1
1
Fork 0
forked from suyu/suyu

Merge pull request #2822 from wwylele/sw_lighting-2

Implement fragment lighting in the sw renderer (take 2)
This commit is contained in:
Weiyi Wang 2017-08-09 18:54:29 +03:00 committed by GitHub
commit 792dee47a7
8 changed files with 316 additions and 10 deletions

View file

@ -30,6 +30,11 @@ public:
return {xyz * other.w + other.xyz * w + Cross(xyz, other.xyz), return {xyz * other.w + other.xyz * w + Cross(xyz, other.xyz),
w * other.w - Dot(xyz, other.xyz)}; w * other.w - Dot(xyz, other.xyz)};
} }
Quaternion<T> Normalized() const {
T length = std::sqrt(xyz.Length2() + w * w);
return {xyz / length, w / length};
}
}; };
template <typename T> template <typename T>

View file

@ -31,7 +31,6 @@
#pragma once #pragma once
#include <cmath> #include <cmath>
#include <type_traits>
namespace Math { namespace Math {
@ -90,7 +89,7 @@ public:
x -= other.x; x -= other.x;
y -= other.y; y -= other.y;
} }
template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
Vec2<decltype(-T{})> operator-() const { Vec2<decltype(-T{})> operator-() const {
return MakeVec(-x, -y); return MakeVec(-x, -y);
} }
@ -247,7 +246,7 @@ public:
y -= other.y; y -= other.y;
z -= other.z; z -= other.z;
} }
template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
Vec3<decltype(-T{})> operator-() const { Vec3<decltype(-T{})> operator-() const {
return MakeVec(-x, -y, -z); return MakeVec(-x, -y, -z);
} }
@ -462,7 +461,7 @@ public:
z -= other.z; z -= other.z;
w -= other.w; w -= other.w;
} }
template <typename Q = T, class = typename std::enable_if<std::is_signed<Q>::value>::type>
Vec4<decltype(-T{})> operator-() const { Vec4<decltype(-T{})> operator-() const {
return MakeVec(-x, -y, -z, -w); return MakeVec(-x, -y, -z, -w);
} }

View file

@ -15,6 +15,7 @@ set(SRCS
shader/shader_interpreter.cpp shader/shader_interpreter.cpp
swrasterizer/clipper.cpp swrasterizer/clipper.cpp
swrasterizer/framebuffer.cpp swrasterizer/framebuffer.cpp
swrasterizer/lighting.cpp
swrasterizer/proctex.cpp swrasterizer/proctex.cpp
swrasterizer/rasterizer.cpp swrasterizer/rasterizer.cpp
swrasterizer/swrasterizer.cpp swrasterizer/swrasterizer.cpp
@ -55,6 +56,7 @@ set(HEADERS
shader/shader_interpreter.h shader/shader_interpreter.h
swrasterizer/clipper.h swrasterizer/clipper.h
swrasterizer/framebuffer.h swrasterizer/framebuffer.h
swrasterizer/lighting.h
swrasterizer/proctex.h swrasterizer/proctex.h
swrasterizer/rasterizer.h swrasterizer/rasterizer.h
swrasterizer/swrasterizer.h swrasterizer/swrasterizer.h

View file

@ -79,7 +79,7 @@ struct State {
std::array<ColorDifferenceEntry, 256> color_diff_table; std::array<ColorDifferenceEntry, 256> color_diff_table;
} proctex; } proctex;
struct { struct Lighting {
union LutEntry { union LutEntry {
// Used for raw access // Used for raw access
u32 raw; u32 raw;

View file

@ -95,6 +95,17 @@ void ProcessTriangle(const OutputVertex& v0, const OutputVertex& v1, const Outpu
static const size_t MAX_VERTICES = 9; static const size_t MAX_VERTICES = 9;
static_vector<Vertex, MAX_VERTICES> buffer_a = {v0, v1, v2}; static_vector<Vertex, MAX_VERTICES> buffer_a = {v0, v1, v2};
static_vector<Vertex, MAX_VERTICES> buffer_b; static_vector<Vertex, MAX_VERTICES> buffer_b;
auto FlipQuaternionIfOpposite = [](auto& a, const auto& b) {
if (Math::Dot(a, b) < float24::Zero())
a = -a;
};
// Flip the quaternions if they are opposite to prevent interpolating them over the wrong
// direction.
FlipQuaternionIfOpposite(buffer_a[1].quat, buffer_a[0].quat);
FlipQuaternionIfOpposite(buffer_a[2].quat, buffer_a[0].quat);
auto* output_list = &buffer_a; auto* output_list = &buffer_a;
auto* input_list = &buffer_b; auto* input_list = &buffer_b;

