suyu/src/video_core/renderer_vulkan/vk_rasterizer.cpp
2021-07-22 21:51:22 -04:00

736 lines
28 KiB
C++

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/blit_image.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_state_tracker.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/shader_cache.h"
#include "video_core/texture_cache/texture_cache.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using VideoCommon::ImageViewId;
using VideoCommon::ImageViewType;
MICROPROFILE_DEFINE(Vulkan_WaitForWorker, "Vulkan", "Wait for worker", MP_RGB(255, 192, 192));
MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128));
namespace {
struct DrawParams {
u32 base_instance;
u32 num_instances;
u32 base_vertex;
u32 num_vertices;
bool is_indexed;
};
constexpr auto COMPUTE_SHADER_INDEX = static_cast<size_t>(Tegra::Engines::ShaderType::Compute);
VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t index) {
const auto& src = regs.viewport_transform[index];
const float width = src.scale_x * 2.0f;
const float height = src.scale_y * 2.0f;
const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f;
VkViewport viewport{
.x = src.translate_x - src.scale_x,
.y = src.translate_y - src.scale_y,
.width = width != 0.0f ? width : 1.0f,
.height = height != 0.0f ? height : 1.0f,
.minDepth = src.translate_z - src.scale_z * reduce_z,
.maxDepth = src.translate_z + src.scale_z,
};
if (!device.IsExtDepthRangeUnrestrictedSupported()) {
viewport.minDepth = std::clamp(viewport.minDepth, 0.0f, 1.0f);
viewport.maxDepth = std::clamp(viewport.maxDepth, 0.0f, 1.0f);
}
return viewport;
}
VkRect2D GetScissorState(const Maxwell& regs, size_t index) {
const auto& src = regs.scissor_test[index];
VkRect2D scissor;
if (src.enable) {
scissor.offset.x = static_cast<s32>(src.min_x);
scissor.offset.y = static_cast<s32>(src.min_y);
scissor.extent.width = src.max_x - src.min_x;
scissor.extent.height = src.max_y - src.min_y;
} else {
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = std::numeric_limits<s32>::max();
scissor.extent.height = std::numeric_limits<s32>::max();
}
return scissor;
}
struct TextureHandle {
constexpr TextureHandle(u32 data, bool via_header_index) {
const Tegra::Texture::TextureHandle handle{data};
image = handle.tic_id;
sampler = via_header_index ? image : handle.tsc_id.Value();
}
u32 image;
u32 sampler;
};
DrawParams MakeDrawParams(const Maxwell& regs, u32 num_instances, bool is_instanced,
bool is_indexed) {
DrawParams params{
.base_instance = regs.vb_base_instance,
.num_instances = is_instanced ? num_instances : 1,
.base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first,
.num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count,
.is_indexed = is_indexed,
};
if (regs.draw.topology == Maxwell::PrimitiveTopology::Quads) {
// 6 triangle vertices per quad, base vertex is part of the index
// See BindQuadArrayIndexBuffer for more details
params.num_vertices = (params.num_vertices / 4) * 6;
params.base_vertex = 0;
params.is_indexed = true;
}
return params;
}
} // Anonymous namespace
RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Tegra::MemoryManager& gpu_memory_,
Core::Memory::Memory& cpu_memory_, VKScreenInfo& screen_info_,
const Device& device_, MemoryAllocator& memory_allocator_,
StateTracker& state_tracker_, VKScheduler& scheduler_)
: RasterizerAccelerated{cpu_memory_}, gpu{gpu_},
gpu_memory{gpu_memory_}, maxwell3d{gpu.Maxwell3D()}, kepler_compute{gpu.KeplerCompute()},
screen_info{screen_info_}, device{device_}, memory_allocator{memory_allocator_},
state_tracker{state_tracker_}, scheduler{scheduler_},
staging_pool(device, memory_allocator, scheduler), descriptor_pool(device, scheduler),
update_descriptor_queue(device, scheduler),
blit_image(device, scheduler, state_tracker, descriptor_pool),
astc_decoder_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue,
memory_allocator),
texture_cache_runtime{device, scheduler, memory_allocator,
staging_pool, blit_image, astc_decoder_pass},
texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory),
buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool,
update_descriptor_queue, descriptor_pool),
buffer_cache(*this, maxwell3d, kepler_compute, gpu_memory, cpu_memory_, buffer_cache_runtime),
pipeline_cache(*this, gpu, maxwell3d, kepler_compute, gpu_memory, device, scheduler,
