suyu/src/shader_recompiler/backend/glasm/emit_glasm_integer.cpp
ReinUsesLisp ca05a13c62 glasm: Catch more register leaks
Add support for null registers. These are used when an instruction has
no usages.

This comes handy when an instruction is only used for its CC value, with
the caveat of having to invalidate all pseudo-instructions before
defining the instruction itself in the register allocator. This commits
changes this.

Workaround a bug on Nvidia's condition codes conditional execution using
branches.
2021-07-22 21:51:33 -04:00

270 lines
9.2 KiB
C++

// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "shader_recompiler/backend/glasm/emit_context.h"
#include "shader_recompiler/backend/glasm/emit_glasm_instructions.h"
#include "shader_recompiler/frontend/ir/value.h"
namespace Shader::Backend::GLASM {
void EmitIAdd32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
const std::array flags{
inst.GetAssociatedPseudoOperation(IR::Opcode::GetZeroFromOp),
inst.GetAssociatedPseudoOperation(IR::Opcode::GetSignFromOp),
inst.GetAssociatedPseudoOperation(IR::Opcode::GetCarryFromOp),
inst.GetAssociatedPseudoOperation(IR::Opcode::GetOverflowFromOp),
};
for (IR::Inst* const flag_inst : flags) {
if (flag_inst) {
flag_inst->Invalidate();
}
}
const bool cc{inst.HasAssociatedPseudoOperation()};
const std::string_view cc_mod{cc ? ".CC" : ""};
if (cc) {
ctx.reg_alloc.InvalidateConditionCodes();
}
const auto ret{ctx.reg_alloc.Define(inst)};
ctx.Add("ADD.S{} {}.x,{},{};", cc_mod, ret, a, b);
if (!cc) {
return;
}
static constexpr std::array<std::string_view, 4> masks{"", "SF", "CF", "OF"};
for (size_t flag_index = 0; flag_index < flags.size(); ++flag_index) {
if (!flags[flag_index]) {
continue;
}
const auto flag_ret{ctx.reg_alloc.Define(*flags[flag_index])};
if (flag_index == 0) {
ctx.Add("SEQ.S {}.x,{}.x,0;", flag_ret, ret);
} else {
// We could use conditional execution here, but it's broken on Nvidia's compiler
ctx.Add("IF {}.x;"
"MOV.S {}.x,-1;"
"ELSE;"
"MOV.S {}.x,0;"
"ENDIF;",
masks[flag_index], flag_ret, flag_ret);
}
}
}
void EmitIAdd64(EmitContext& ctx, IR::Inst& inst, Register a, Register b) {
ctx.LongAdd("ADD.S64 {}.x,{}.x,{}.x;", inst, a, b);
}
void EmitISub32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("SUB.S {}.x,{},{};", inst, a, b);
}
void EmitISub64(EmitContext& ctx, IR::Inst& inst, Register a, Register b) {
ctx.LongAdd("SUB.S64 {}.x,{}.x,{}.x;", inst, a, b);
}
void EmitIMul32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("MUL.S {}.x,{},{};", inst, a, b);
}
void EmitINeg32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("MOV.S {},-{};", inst, value);
}
void EmitINeg64(EmitContext& ctx, IR::Inst& inst, Register value) {
ctx.LongAdd("MOV.S64 {},-{};", inst, value);
}
void EmitIAbs32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("ABS.S {},{};", inst, value);
}
void EmitIAbs64(EmitContext& ctx, IR::Inst& inst, Register value) {
ctx.LongAdd("MOV.S64 {},|{}|;", inst, value);
}
void EmitShiftLeftLogical32(EmitContext& ctx, IR::Inst& inst, ScalarU32 base, ScalarU32 shift) {
ctx.Add("SHL.U {}.x,{},{};", inst, base, shift);
}
void EmitShiftLeftLogical64(EmitContext& ctx, IR::Inst& inst, ScalarRegister base,
ScalarU32 shift) {
ctx.LongAdd("SHL.U64 {}.x,{},{};", inst, base, shift);
}
void EmitShiftRightLogical32(EmitContext& ctx, IR::Inst& inst, ScalarU32 base, ScalarU32 shift) {
ctx.Add("SHR.U {}.x,{},{};", inst, base, shift);
}
void EmitShiftRightLogical64(EmitContext& ctx, IR::Inst& inst, ScalarRegister base,
ScalarU32 shift) {
ctx.LongAdd("SHR.U64 {}.x,{},{};", inst, base, shift);
}
void EmitShiftRightArithmetic32(EmitContext& ctx, IR::Inst& inst, ScalarS32 base, ScalarS32 shift) {
ctx.Add("SHR.S {}.x,{},{};", inst, base, shift);
}
void EmitShiftRightArithmetic64(EmitContext& ctx, IR::Inst& inst, ScalarRegister base,
ScalarS32 shift) {
ctx.LongAdd("SHR.S64 {}.x,{},{};", inst, base, shift);
}
void EmitBitwiseAnd32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("AND.S {}.x,{},{};", inst, a, b);
}
void EmitBitwiseOr32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("OR.S {}.x,{},{};", inst, a, b);
}
void EmitBitwiseXor32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("XOR.S {}.x,{},{};", inst, a, b);
}
void EmitBitFieldInsert(EmitContext& ctx, IR::Inst& inst, ScalarS32 base, ScalarS32 insert,