View file

@ -0,0 +1,250 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/math_util.h"
#include "video_core/swrasterizer/lighting.h"
namespace Pica {
static float LookupLightingLut(const Pica::State::Lighting& lighting, size_t lut_index, u8 index,
float delta) {
ASSERT_MSG(lut_index < lighting.luts.size(), "Out of range lut");
ASSERT_MSG(index < lighting.luts[lut_index].size(), "Out of range index");
const auto& lut = lighting.luts[lut_index][index];
float lut_value = lut.ToFloat();
float lut_diff = lut.DiffToFloat();
return lut_value + lut_diff * delta;
}
std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(
const Pica::LightingRegs& lighting, const Pica::State::Lighting& lighting_state,
const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view) {
// TODO(Subv): Bump mapping
Math::Vec3<float> surface_normal = {0.0f, 0.0f, 1.0f};
if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) {
LOG_CRITICAL(HW_GPU, "unimplemented bump mapping");
UNIMPLEMENTED();
}
// Use the normalized the quaternion when performing the rotation
auto normal = Math::QuaternionRotate(normquat, surface_normal);
Math::Vec4<float> diffuse_sum = {0.0f, 0.0f, 0.0f, 1.0f};
Math::Vec4<float> specular_sum = {0.0f, 0.0f, 0.0f, 1.0f};
for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) {
unsigned num = lighting.light_enable.GetNum(light_index);
const auto& light_config = lighting.light[num];
Math::Vec3<float> refl_value = {};
Math::Vec3<float> position = {float16::FromRaw(light_config.x).ToFloat32(),
float16::FromRaw(light_config.y).ToFloat32(),
float16::FromRaw(light_config.z).ToFloat32()};
Math::Vec3<float> light_vector;
if (light_config.config.directional)
light_vector = position;
else
light_vector = position + view;
light_vector.Normalize();
float dist_atten = 1.0f;
if (!lighting.IsDistAttenDisabled(num)) {
auto distance = (-view - position).Length();
float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
float bias = Pica::float20::FromRaw(light_config.dist_atten_bias).ToFloat32();
size_t lut =
static_cast<size_t>(LightingRegs::LightingSampler::DistanceAttenuation) + num;
float sample_loc = MathUtil::Clamp(scale * distance + bias, 0.0f, 1.0f);
u8 lutindex =
static_cast<u8>(MathUtil::Clamp(std::floor(sample_loc * 256.0f), 0.0f, 255.0f));
float delta = sample_loc * 256 - lutindex;
dist_atten = LookupLightingLut(lighting_state, lut, lutindex, delta);
}
auto GetLutValue = [&](LightingRegs::LightingLutInput input, bool abs,
LightingRegs::LightingScale scale_enum,
LightingRegs::LightingSampler sampler) {
Math::Vec3<float> norm_view = view.Normalized();
Math::Vec3<float> half_angle = (norm_view + light_vector).Normalized();
float result = 0.0f;
switch (input) {
case LightingRegs::LightingLutInput::NH:
result = Math::Dot(normal, half_angle);
break;
case LightingRegs::LightingLutInput::VH:
result = Math::Dot(norm_view, half_angle);
break;
case LightingRegs::LightingLutInput::NV:
result = Math::Dot(normal, norm_view);
break;
case LightingRegs::LightingLutInput::LN:
result = Math::Dot(light_vector, normal);
break;
default:
LOG_CRITICAL(HW_GPU, "Unknown lighting LUT input %u\n", static_cast<u32>(input));
UNIMPLEMENTED();
result = 0.0f;
}
u8 index;
float delta;
if (abs) {
if (light_config.config.two_sided_diffuse)
result = std::abs(result);
else
result = std::max(result, 0.0f);
float flr = std::floor(result * 256.0f);
index = static_cast<u8>(MathUtil::Clamp(flr, 0.0f, 255.0f));
delta = result * 256 - index;
} else {
float flr = std::floor(result * 128.0f);
s8 signed_index = static_cast<s8>(MathUtil::Clamp(flr, -128.0f, 127.0f));
delta = result * 128.0f - signed_index;
index = static_cast<u8>(signed_index);
}
float scale = lighting.lut_scale.GetScale(scale_enum);
return scale *
LookupLightingLut(lighting_state, static_cast<size_t>(sampler), index, delta);
};
// Specular 0 component
float d0_lut_value = 1.0f;
if (lighting.config1.disable_lut_d0 == 0 &&
LightingRegs::IsLightingSamplerSupported(
lighting.config0.config, LightingRegs::LightingSampler::Distribution0)) {
d0_lut_value =
