suyu/src/video_core/renderer_vulkan/vk_scheduler.cpp
ReinUsesLisp 58b0ae84b5 renderer_vulkan: Make unconditional use of VK_KHR_timeline_semaphore
This reworks how host<->device synchronization works on the Vulkan
backend. Instead of "protecting" resources with a fence and signalling
these as free when the fence is known to be signalled by the host GPU,
use timeline semaphores.

Vulkan timeline semaphores allow use to work on a subset of D3D12
fences. As far as we are concerned, timeline semaphores are a value set
by the host or the device that can be waited by either of them.

Taking advantange of this, we can have a monolithically increasing
atomic value for each submission to the graphics queue. Instead of
protecting resources with a fence, we simply store the current logical
tick (the atomic value stored in CPU memory). When we want to know if a
resource is free, it can be compared to the current GPU tick.

This greatly simplifies resource management code and the free status of
resources should have less false negatives.

To workaround bugs in validation layers, when these are attached there's
a thread waiting for timeline semaphores.
2020-09-19 01:46:37 -03:00

257 lines
7.4 KiB
C++

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <memory>
#include <mutex>
#include <optional>
#include <thread>
#include <utility>
#include "common/microprofile.h"
#include "common/thread.h"
#include "video_core/renderer_vulkan/vk_command_pool.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_master_semaphore.h"
#include "video_core/renderer_vulkan/vk_query_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_state_tracker.h"
#include "video_core/renderer_vulkan/wrapper.h"
namespace Vulkan {
MICROPROFILE_DECLARE(Vulkan_WaitForWorker);
void VKScheduler::CommandChunk::ExecuteAll(vk::CommandBuffer cmdbuf) {
auto command = first;
while (command != nullptr) {
auto next = command->GetNext();
command->Execute(cmdbuf);
command->~Command();
command = next;
}
command_offset = 0;
first = nullptr;
last = nullptr;
}
VKScheduler::VKScheduler(const VKDevice& device_, StateTracker& state_tracker_)
: device{device_}, state_tracker{state_tracker_},
master_semaphore{std::make_unique<MasterSemaphore>(device)},
command_pool{std::make_unique<CommandPool>(*master_semaphore, device)} {
AcquireNewChunk();
AllocateNewContext();
worker_thread = std::thread(&VKScheduler::WorkerThread, this);
}
VKScheduler::~VKScheduler() {
quit = true;
cv.notify_all();
worker_thread.join();
}
u64 VKScheduler::CurrentTick() const noexcept {
return master_semaphore->CurrentTick();
}
bool VKScheduler::IsFree(u64 tick) const noexcept {
return master_semaphore->IsFree(tick);
}
void VKScheduler::Wait(u64 tick) {
master_semaphore->Wait(tick);
}
void VKScheduler::Flush(VkSemaphore semaphore) {
SubmitExecution(semaphore);
AllocateNewContext();
}
void VKScheduler::Finish(VkSemaphore semaphore) {
const u64 presubmit_tick = CurrentTick();
SubmitExecution(semaphore);
Wait(presubmit_tick);
AllocateNewContext();
}
void VKScheduler::WaitWorker() {
MICROPROFILE_SCOPE(Vulkan_WaitForWorker);
DispatchWork();
bool finished = false;
do {
cv.notify_all();
std::unique_lock lock{mutex};
finished = chunk_queue.Empty();
} while (!finished);
}
void VKScheduler::DispatchWork() {
if (chunk->Empty()) {
return;
}
chunk_queue.Push(std::move(chunk));
cv.notify_all();
AcquireNewChunk();
}
void VKScheduler::RequestRenderpass(VkRenderPass renderpass, VkFramebuffer framebuffer,
VkExtent2D render_area) {
if (renderpass == state.renderpass && framebuffer == state.framebuffer &&
render_area.width == state.render_area.width &&
render_area.height == state.render_area.height) {
return;
}
const bool end_renderpass = state.renderpass != nullptr;
state.renderpass = renderpass;
