1
0
Fork 0
forked from suyu/suyu

Pica/Math: Improved the design of the Vec2/Vec3/Vec4 classes and simplified rasterizer code accordingly.

- Swizzlers now return const objects so that things like "first_vec4.xyz() = some_vec3" now will fail to compile (ideally we should support some vector holding references to make this actually work).
- The methods "InsertBeforeX/Y/Z" and "Append" have been replaced by more versions of MakeVec, which now also supports building new vectors from vectors.
- Vector library now follows C++ type promotion rules (hence, the result of Vec2<u8> with another Vec2<u8> is now a Vec2<int>).
This commit is contained in:
Tony Wasserka 2014-08-12 20:04:28 +02:00
parent 62c36a4ef0
commit 162d641a30
3 changed files with 133 additions and 98 deletions

View file

@ -39,6 +39,13 @@ template<typename T> class Vec2;
template<typename T> class Vec3;
template<typename T> class Vec4;
template<typename T>
static inline Vec2<T> MakeVec(const T& x, const T& y);
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z);
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w);
template<typename T>
class Vec2 {
@ -68,34 +75,34 @@ public:
a[0] = x; a[1] = y;
}
Vec2 operator +(const Vec2& other) const
Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const
{
return Vec2(x+other.x, y+other.y);
return MakeVec(x+other.x, y+other.y);
}
void operator += (const Vec2 &other)
{
x+=other.x; y+=other.y;
}
Vec2 operator -(const Vec2& other) const
Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const
{
return Vec2(x-other.x, y-other.y);
return MakeVec(x-other.x, y-other.y);
}
void operator -= (const Vec2& other)
{
x-=other.x; y-=other.y;
}
Vec2 operator -() const
Vec2<decltype(-T{})> operator -() const
{
return Vec2(-x,-y);
return MakeVec(-x,-y);
}
Vec2 operator * (const Vec2& other) const
Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const
{
return Vec2(x*other.x, y*other.y);
return MakeVec(x*other.x, y*other.y);
}
template<typename V>
Vec2 operator * (const V& f) const
Vec2<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec2(x*f,y*f);
return MakeVec(x*f,y*f);
}
template<typename V>
void operator *= (const V& f)
@ -103,9 +110,9 @@ public:
x*=f; y*=f;
}
template<typename V>
Vec2 operator / (const V& f) const
Vec2<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec2(x/f,y/f);
return MakeVec(x/f,y/f);
}
template<typename V>
void operator /= (const V& f)
@ -152,20 +159,9 @@ public:
const T& t() const { return y; }
// swizzlers - create a subvector of specific components
Vec2 yx() const { return Vec2(y, x); }
Vec2 vu() const { return Vec2(y, x); }
Vec2 ts() const { return Vec2(y, x); }
// Inserters to add new elements to effectively create larger vectors containing this Vec2
Vec3<T> InsertBeforeX(const T& value) {
return Vec3<T>(value, x, y);
}
Vec3<T> InsertBeforeY(const T& value) {
return Vec3<T>(x, value, y);
}
Vec3<T> Append(const T& value) {
return Vec3<T>(x, y, value);
}
const Vec2 yx() const { return Vec2(y, x); }
const Vec2 vu() const { return Vec2(y, x); }
const Vec2 ts() const { return Vec2(y, x); }
};
template<typename T, typename V>
@ -193,7 +189,7 @@ public:
template<typename T2>
Vec3<T2> Cast() const {
return Vec3<T2>((T2)x, (T2)y, (T2)z);
return MakeVec<T2>((T2)x, (T2)y, (T2)z);
}
// Only implemented for T=int and T=float
@ -202,7 +198,7 @@ public:
static Vec3 AssignToAll(const T& f)
{
return Vec3<T>(f, f, f);
return MakeVec(f, f, f);
}
void Write(T a[3])
@ -210,34 +206,34 @@ public:
a[0] = x; a[1] = y; a[2] = z;
}
Vec3 operator +(const Vec3 &other) const
Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const
{
return Vec3(x+other.x, y+other.y, z+other.z);
return MakeVec(x+other.x, y+other.y, z+other.z);
}
void operator += (const Vec3 &other)
{
x+=other.x; y+=other.y; z+=other.z;
}
Vec3 operator -(const Vec3 &other) const
Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const
{
return Vec3(x-other.x, y-other.y, z-other.z);
return MakeVec(x-other.x, y-other.y, z-other.z);
}
void operator -= (const Vec3 &other)
{
x-=other.x; y-=other.y; z-=other.z;
}
Vec3 operator -() const
Vec3<decltype(-T{})> operator -() const
{
return Vec3(-x,-y,-z);
return MakeVec(-x,-y,-z);
}
Vec3 operator * (const Vec3 &other) const
Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const
{
return Vec3(x*other.x, y*other.y, z*other.z);
return MakeVec(x*other.x, y*other.y, z*other.z);
}
template<typename V>
Vec3 operator * (const V& f) const
Vec3<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec3(x*f,y*f,z*f);
return MakeVec(x*f,y*f,z*f);
}
template<typename V>
void operator *= (const V& f)
@ -245,9 +241,9 @@ public:
x*=f; y*=f; z*=f;
}
template<typename V>
Vec3 operator / (const V& f) const
Vec3<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec3(x/f,y/f,z/f);
return MakeVec(x/f,y/f,z/f);
}
template<typename V>
void operator /= (const V& f)
@ -310,7 +306,7 @@ public:
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
@ -326,20 +322,6 @@ public:
DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
// Inserters to add new elements to effectively create larger vectors containing this Vec2
Vec4<T> InsertBeforeX(const T& value) {
return Vec4<T>(value, x, y, z);
}
Vec4<T> InsertBeforeY(const T& value) {
return Vec4<T>(x, value, y, z);
}
Vec4<T> InsertBeforeZ(const T& value) {
return Vec4<T>(x, y, value, z);
}
Vec4<T> Append(const T& value) {
return Vec4<T>(x, y, z, value);
}
};
template<typename T, typename V>
@ -383,34 +365,34 @@ public:
a[0] = x; a[1] = y; a[2] = z; a[3] = w;
}
Vec4 operator +(const Vec4& other) const
Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const
{