descriptor_pool, update_descriptor_queue),
query_cache{*this, maxwell3d, gpu_memory, device, scheduler}, accelerate_dma{buffer_cache},
fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache, device, scheduler),
wfi_event(device.GetLogical().CreateEvent()) {
scheduler.SetQueryCache(query_cache);
}
RasterizerVulkan::~RasterizerVulkan() = default;
void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
UNREACHABLE_MSG("Rendering not implemented {} {}", is_indexed, is_instanced);
}
void RasterizerVulkan::Clear() {
MICROPROFILE_SCOPE(Vulkan_Clearing);
if (!maxwell3d.ShouldExecute()) {
return;
}
query_cache.UpdateCounters();
const auto& regs = maxwell3d.regs;
const bool use_color = regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
regs.clear_buffers.A;
const bool use_depth = regs.clear_buffers.Z;
const bool use_stencil = regs.clear_buffers.S;
if (!use_color && !use_depth && !use_stencil) {
return;
}
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UpdateRenderTargets(true);
const Framebuffer* const framebuffer = texture_cache.GetFramebuffer();
const VkExtent2D render_area = framebuffer->RenderArea();
scheduler.RequestRenderpass(framebuffer);
VkClearRect clear_rect{
.rect = GetScissorState(regs, 0),
.baseArrayLayer = regs.clear_buffers.layer,
.layerCount = 1,
};
if (clear_rect.rect.extent.width == 0 || clear_rect.rect.extent.height == 0) {
return;
}
clear_rect.rect.extent = VkExtent2D{
.width = std::min(clear_rect.rect.extent.width, render_area.width),
.height = std::min(clear_rect.rect.extent.height, render_area.height),
};
const u32 color_attachment = regs.clear_buffers.RT;
const auto attachment_aspect_mask = framebuffer->ImageRanges()[color_attachment].aspectMask;
const bool is_color_rt = (attachment_aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) != 0;
if (use_color && is_color_rt) {
VkClearValue clear_value;
std::memcpy(clear_value.color.float32, regs.clear_color, sizeof(regs.clear_color));
scheduler.Record([color_attachment, clear_value, clear_rect](vk::CommandBuffer cmdbuf) {
const VkClearAttachment attachment{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.colorAttachment = color_attachment,
.clearValue = clear_value,
};
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
if (!use_depth && !use_stencil) {
return;
}
VkImageAspectFlags aspect_flags = 0;
if (use_depth) {
aspect_flags |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (use_stencil) {
aspect_flags |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) {
VkClearAttachment attachment;
attachment.aspectMask = aspect_flags;
attachment.colorAttachment = 0;
attachment.clearValue.depthStencil.depth = clear_depth;
attachment.clearValue.depthStencil.stencil = clear_stencil;
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
void RasterizerVulkan::DispatchCompute() {
UNREACHABLE_MSG("Not implemented");
}
void RasterizerVulkan::ResetCounter(VideoCore::QueryType type) {
query_cache.ResetCounter(type);
}
void RasterizerVulkan::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
std::optional<u64> timestamp) {
query_cache.Query(gpu_addr, type, timestamp);
}
void RasterizerVulkan::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) {
buffer_cache.BindGraphicsUniformBuffer(stage, index, gpu_addr, size);
}
void Vulkan::RasterizerVulkan::DisableGraphicsUniformBuffer(size_t stage, u32 index) {
buffer_cache.DisableGraphicsUniformBuffer(stage, index);
}
void RasterizerVulkan::FlushAll() {}
void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) {
if (addr == 0 || size == 0) {
return;
}
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.DownloadMemory(addr, size);
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.DownloadMemory(addr, size);
}
query_cache.FlushRegion(addr, size);
}
bool RasterizerVulkan::MustFlushRegion(VAddr addr, u64 size) {
std::scoped_lock lock{texture_cache.mutex, buffer_cache.mutex};
if (!Settings::IsGPULevelHigh()) {
return buffer_cache.IsRegionGpuModified(addr, size);
}
return texture_cache.IsRegionGpuModified(addr, size) ||
buffer_cache.IsRegionGpuModified(addr, size);
}
void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) {
if (addr == 0 || size == 0) {
return;
}
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size);
