromStdString(object.GetName())); // QString::fromStdString(object.GetName()));
return tr("UNIMPLEMENTED");
} }
std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::make( std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::make(