return Vec4(x+other.x, y+other.y, z+other.z, w+other.w);
return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w);
}
void operator += (const Vec4& other)
{
x+=other.x; y+=other.y; z+=other.z; w+=other.w;
}
Vec4 operator -(const Vec4 &other) const
Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const
{
return Vec4(x-other.x, y-other.y, z-other.z, w-other.w);
return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w);
}
void operator -= (const Vec4 &other)
{
x-=other.x; y-=other.y; z-=other.z; w-=other.w;
}
Vec4 operator -() const
Vec4<decltype(-T{})> operator -() const
{
return Vec4(-x,-y,-z,-w);
return MakeVec(-x,-y,-z,-w);
}
Vec4 operator * (const Vec4 &other) const
Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const
{
return Vec4(x*other.x, y*other.y, z*other.z, w*other.w);
return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w);
}
template<typename V>
Vec4 operator * (const V& f) const
Vec4<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec4(x*f,y*f,z*f,w*f);
return MakeVec(x*f,y*f,z*f,w*f);
}
template<typename V>
void operator *= (const V& f)
@ -418,9 +400,9 @@ public:
x*=f; y*=f; z*=f; w*=f;
}
template<typename V>
Vec4 operator / (const V& f) const
Vec4<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec4(x/f,y/f,z/f,w/f);
return MakeVec(x/f,y/f,z/f,w/f);
}
template<typename V>
void operator /= (const V& f)
@ -469,7 +451,7 @@ public:
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
@ -485,7 +467,7 @@ public:
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
#define _DEFINE_SWIZZLER3(a, b, c, name) Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \
_DEFINE_SWIZZLER3(a, b, c, a##b##c); \
_DEFINE_SWIZZLER3(a, c, b, a##c##b); \
@ -510,69 +492,121 @@ public:
template<typename T, typename V>
Vec4<T> operator * (const V& f, const Vec4<T>& vec)
Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec)
{
return Vec4<T>(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
}
typedef Vec4<float> Vec4f;
template<typename T>
static inline T Dot(const Vec2<T>& a, const Vec2<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b)
{
return a.x*b.x + a.y*b.y;
}
template<typename T>
static inline T Dot(const Vec3<T>& a, const Vec3<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
static inline T Dot(const Vec4<T>& a, const Vec4<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
template<typename T>
static inline Vec3<T> Cross(const Vec3<T>& a, const Vec3<T>& b)
static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b)
{
return Vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}
// linear interpolation via float: 0.0=begin, 1.0=end
template<typename X>
static inline X Lerp(const X& begin, const X& end, const float t)
static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t)
{
return begin*(1.f-t) + end*t;
}
// linear interpolation via int: 0=begin, base=end
template<typename X, int base>
static inline X LerpInt(const X& begin, const X& end, const int t)
static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t)
{
return (begin*(base-t) + end*t) / base;
}
// Utility vector factories
template<typename T>
static inline Vec2<T> MakeVec2(const T& x, const T& y)
static inline Vec2<T> MakeVec(const T& x, const T& y)
{
return Vec2<T>{x, y};
}
template<typename T>
static inline Vec3<T> MakeVec3(const T& x, const T& y, const T& z)
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z)
{
return Vec3<T>{x, y, z};
}
template<typename T>
static inline Vec4<T> MakeVec4(const T& x, const T& y, const T& z, const T& w)
static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw)
{
return MakeVec(x, y, zw[0], zw[1]);
}
template<typename T>
static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z)
{
return MakeVec(xy[0], xy[1], z);
}
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz)
{
return MakeVec(x, yz[0], yz[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w)
{
return Vec4<T>{x, y, z, w};
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w)
{
return MakeVec(xy[0], xy[1], z, w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w)
{
return MakeVec(x, yz[0], yz[1], w);
}
// NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
// out soon enough due to misuse of the returned structure.
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw)
{
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w)
{
return MakeVec(xyz[0], xyz[1], xyz[2], w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yzw)
{
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace

View file

@ -78,10 +78,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x = min_x & Fix12P4::IntMask();
min_y = min_y & Fix12P4::IntMask();
max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();
min_x &= Fix12P4::IntMask();
min_y &= Fix12P4::IntMask();
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
@ -112,10 +112,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Cross(vec1, vec2).z;
return Math::Cross(vec1, vec2).z;
};
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
@ -143,15 +143,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);

View file

@ -27,7 +27,6 @@ struct OutputVertex {
Math::Vec4<float24> dummy; // quaternions (not implemented, yet)
Math::Vec4<float24> color;
Math::Vec2<float24> tc0;
float24 tc0_v;
// Padding for optimal alignment
float24 pad[14];
@ -36,6 +35,7 @@ struct OutputVertex {
// position after perspective divide
Math::Vec3<float24> screenpos;
float24 pad2;
// Linear interpolation
// factor: 0=this, 1=vtx
@ -59,6 +59,7 @@ struct OutputVertex {
}
};
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
union Instruction {
enum class OpCode : u32 {