ScalarS32 offset, ScalarS32 count) {
const Register ret{ctx.reg_alloc.Define(inst)};
if (count.type != Type::Register && offset.type != Type::Register) {
ctx.Add("BFI.S {},{{{},{},0,0}},{},{};", ret, count, offset, insert, base);
} else {
ctx.Add("MOV.S RC.x,{};"
"MOV.S RC.y,{};"
"BFI.S {},RC,{},{};",
count, offset, ret, insert, base);
}
}
void EmitBitFieldSExtract(EmitContext& ctx, IR::Inst& inst, ScalarS32 base, ScalarS32 offset,
ScalarS32 count) {
const Register ret{ctx.reg_alloc.Define(inst)};
if (count.type != Type::Register && offset.type != Type::Register) {
ctx.Add("BFE.S {},{{{},{},0,0}},{};", ret, count, offset, base);
} else {
ctx.Add("MOV.S RC.x,{};"
"MOV.S RC.y,{};"
"BFE.S {},RC,{};",
count, offset, ret, base);
}
}
void EmitBitFieldUExtract(EmitContext& ctx, IR::Inst& inst, ScalarU32 base, ScalarU32 offset,
ScalarU32 count) {
const auto zero = inst.GetAssociatedPseudoOperation(IR::Opcode::GetZeroFromOp);
const auto sign = inst.GetAssociatedPseudoOperation(IR::Opcode::GetSignFromOp);
if (zero) {
zero->Invalidate();
}
if (sign) {
sign->Invalidate();
}
if (zero || sign) {
ctx.reg_alloc.InvalidateConditionCodes();
}
const Register ret{ctx.reg_alloc.Define(inst)};
if (count.type != Type::Register && offset.type != Type::Register) {
ctx.Add("BFE.U {},{{{},{},0,0}},{};", ret, count, offset, base);
} else {
ctx.Add("MOV.U RC.x,{};"
"MOV.U RC.y,{};"
"BFE.U {},RC,{};",
count, offset, ret, base);
}
if (zero) {
ctx.Add("SEQ.S {},{},0;", *zero, ret);
}
if (sign) {
ctx.Add("SLT.S {},{},0;", *sign, ret);
}
}
void EmitBitReverse32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("BFR {},{};", inst, value);
}
void EmitBitCount32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("BTC {},{};", inst, value);
}
void EmitBitwiseNot32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("NOT.S {},{};", inst, value);
}
void EmitFindSMsb32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value) {
ctx.Add("BTFM.S {},{};", inst, value);
}
void EmitFindUMsb32(EmitContext& ctx, IR::Inst& inst, ScalarU32 value) {
ctx.Add("BTFM.U {},{};", inst, value);
}
void EmitSMin32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("MIN.S {},{},{};", inst, a, b);
}
void EmitUMin32(EmitContext& ctx, IR::Inst& inst, ScalarU32 a, ScalarU32 b) {
ctx.Add("MIN.U {},{},{};", inst, a, b);
}
void EmitSMax32(EmitContext& ctx, IR::Inst& inst, ScalarS32 a, ScalarS32 b) {
ctx.Add("MAX.S {},{},{};", inst, a, b);
}
void EmitUMax32(EmitContext& ctx, IR::Inst& inst, ScalarU32 a, ScalarU32 b) {
ctx.Add("MAX.U {},{},{};", inst, a, b);
}
void EmitSClamp32(EmitContext& ctx, IR::Inst& inst, ScalarS32 value, ScalarS32 min, ScalarS32 max) {
const Register ret{ctx.reg_alloc.Define(inst)};
ctx.Add("MIN.S RC.x,{},{};"
"MAX.S {}.x,RC.x,{};",
max, value, ret, min);
}
void EmitUClamp32(EmitContext& ctx, IR::Inst& inst, ScalarU32 value, ScalarU32 min, ScalarU32 max) {
const Register ret{ctx.reg_alloc.Define(inst)};
ctx.Add("MIN.U RC.x,{},{};"
"MAX.U {}.x,RC.x,{};",
max, value, ret, min);
}
void EmitSLessThan(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SLT.S {}.x,{},{};", inst, lhs, rhs);
}
void EmitULessThan(EmitContext& ctx, IR::Inst& inst, ScalarU32 lhs, ScalarU32 rhs) {
ctx.Add("SLT.U {}.x,{},{};", inst, lhs, rhs);
}
void EmitIEqual(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SEQ.S {}.x,{},{};", inst, lhs, rhs);
}
void EmitSLessThanEqual(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SLE.S {}.x,{},{};", inst, lhs, rhs);
}
void EmitULessThanEqual(EmitContext& ctx, IR::Inst& inst, ScalarU32 lhs, ScalarU32 rhs) {
ctx.Add("SLE.U {}.x,{},{};", inst, lhs, rhs);
}
void EmitSGreaterThan(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SGT.S {}.x,{},{};", inst, lhs, rhs);
}
void EmitUGreaterThan(EmitContext& ctx, IR::Inst& inst, ScalarU32 lhs, ScalarU32 rhs) {
ctx.Add("SGT.U {}.x,{},{};", inst, lhs, rhs);
}
void EmitINotEqual(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SNE.U {}.x,{},{};", inst, lhs, rhs);
}
void EmitSGreaterThanEqual(EmitContext& ctx, IR::Inst& inst, ScalarS32 lhs, ScalarS32 rhs) {
ctx.Add("SGE.S {}.x,{},{};", inst, lhs, rhs);
}
void EmitUGreaterThanEqual(EmitContext& ctx, IR::Inst& inst, ScalarU32 lhs, ScalarU32 rhs) {
ctx.Add("SGE.U {}.x,{},{};", inst, lhs, rhs);
}
} // namespace Shader::Backend::GLASM