1
0
Fork 0
forked from suyu/suyu

Merge pull request #1517 from bunnei/dma

GPU/DMA: Flush the source region and invalidate the destination region when doing a DMA transfer.
This commit is contained in:
bunnei 2018-10-19 22:58:30 -04:00 committed by GitHub
commit 4849569565
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 144 additions and 23 deletions

View file

@ -47,9 +47,12 @@ void Fermi2D::HandleSurfaceCopy() {
u32 dst_bytes_per_pixel = RenderTargetBytesPerPixel(regs.dst.format);
if (!rasterizer.AccelerateSurfaceCopy(regs.src, regs.dst)) {
// TODO(bunnei): The below implementation currently will not get hit, as
// AccelerateSurfaceCopy tries to always copy and will always return success. This should be
// changed once we properly support flushing.
rasterizer.FlushRegion(source_cpu, src_bytes_per_pixel * regs.src.width * regs.src.height);
// We have to invalidate the destination region to evict any outdated surfaces from the
// cache. We do this before actually writing the new data because the destination address
// might contain a dirty surface that will have to be written back to memory.
rasterizer.InvalidateRegion(dest_cpu,
dst_bytes_per_pixel * regs.dst.width * regs.dst.height);
if (regs.src.linear == regs.dst.linear) {
// If the input layout and the output layout are the same, just perform a raw copy.

View file

@ -5,10 +5,14 @@
#include "common/logging/log.h"
#include "core/memory.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/rasterizer_interface.h"
namespace Tegra::Engines {
KeplerMemory::KeplerMemory(MemoryManager& memory_manager) : memory_manager(memory_manager) {}
KeplerMemory::KeplerMemory(VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer} {}
KeplerMemory::~KeplerMemory() = default;
void KeplerMemory::WriteReg(u32 method, u32 value) {
@ -37,6 +41,11 @@ void KeplerMemory::ProcessData(u32 data) {
VAddr dest_address =
*memory_manager.GpuToCpuAddress(address + state.write_offset * sizeof(u32));
// We have to invalidate the destination region to evict any outdated surfaces from the cache.
// We do this before actually writing the new data because the destination address might contain
// a dirty surface that will have to be written back to memory.
rasterizer.InvalidateRegion(dest_address, sizeof(u32));
Memory::Write32(dest_address, data);
state.write_offset++;

View file

@ -11,6 +11,10 @@
#include "common/common_types.h"
#include "video_core/memory_manager.h"
namespace VideoCore {
class RasterizerInterface;
}
namespace Tegra::Engines {
#define KEPLERMEMORY_REG_INDEX(field_name) \
@ -18,7 +22,7 @@ namespace Tegra::Engines {
class KeplerMemory final {
public:
KeplerMemory(MemoryManager& memory_manager);
KeplerMemory(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
~KeplerMemory();
/// Write the value to the register identified by method.
@ -72,6 +76,7 @@ public:
private:
MemoryManager& memory_manager;
VideoCore::RasterizerInterface& rasterizer;
void ProcessData(u32 data);
};

View file

@ -4,12 +4,14 @@
#include "core/memory.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/textures/decoders.h"
namespace Tegra {
namespace Engines {
MaxwellDMA::MaxwellDMA(MemoryManager& memory_manager) : memory_manager(memory_manager) {}
MaxwellDMA::MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer} {}
void MaxwellDMA::WriteReg(u32 method, u32 value) {
ASSERT_MSG(method < Regs::NUM_REGS,
@ -44,38 +46,79 @@ void MaxwellDMA::HandleCopy() {
ASSERT(regs.exec.query_mode == Regs::QueryMode::None);
ASSERT(regs.exec.query_intr == Regs::QueryIntr::None);
ASSERT(regs.exec.copy_mode == Regs::CopyMode::Unk2);
ASSERT(regs.src_params.pos_x == 0);
ASSERT(regs.src_params.pos_y == 0);
ASSERT(regs.dst_params.pos_x == 0);
ASSERT(regs.dst_params.pos_y == 0);
if (regs.exec.is_dst_linear == regs.exec.is_src_linear) {
std::size_t copy_size = regs.x_count;
// When the enable_2d bit is disabled, the copy is performed as if we were copying a 1D
// buffer of length `x_count`, otherwise we copy a 2D buffer of size (x_count, y_count).
if (regs.exec.enable_2d) {
copy_size = copy_size * regs.y_count;
if (!regs.exec.is_dst_linear && !regs.exec.is_src_linear) {
// If both the source and the destination are in block layout, assert.
UNREACHABLE_MSG("Tiled->Tiled DMA transfers are not yet implemented");
return;
}
Memory::CopyBlock(dest_cpu, source_cpu, copy_size);
if (regs.exec.is_dst_linear && regs.exec.is_src_linear) {
// When the enable_2d bit is disabled, the copy is performed as if we were copying a 1D
// buffer of length `x_count`, otherwise we copy a 2D image of dimensions (x_count,
// y_count).
if (!regs.exec.enable_2d) {
Memory::CopyBlock(dest_cpu, source_cpu, regs.x_count);
return;
}
// If both the source and the destination are in linear layout, perform a line-by-line
// copy. We're going to take a subrect of size (x_count, y_count) from the source
// rectangle. There is no need to manually flush/invalidate the regions because
// CopyBlock does that for us.
for (u32 line = 0; line < regs.y_count; ++line) {
const VAddr source_line = source_cpu + line * regs.src_pitch;
const VAddr dest_line = dest_cpu + line * regs.dst_pitch;
Memory::CopyBlock(dest_line, source_line, regs.x_count);
}
return;
}
ASSERT(regs.exec.enable_2d == 1);
std::size_t copy_size = regs.x_count * regs.y_count;
const auto FlushAndInvalidate = [&](u32 src_size, u32 dst_size) {
// TODO(Subv): For now, manually flush the regions until we implement GPU-accelerated
// copying.
rasterizer.FlushRegion(source_cpu, src_size);
// We have to invalidate the destination region to evict any outdated surfaces from the
// cache. We do this before actually writing the new data because the destination address
// might contain a dirty surface that will have to be written back to memory.
rasterizer.InvalidateRegion(dest_cpu, dst_size);
};
u8* src_buffer = Memory::GetPointer(source_cpu);
u8* dst_buffer = Memory::GetPointer(dest_cpu);
if (regs.exec.is_dst_linear && !regs.exec.is_src_linear) {
ASSERT(regs.src_params.size_z == 1);
// If the input is tiled and the output is linear, deswizzle the input and copy it over.
Texture::CopySwizzledData(regs.src_params.size_x, regs.src_params.size_y,
regs.src_params.size_z, 1, 1, src_buffer, dst_buffer, true,
regs.src_params.BlockHeight(), regs.src_params.BlockDepth());
u32 src_bytes_per_pixel = regs.src_pitch / regs.src_params.size_x;
FlushAndInvalidate(regs.src_pitch * regs.src_params.size_y,
copy_size * src_bytes_per_pixel);
Texture::UnswizzleSubrect(regs.x_count, regs.y_count, regs.dst_pitch,
regs.src_params.size_x, src_bytes_per_pixel, source_cpu, dest_cpu,
regs.src_params.BlockHeight(), regs.src_params.pos_x,
regs.src_params.pos_y);
} else {
ASSERT(regs.dst_params.size_z == 1);
ASSERT(regs.src_pitch == regs.x_count);
u32 src_bpp = regs.src_pitch / regs.x_count;
FlushAndInvalidate(regs.src_pitch * regs.y_count,
regs.dst_params.size_x * regs.dst_params.size_y * src_bpp);
// If the input is linear and the output is tiled, swizzle the input and copy it over.
Texture::CopySwizzledData(regs.dst_params.size_x, regs.dst_params.size_y,
regs.dst_params.size_z, 1, 1, dst_buffer, src_buffer, false,
regs.dst_params.BlockHeight(), regs.dst_params.BlockDepth());
Texture::SwizzleSubrect(regs.x_count, regs.y_count, regs.src_pitch, regs.dst_params.size_x,
src_bpp, dest_cpu, source_cpu, regs.dst_params.BlockHeight());
}
}