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
pipeline_cache.InvalidateRegion(addr, size);
query_cache.InvalidateRegion(addr, size);
}
void RasterizerVulkan::OnCPUWrite(VAddr addr, u64 size) {
if (addr == 0 || size == 0) {
return;
}
pipeline_cache.OnCPUWrite(addr, size);
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.WriteMemory(addr, size);
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.CachedWriteMemory(addr, size);
}
}
void RasterizerVulkan::SyncGuestHost() {
pipeline_cache.SyncGuestHost();
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.FlushCachedWrites();
}
}
void RasterizerVulkan::UnmapMemory(VAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapMemory(addr, size);
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.WriteMemory(addr, size);
}
pipeline_cache.OnCPUWrite(addr, size);
}
void RasterizerVulkan::ModifyGPUMemory(GPUVAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapGPUMemory(addr, size);
}
}
void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) {
if (!gpu.IsAsync()) {
gpu_memory.Write<u32>(addr, value);
return;
}
fence_manager.SignalSemaphore(addr, value);
}
void RasterizerVulkan::SignalSyncPoint(u32 value) {
if (!gpu.IsAsync()) {
gpu.IncrementSyncPoint(value);
return;
}
fence_manager.SignalSyncPoint(value);
}
void RasterizerVulkan::SignalReference() {
if (!gpu.IsAsync()) {
return;
}
fence_manager.SignalOrdering();
}
void RasterizerVulkan::ReleaseFences() {
if (!gpu.IsAsync()) {
return;
}
fence_manager.WaitPendingFences();
}
void RasterizerVulkan::FlushAndInvalidateRegion(VAddr addr, u64 size) {
if (Settings::IsGPULevelExtreme()) {
FlushRegion(addr, size);
}
InvalidateRegion(addr, size);
}
void RasterizerVulkan::WaitForIdle() {
// Everything but wait pixel operations. This intentionally includes FRAGMENT_SHADER_BIT because
// fragment shaders can still write storage buffers.
VkPipelineStageFlags flags =
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT;
if (device.IsExtTransformFeedbackSupported()) {
flags |= VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT;
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([event = *wfi_event, flags](vk::CommandBuffer cmdbuf) {
cmdbuf.SetEvent(event, flags);
cmdbuf.WaitEvents(event, flags, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, {}, {}, {});
});
SignalReference();
}
void RasterizerVulkan::FragmentBarrier() {
// We already put barriers when a render pass finishes
}
void RasterizerVulkan::TiledCacheBarrier() {
// TODO: Implementing tiled barriers requires rewriting a good chunk of the Vulkan backend
}
void RasterizerVulkan::FlushCommands() {
if (draw_counter > 0) {
draw_counter = 0;
scheduler.Flush();
}
}
void RasterizerVulkan::TickFrame() {
draw_counter = 0;
update_descriptor_queue.TickFrame();
fence_manager.TickFrame();
staging_pool.TickFrame();
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.TickFrame();
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.TickFrame();
}
}
bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surface& src,
const Tegra::Engines::Fermi2D::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
std::scoped_lock lock{texture_cache.mutex};
texture_cache.BlitImage(dst, src, copy_config);
return true;
}
Tegra::Engines::AccelerateDMAInterface& RasterizerVulkan::AccessAccelerateDMA() {
return accelerate_dma;
}
bool RasterizerVulkan::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
if (!framebuffer_addr) {
return false;
}
std::scoped_lock lock{texture_cache.mutex};
ImageView* const image_view = texture_cache.TryFindFramebufferImageView(framebuffer_addr);
if (!image_view) {
return false;
}
screen_info.image_view = image_view->Handle(VideoCommon::ImageViewType::e2D);
screen_info.width = image_view->size.width;
screen_info.height = image_view->size.height;
screen_info.is_srgb = VideoCore::Surface::IsPixelFormatSRGB(image_view->format);
return true;
}
void RasterizerVulkan::FlushWork() {
static constexpr u32 DRAWS_TO_DISPATCH = 4096;
// Only check multiples of 8 draws
static_assert(DRAWS_TO_DISPATCH % 8 == 0);
if ((++draw_counter & 7) != 7) {
return;
}
if (draw_counter < DRAWS_TO_DISPATCH) {
// Send recorded tasks to the worker thread
scheduler.DispatchWork();
return;
}
// Otherwise (every certain number of draws) flush execution.