GetLutValue(lighting.lut_input.d0, lighting.abs_lut_input.disable_d0 == 0,
lighting.lut_scale.d0, LightingRegs::LightingSampler::Distribution0);
}
Math::Vec3<float> specular_0 = d0_lut_value * light_config.specular_0.ToVec3f();
// If enabled, lookup ReflectRed value, otherwise, 1.0 is used
if (lighting.config1.disable_lut_rr == 0 &&
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
LightingRegs::LightingSampler::ReflectRed)) {
refl_value.x =
GetLutValue(lighting.lut_input.rr, lighting.abs_lut_input.disable_rr == 0,
lighting.lut_scale.rr, LightingRegs::LightingSampler::ReflectRed);
} else {
refl_value.x = 1.0f;
}
// If enabled, lookup ReflectGreen value, otherwise, ReflectRed value is used
if (lighting.config1.disable_lut_rg == 0 &&
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
LightingRegs::LightingSampler::ReflectGreen)) {
refl_value.y =
GetLutValue(lighting.lut_input.rg, lighting.abs_lut_input.disable_rg == 0,
lighting.lut_scale.rg, LightingRegs::LightingSampler::ReflectGreen);
} else {
refl_value.y = refl_value.x;
}
// If enabled, lookup ReflectBlue value, otherwise, ReflectRed value is used
if (lighting.config1.disable_lut_rb == 0 &&
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
LightingRegs::LightingSampler::ReflectBlue)) {
refl_value.z =
GetLutValue(lighting.lut_input.rb, lighting.abs_lut_input.disable_rb == 0,
lighting.lut_scale.rb, LightingRegs::LightingSampler::ReflectBlue);
} else {
refl_value.z = refl_value.x;
}
// Specular 1 component
float d1_lut_value = 1.0f;
if (lighting.config1.disable_lut_d1 == 0 &&
LightingRegs::IsLightingSamplerSupported(
lighting.config0.config, LightingRegs::LightingSampler::Distribution1)) {
d1_lut_value =
GetLutValue(lighting.lut_input.d1, lighting.abs_lut_input.disable_d1 == 0,
lighting.lut_scale.d1, LightingRegs::LightingSampler::Distribution1);
}
Math::Vec3<float> specular_1 =
d1_lut_value * refl_value * light_config.specular_1.ToVec3f();
// Fresnel
if (lighting.config1.disable_lut_fr == 0 &&
LightingRegs::IsLightingSamplerSupported(lighting.config0.config,
LightingRegs::LightingSampler::Fresnel)) {
float lut_value =
GetLutValue(lighting.lut_input.fr, lighting.abs_lut_input.disable_fr == 0,
lighting.lut_scale.fr, LightingRegs::LightingSampler::Fresnel);
// Enabled for diffuse lighting alpha component
if (lighting.config0.fresnel_selector ==
LightingRegs::LightingFresnelSelector::PrimaryAlpha ||
lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) {
diffuse_sum.a() *= lut_value;
}
// Enabled for the specular lighting alpha component
if (lighting.config0.fresnel_selector ==
LightingRegs::LightingFresnelSelector::SecondaryAlpha ||
lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) {
specular_sum.a() *= lut_value;
}
}
auto dot_product = Math::Dot(light_vector, normal);
// Calculate clamp highlights before applying the two-sided diffuse configuration to the dot
// product.
float clamp_highlights = 1.0f;
if (lighting.config0.clamp_highlights) {
if (dot_product <= 0.0f)
clamp_highlights = 0.0f;
else
clamp_highlights = 1.0f;
}
if (light_config.config.two_sided_diffuse)
dot_product = std::abs(dot_product);
else
dot_product = std::max(dot_product, 0.0f);
auto diffuse =
light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f();
diffuse_sum += Math::MakeVec(diffuse * dist_atten, 0.0f);
specular_sum +=
Math::MakeVec((specular_0 + specular_1) * clamp_highlights * dist_atten, 0.0f);
}
diffuse_sum += Math::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f);
auto diffuse = Math::MakeVec<float>(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255,
MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255,
MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255,
MathUtil::Clamp(diffuse_sum.w, 0.0f, 1.0f) * 255)
.Cast<u8>();
auto specular = Math::MakeVec<float>(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255,
MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255,
MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255,
MathUtil::Clamp(specular_sum.w, 0.0f, 1.0f) * 255)
.Cast<u8>();
return {diffuse, specular};
}
} // namespace Pica