View file

@ -12,11 +12,15 @@
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace VideoCore {
class RasterizerInterface;
}
namespace Tegra::Engines {
class MaxwellDMA final {
public:
explicit MaxwellDMA(MemoryManager& memory_manager);
explicit MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
~MaxwellDMA() = default;
/// Write the value to the register identified by method.
@ -133,6 +137,8 @@ public:
MemoryManager& memory_manager;
private:
VideoCore::RasterizerInterface& rasterizer;
/// Performs the copy from the source buffer to the destination buffer as configured in the
/// registers.
void HandleCopy();

View file

@ -27,8 +27,8 @@ GPU::GPU(VideoCore::RasterizerInterface& rasterizer) {
maxwell_3d = std::make_unique<Engines::Maxwell3D>(rasterizer, *memory_manager);
fermi_2d = std::make_unique<Engines::Fermi2D>(rasterizer, *memory_manager);
maxwell_compute = std::make_unique<Engines::MaxwellCompute>();
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(*memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(*memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(rasterizer, *memory_manager);
}
GPU::~GPU() = default;

View file

@ -659,6 +659,12 @@ void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst) {
MICROPROFILE_SCOPE(OpenGL_Blits);
if (Settings::values.use_accurate_gpu_emulation) {
// Skip the accelerated copy and perform a slow but more accurate copy
return false;
}
res_cache.FermiCopySurface(src, dst);
return true;
}

View file

@ -237,6 +237,46 @@ std::vector<u8> UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pix
return unswizzled_data;
}
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height) {
const u32 image_width_in_gobs{(swizzled_width * bytes_per_pixel + 63) / 64};
for (u32 line = 0; line < subrect_height; ++line) {
const u32 gob_address_y =
(line / (8 * block_height)) * 512 * block_height * image_width_in_gobs +
(line % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[line % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 gob_address = gob_address_y + (x * bytes_per_pixel / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[(x * bytes_per_pixel) % 64];
const VAddr source_line = unswizzled_data + line * source_pitch + x * bytes_per_pixel;
const VAddr dest_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_addr, source_line, bytes_per_pixel);
}
}
}
void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height, u32 offset_x, u32 offset_y) {
for (u32 line = 0; line < subrect_height; ++line) {
const u32 y2 = line + offset_y;
const u32 gob_address_y =
(y2 / (8 * block_height)) * 512 * block_height + (y2 % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[y2 % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 x2 = (x + offset_x) * bytes_per_pixel;
const u32 gob_address = gob_address_y + (x2 / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[x2 % 64];
const VAddr dest_line = unswizzled_data + line * dest_pitch + x * bytes_per_pixel;
const VAddr source_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_line, source_addr, bytes_per_pixel);
}
}
}
std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat format, u32 width,
u32 height) {
std::vector<u8> rgba_data;

View file

@ -35,4 +35,13 @@ std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth);
/// Copies an untiled subrectangle into a tiled surface.
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height);
/// Copies a tiled subrectangle into a linear surface.
void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height, u32 offset_x, u32 offset_y);
} // namespace Tegra::Texture