1
0
Fork 0
forked from suyu/suyu
suyu/src/core/host_timing.cpp

189 lines
5.7 KiB
C++
Raw Normal View History

2020-02-06 00:12:27 +01:00
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/host_timing.h"
#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>
#include "common/assert.h"
#include "core/core_timing_util.h"
namespace Core::HostTiming {
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
u64 time;
u64 fifo_order;
u64 userdata;
std::weak_ptr<EventType> type;
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming() = default;
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance) {
instance.Advance();
}
void CoreTiming::Initialize() {
event_fifo_id = 0;
const auto empty_timed_callback = [](u64, s64) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
2020-02-08 17:48:57 +01:00
start_time = std::chrono::steady_clock::now();
2020-02-06 00:12:27 +01:00
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
void CoreTiming::Shutdown() {
2020-02-08 17:48:57 +01:00
paused = true;
2020-02-06 00:12:27 +01:00
shutting_down = true;
2020-02-08 17:48:57 +01:00
event.Set();
2020-02-06 00:12:27 +01:00
timer_thread->join();
ClearPendingEvents();
2020-02-08 17:48:57 +01:00
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
Pause(is_paused);
event.Set();
while (paused_set != is_paused);
}
bool CoreTiming::IsRunning() {
return !paused_set;
}
bool CoreTiming::HasPendingEvents() {
return !(wait_set && event_queue.empty());
2020-02-06 00:12:27 +01:00
}
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
u64 userdata) {
2020-02-08 17:48:57 +01:00
basic_lock.lock();
2020-02-06 00:12:27 +01:00
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
2020-02-08 17:48:57 +01:00
basic_lock.unlock();
event.Set();
2020-02-06 00:12:27 +01:00
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
2020-02-08 17:48:57 +01:00
basic_lock.lock();
2020-02-06 00:12:27 +01:00
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
2020-02-08 17:48:57 +01:00
basic_lock.unlock();
2020-02-06 00:12:27 +01:00
}
u64 CoreTiming::GetCPUTicks() const {
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
return Core::Timing::nsToCycles(time_now);
}
u64 CoreTiming::GetClockTicks() const {
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
return Core::Timing::nsToClockCycles(time_now);
}
void CoreTiming::ClearPendingEvents() {
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
2020-02-08 17:48:57 +01:00
basic_lock.lock();
2020-02-06 00:12:27 +01:00
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
2020-02-08 17:48:57 +01:00
basic_lock.unlock();
2020-02-06 00:12:27 +01:00
}
void CoreTiming::Advance() {
2020-02-08 17:48:57 +01:00
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
basic_lock.lock();
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
basic_lock.unlock();
if (auto event_type{evt.type.lock()}) {
event_type->callback(evt.userdata, global_timer - evt.time);
}
basic_lock.lock();
}
2020-02-06 00:12:27 +01:00
2020-02-08 17:48:57 +01:00
if (!event_queue.empty()) {
std::chrono::nanoseconds next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer);
basic_lock.unlock();
event.WaitFor(next_time);
} else {
basic_lock.unlock();
wait_set = true;
event.Wait();
2020-02-06 00:12:27 +01:00
}
2020-02-08 17:48:57 +01:00
wait_set = false;
2020-02-06 00:12:27 +01:00
}
2020-02-08 17:48:57 +01:00
paused_set = true;
2020-02-06 00:12:27 +01:00
}
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
2020-02-08 17:48:57 +01:00
sys_time_point current = std::chrono::steady_clock::now();
2020-02-06 00:12:27 +01:00
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
2020-02-08 17:48:57 +01:00
sys_time_point current = std::chrono::steady_clock::now();
2020-02-06 00:12:27 +01:00
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
}
} // namespace Core::Timing