View file

@ -0,0 +1,18 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <tuple>
#include "common/quaternion.h"
#include "common/vector_math.h"
#include "video_core/pica_state.h"
namespace Pica {
std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(
const Pica::LightingRegs& lighting, const Pica::State::Lighting& lighting_state,
const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view);
} // namespace Pica

View file

@ -13,6 +13,7 @@
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/math_util.h" #include "common/math_util.h"
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/quaternion.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/hw/gpu.h" #include "core/hw/gpu.h"
#include "core/memory.h" #include "core/memory.h"
@ -24,6 +25,7 @@
#include "video_core/regs_texturing.h" #include "video_core/regs_texturing.h"
#include "video_core/shader/shader.h" #include "video_core/shader/shader.h"
#include "video_core/swrasterizer/framebuffer.h" #include "video_core/swrasterizer/framebuffer.h"
#include "video_core/swrasterizer/lighting.h"
#include "video_core/swrasterizer/proctex.h" #include "video_core/swrasterizer/proctex.h"
#include "video_core/swrasterizer/rasterizer.h" #include "video_core/swrasterizer/rasterizer.h"
#include "video_core/swrasterizer/texturing.h" #include "video_core/swrasterizer/texturing.h"
@ -419,6 +421,26 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
regs.texturing.tev_combiner_buffer_color.a, regs.texturing.tev_combiner_buffer_color.a,
}; };
Math::Vec4<u8> primary_fragment_color = {0, 0, 0, 0};
Math::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0};
if (!g_state.regs.lighting.disable) {
Math::Quaternion<float> normquat = Math::Quaternion<float>{
{GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(),
GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(),
GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()},
GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(),
}.Normalized();
Math::Vec3<float> view{
GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(),
};
std::tie(primary_fragment_color, secondary_fragment_color) =
ComputeFragmentsColors(g_state.regs.lighting, g_state.lighting, normquat, view);
}
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
++tev_stage_index) { ++tev_stage_index) {
const auto& tev_stage = tev_stages[tev_stage_index]; const auto& tev_stage = tev_stages[tev_stage_index];
@ -427,14 +449,13 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
auto GetSource = [&](Source source) -> Math::Vec4<u8> { auto GetSource = [&](Source source) -> Math::Vec4<u8> {
switch (source) { switch (source) {
case Source::PrimaryColor: case Source::PrimaryColor:
// HACK: Until we implement fragment lighting, use primary_color
case Source::PrimaryFragmentColor:
return primary_color; return primary_color;
// HACK: Until we implement fragment lighting, use zero case Source::PrimaryFragmentColor:
return primary_fragment_color;
case Source::SecondaryFragmentColor: case Source::SecondaryFragmentColor:
return {0, 0, 0, 0}; return secondary_fragment_color;
case Source::Texture0: case Source::Texture0:
return texture_color[0]; return texture_color[0];