state.framebuffer = framebuffer;
state.render_area = render_area;
const VkRenderPassBeginInfo renderpass_bi{
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.pNext = nullptr,
.renderPass = renderpass,
.framebuffer = framebuffer,
.renderArea =
{
.offset = {.x = 0, .y = 0},
.extent = render_area,
},
.clearValueCount = 0,
.pClearValues = nullptr,
};
Record([renderpass_bi, end_renderpass](vk::CommandBuffer cmdbuf) {
if (end_renderpass) {
cmdbuf.EndRenderPass();
}
cmdbuf.BeginRenderPass(renderpass_bi, VK_SUBPASS_CONTENTS_INLINE);
});
}
void VKScheduler::RequestOutsideRenderPassOperationContext() {
EndRenderPass();
}
void VKScheduler::BindGraphicsPipeline(VkPipeline pipeline) {
if (state.graphics_pipeline == pipeline) {
return;
}
state.graphics_pipeline = pipeline;
Record([pipeline](vk::CommandBuffer cmdbuf) {
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
});
}
void VKScheduler::WorkerThread() {
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
std::unique_lock lock{mutex};
do {
cv.wait(lock, [this] { return !chunk_queue.Empty() || quit; });
if (quit) {
continue;
}
auto extracted_chunk = std::move(chunk_queue.Front());
chunk_queue.Pop();
extracted_chunk->ExecuteAll(current_cmdbuf);
chunk_reserve.Push(std::move(extracted_chunk));
} while (!quit);
}
void VKScheduler::SubmitExecution(VkSemaphore semaphore) {
EndPendingOperations();
InvalidateState();
WaitWorker();
std::unique_lock lock{mutex};
current_cmdbuf.End();
const VkSemaphore timeline_semaphore = master_semaphore->Handle();
const u32 num_signal_semaphores = semaphore ? 2U : 1U;
const u64 signal_value = master_semaphore->CurrentTick();
const u64 wait_value = signal_value - 1;
const VkPipelineStageFlags wait_stage_mask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
master_semaphore->NextTick();
const std::array signal_values{signal_value, u64(0)};
const std::array signal_semaphores{timeline_semaphore, semaphore};
const VkTimelineSemaphoreSubmitInfoKHR timeline_si{
.sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR,
.pNext = nullptr,
.waitSemaphoreValueCount = 1,
.pWaitSemaphoreValues = &wait_value,
.signalSemaphoreValueCount = num_signal_semaphores,
.pSignalSemaphoreValues = signal_values.data(),
};
const VkSubmitInfo submit_info{
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = &timeline_si,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &timeline_semaphore,
.pWaitDstStageMask = &wait_stage_mask,
.commandBufferCount = 1,
.pCommandBuffers = current_cmdbuf.address(),
.signalSemaphoreCount = num_signal_semaphores,
.pSignalSemaphores = signal_semaphores.data(),
};
switch (const VkResult result = device.GetGraphicsQueue().Submit(submit_info)) {
case VK_SUCCESS:
break;
case VK_ERROR_DEVICE_LOST:
device.ReportLoss();
[[fallthrough]];
default:
vk::Check(result);
}
}
void VKScheduler::AllocateNewContext() {
std::unique_lock lock{mutex};
current_cmdbuf = vk::CommandBuffer(command_pool->Commit(), device.GetDispatchLoader());
current_cmdbuf.Begin({
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
});
// Enable counters once again. These are disabled when a command buffer is finished.
if (query_cache) {
query_cache->UpdateCounters();
}
}
void VKScheduler::InvalidateState() {
state.graphics_pipeline = nullptr;
state_tracker.InvalidateCommandBufferState();
}
void VKScheduler::EndPendingOperations() {
query_cache->DisableStreams();
EndRenderPass();
}
void VKScheduler::EndRenderPass() {
if (!state.renderpass) {
return;
}
state.renderpass = nullptr;
Record([](vk::CommandBuffer cmdbuf) { cmdbuf.EndRenderPass(); });
}
void VKScheduler::AcquireNewChunk() {
if (chunk_reserve.Empty()) {
chunk = std::make_unique<CommandChunk>();
return;
}
chunk = std::move(chunk_reserve.Front());
chunk_reserve.Pop();
}
} // namespace Vulkan