// This submits commands to the Vulkan driver.
scheduler.Flush();
draw_counter = 0;
}
AccelerateDMA::AccelerateDMA(BufferCache& buffer_cache_) : buffer_cache{buffer_cache_} {}
bool AccelerateDMA::BufferClear(GPUVAddr src_address, u64 amount, u32 value) {
std::scoped_lock lock{buffer_cache.mutex};
return buffer_cache.DMAClear(src_address, amount, value);
}
bool AccelerateDMA::BufferCopy(GPUVAddr src_address, GPUVAddr dest_address, u64 amount) {
std::scoped_lock lock{buffer_cache.mutex};
return buffer_cache.DMACopy(src_address, dest_address, amount);
}
void RasterizerVulkan::UpdateDynamicStates() {
auto& regs = maxwell3d.regs;
UpdateViewportsState(regs);
UpdateScissorsState(regs);
UpdateDepthBias(regs);
UpdateBlendConstants(regs);
UpdateDepthBounds(regs);
UpdateStencilFaces(regs);
if (device.IsExtExtendedDynamicStateSupported()) {
UpdateCullMode(regs);
UpdateDepthBoundsTestEnable(regs);
UpdateDepthTestEnable(regs);
UpdateDepthWriteEnable(regs);
UpdateDepthCompareOp(regs);
UpdateFrontFace(regs);
UpdateStencilOp(regs);
UpdateStencilTestEnable(regs);
}
}
void RasterizerVulkan::BeginTransformFeedback() {
const auto& regs = maxwell3d.regs;
if (regs.tfb_enabled == 0) {
return;
}
if (!device.IsExtTransformFeedbackSupported()) {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
return;
}
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));
scheduler.Record(
[](vk::CommandBuffer cmdbuf) { cmdbuf.BeginTransformFeedbackEXT(0, 0, nullptr, nullptr); });
}
void RasterizerVulkan::EndTransformFeedback() {
const auto& regs = maxwell3d.regs;
if (regs.tfb_enabled == 0) {
return;
}
if (!device.IsExtTransformFeedbackSupported()) {
return;
}
scheduler.Record(
[](vk::CommandBuffer cmdbuf) { cmdbuf.EndTransformFeedbackEXT(0, 0, nullptr, nullptr); });
}
void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchViewports()) {
return;
}
const std::array viewports{
GetViewportState(device, regs, 0), GetViewportState(device, regs, 1),
GetViewportState(device, regs, 2), GetViewportState(device, regs, 3),
GetViewportState(device, regs, 4), GetViewportState(device, regs, 5),
GetViewportState(device, regs, 6), GetViewportState(device, regs, 7),
GetViewportState(device, regs, 8), GetViewportState(device, regs, 9),
GetViewportState(device, regs, 10), GetViewportState(device, regs, 11),
GetViewportState(device, regs, 12), GetViewportState(device, regs, 13),
GetViewportState(device, regs, 14), GetViewportState(device, regs, 15),
};
scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); });
}
void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchScissors()) {
return;
}
const std::array scissors{
GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2),
GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5),
GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8),
GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11),
GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14),
GetScissorState(regs, 15),
};
scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); });
}
void RasterizerVulkan::UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthBias()) {
return;
}
scheduler.Record([constant = regs.polygon_offset_units, clamp = regs.polygon_offset_clamp,
factor = regs.polygon_offset_factor](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthBias(constant, clamp, factor / 2.0f);
});
}
void RasterizerVulkan::UpdateBlendConstants(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchBlendConstants()) {
return;
}
const std::array blend_color = {regs.blend_color.r, regs.blend_color.g, regs.blend_color.b,
regs.blend_color.a};
scheduler.Record(
[blend_color](vk::CommandBuffer cmdbuf) { cmdbuf.SetBlendConstants(blend_color.data()); });
}
void RasterizerVulkan::UpdateDepthBounds(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthBounds()) {
return;
}
scheduler.Record([min = regs.depth_bounds[0], max = regs.depth_bounds[1]](
vk::CommandBuffer cmdbuf) { cmdbuf.SetDepthBounds(min, max); });
}
void RasterizerVulkan::UpdateStencilFaces(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchStencilProperties()) {
return;
}
if (regs.stencil_two_side_enable) {
// Separate values per face
scheduler.Record(
[front_ref = regs.stencil_front_func_ref, front_write_mask = regs.stencil_front_mask,
front_test_mask = regs.stencil_front_func_mask, back_ref = regs.stencil_back_func_ref,
back_write_mask = regs.stencil_back_mask,
back_test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) {
// Front face
cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_BIT, front_ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_BIT, front_write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_BIT, front_test_mask);
// Back face
cmdbuf.SetStencilReference(VK_STENCIL_FACE_BACK_BIT, back_ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_BACK_BIT, back_write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_BACK_BIT, back_test_mask);
});
} else {
// Front face defines both faces
scheduler.Record([ref = regs.stencil_back_func_ref, write_mask = regs.stencil_back_mask,
test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) {
cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_AND_BACK, ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_AND_BACK, write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_AND_BACK, test_mask);
});
}
}
void RasterizerVulkan::UpdateCullMode(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchCullMode()) {
return;
}
scheduler.Record(
[enabled = regs.cull_test_enabled, cull_face = regs.cull_face](vk::CommandBuffer cmdbuf) {
cmdbuf.SetCullModeEXT(enabled ? MaxwellToVK::CullFace(cull_face) : VK_CULL_MODE_NONE);
});
}
void RasterizerVulkan::UpdateDepthBoundsTestEnable(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthBoundsTestEnable()) {
return;
}
scheduler.Record([enable = regs.depth_bounds_enable](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthBoundsTestEnableEXT(enable);
});
}
void RasterizerVulkan::UpdateDepthTestEnable(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthTestEnable()) {
return;
}
scheduler.Record([enable = regs.depth_test_enable](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthTestEnableEXT(enable);
});
}
void RasterizerVulkan::UpdateDepthWriteEnable(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthWriteEnable()) {
return;
}
scheduler.Record([enable = regs.depth_write_enabled](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthWriteEnableEXT(enable);
});
}
void RasterizerVulkan::UpdateDepthCompareOp(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthCompareOp()) {
return;
}
scheduler.Record([func = regs.depth_test_func](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthCompareOpEXT(MaxwellToVK::ComparisonOp(func));
});
}
void RasterizerVulkan::UpdateFrontFace(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchFrontFace()) {
return;
}
VkFrontFace front_face = MaxwellToVK::FrontFace(regs.front_face);
if (regs.screen_y_control.triangle_rast_flip != 0) {
front_face = front_face == VK_FRONT_FACE_CLOCKWISE ? VK_FRONT_FACE_COUNTER_CLOCKWISE
: VK_FRONT_FACE_CLOCKWISE;
}
scheduler.Record(
[front_face](vk::CommandBuffer cmdbuf) { cmdbuf.SetFrontFaceEXT(front_face); });
}
void RasterizerVulkan::UpdateStencilOp(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchStencilOp()) {
return;
}
const Maxwell::StencilOp fail = regs.stencil_front_op_fail;
const Maxwell::StencilOp zfail = regs.stencil_front_op_zfail;
const Maxwell::StencilOp zpass = regs.stencil_front_op_zpass;
const Maxwell::ComparisonOp compare = regs.stencil_front_func_func;
if (regs.stencil_two_side_enable) {
scheduler.Record([fail, zfail, zpass, compare](vk::CommandBuffer cmdbuf) {
cmdbuf.SetStencilOpEXT(VK_STENCIL_FACE_FRONT_AND_BACK, MaxwellToVK::StencilOp(fail),
MaxwellToVK::StencilOp(zpass), MaxwellToVK::StencilOp(zfail),
MaxwellToVK::ComparisonOp(compare));
});
} else {
const Maxwell::StencilOp back_fail = regs.stencil_back_op_fail;
const Maxwell::StencilOp back_zfail = regs.stencil_back_op_zfail;
const Maxwell::StencilOp back_zpass = regs.stencil_back_op_zpass;
const Maxwell::ComparisonOp back_compare = regs.stencil_back_func_func;
scheduler.Record([fail, zfail, zpass, compare, back_fail, back_zfail, back_zpass,
back_compare](vk::CommandBuffer cmdbuf) {
cmdbuf.SetStencilOpEXT(VK_STENCIL_FACE_FRONT_BIT, MaxwellToVK::StencilOp(fail),
MaxwellToVK::StencilOp(zpass), MaxwellToVK::StencilOp(zfail),
MaxwellToVK::ComparisonOp(compare));
cmdbuf.SetStencilOpEXT(VK_STENCIL_FACE_BACK_BIT, MaxwellToVK::StencilOp(back_fail),
MaxwellToVK::StencilOp(back_zpass),
MaxwellToVK::StencilOp(back_zfail),
MaxwellToVK::ComparisonOp(back_compare));
});
}
}
void RasterizerVulkan::UpdateStencilTestEnable(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchStencilTestEnable()) {
return;
}
scheduler.Record([enable = regs.stencil_enable](vk::CommandBuffer cmdbuf) {
cmdbuf.SetStencilTestEnableEXT(enable);
});
}
} // namespace Vulkan