suyu/src/video_core/host_shaders/astc_decoder.comp
ameerj c439fc9be9 astc_decoder: Reduce workgroup size
This reduces the amount of over dispatching when there are odd dimensions (i.e. ASTC 8x5), which rarely evenly divide into 32x32.
2021-08-01 01:22:27 -04:00

1258 lines
38 KiB
Text

// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 450
#ifdef VULKAN
#define BEGIN_PUSH_CONSTANTS layout(push_constant) uniform PushConstants {
#define END_PUSH_CONSTANTS };
#define UNIFORM(n)
#define BINDING_INPUT_BUFFER 0
#define BINDING_OUTPUT_IMAGE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BEGIN_PUSH_CONSTANTS
#define END_PUSH_CONSTANTS
#define UNIFORM(n) layout(location = n) uniform
#define BINDING_INPUT_BUFFER 0
#define BINDING_OUTPUT_IMAGE 0
#endif
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
BEGIN_PUSH_CONSTANTS
UNIFORM(1) uvec2 block_dims;
UNIFORM(2) uint layer_stride;
UNIFORM(3) uint block_size;
UNIFORM(4) uint x_shift;
UNIFORM(5) uint block_height;
UNIFORM(6) uint block_height_mask;
END_PUSH_CONSTANTS
struct EncodingData {
uint encoding;
uint num_bits;
uint bit_value;
uint quint_trit_value;
};
struct TexelWeightParams {
uvec2 size;
uint max_weight;
bool dual_plane;
bool error_state;
bool void_extent_ldr;
bool void_extent_hdr;
};
layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 {
uvec4 astc_data[];
};
layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image;
const uint GOB_SIZE_X_SHIFT = 6;
const uint GOB_SIZE_Y_SHIFT = 3;
const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT;
const uint BYTES_PER_BLOCK_LOG2 = 4;
const int JUST_BITS = 0;
const int QUINT = 1;
const int TRIT = 2;
// ASTC Encodings data, sorted in ascending order based on their BitLength value
// (see GetBitLength() function)
EncodingData encoding_values[22] = EncodingData[](
EncodingData(JUST_BITS, 0, 0, 0), EncodingData(JUST_BITS, 1, 0, 0), EncodingData(TRIT, 0, 0, 0),
EncodingData(JUST_BITS, 2, 0, 0), EncodingData(QUINT, 0, 0, 0), EncodingData(TRIT, 1, 0, 0),
EncodingData(JUST_BITS, 3, 0, 0), EncodingData(QUINT, 1, 0, 0), EncodingData(TRIT, 2, 0, 0),
EncodingData(JUST_BITS, 4, 0, 0), EncodingData(QUINT, 2, 0, 0), EncodingData(TRIT, 3, 0, 0),
EncodingData(JUST_BITS, 5, 0, 0), EncodingData(QUINT, 3, 0, 0), EncodingData(TRIT, 4, 0, 0),
EncodingData(JUST_BITS, 6, 0, 0), EncodingData(QUINT, 4, 0, 0), EncodingData(TRIT, 5, 0, 0),
EncodingData(JUST_BITS, 7, 0, 0), EncodingData(QUINT, 5, 0, 0), EncodingData(TRIT, 6, 0, 0),
EncodingData(JUST_BITS, 8, 0, 0)
);
// The following constants are expanded variants of the Replicate()
// function calls corresponding to the following arguments:
// value: index into the generated table
// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4.
// to_bit: the integer after "TO_"
const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127);
const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511);
const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255);
const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255);
const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255);
const uint REPLICATE_4_BIT_TO_8_TABLE[16] =
uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255);
const uint REPLICATE_5_BIT_TO_8_TABLE[32] =
uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165,
173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255);
const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63);
const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63);
const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63);
const uint REPLICATE_4_BIT_TO_6_TABLE[16] =
uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63);
const uint REPLICATE_5_BIT_TO_6_TABLE[32] =
uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45,
47, 49, 51, 53, 55, 57, 59, 61, 63);
const uint REPLICATE_6_BIT_TO_8_TABLE[64] =
uint[](0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 69, 73, 77, 81, 85, 89,
93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162,
166, 170, 174, 178, 182, 186, 190, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235,
239, 243, 247, 251, 255);
const uint REPLICATE_7_BIT_TO_8_TABLE[128] =
uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44,
46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126,
129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163,
165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199,
201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235,
237, 239, 241, 243, 245, 247, 249, 251, 253, 255);
// Input ASTC texture globals
uint current_index = 0;
int bitsread = 0;
int total_bitsread = 0;
uvec4 local_buff;
// Color data globals
uvec4 color_endpoint_data;
int color_bitsread = 0;
// Four values, two endpoints, four maximum paritions
uint color_values[32];
int colvals_index = 0;
// Weight data globals
uvec4 texel_weight_data;
int texel_bitsread = 0;
bool texel_flag = false;
// Global "vectors" to be pushed into when decoding
EncodingData result_vector[144];
int result_index = 0;
EncodingData texel_vector[144];
int texel_vector_index = 0;
uint unquantized_texel_weights[2][144];
uint SwizzleOffset(uvec2 pos) {
uint x = pos.x;
uint y = pos.y;
return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
(y % 2) * 16 + (x % 16);
}
// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
// is the same as [(num_bits - 1):0] and repeats all the way down.
uint Replicate(uint val, uint num_bits, uint to_bit) {
if (num_bits == 0 || to_bit == 0) {
return 0;
}
const uint v = val & uint((1 << num_bits) - 1);
uint res = v;
uint reslen = num_bits;
while (reslen < to_bit) {
uint comp = 0;
if (num_bits > to_bit - reslen) {
uint newshift = to_bit - reslen;
comp = num_bits - newshift;
num_bits = newshift;
}
res = uint(res << num_bits);
res = uint(res | (v >> comp));
reslen += num_bits;
}
return res;
}
uvec4 ReplicateByteTo16(uvec4 value) {
return value * 0x101;
}
uint ReplicateBitTo7(uint value) {
return REPLICATE_BIT_TO_7_TABLE[value];
}
uint ReplicateBitTo9(uint value) {
return REPLICATE_1_BIT_TO_9_TABLE[value];
}
uint FastReplicateTo8(uint value, uint num_bits) {
switch (num_bits) {
case 1:
return REPLICATE_1_BIT_TO_8_TABLE[value];
case 2:
return REPLICATE_2_BIT_TO_8_TABLE[value];
case 3:
return REPLICATE_3_BIT_TO_8_TABLE[value];
case 4:
return REPLICATE_4_BIT_TO_8_TABLE[value];
case 5:
return REPLICATE_5_BIT_TO_8_TABLE[value];
case 6:
return REPLICATE_6_BIT_TO_8_TABLE[value];
case 7:
return REPLICATE_7_BIT_TO_8_TABLE[value];
case 8:
return value;
}
return Replicate(value, num_bits, 8);
}
uint FastReplicateTo6(uint value, uint num_bits) {
switch (num_bits) {
case 1:
return REPLICATE_1_BIT_TO_6_TABLE[value];
case 2:
return REPLICATE_2_BIT_TO_6_TABLE[value];
case 3:
return REPLICATE_3_BIT_TO_6_TABLE[value];
case 4:
return REPLICATE_4_BIT_TO_6_TABLE[value];
case 5:
return REPLICATE_5_BIT_TO_6_TABLE[value];
}
return Replicate(value, num_bits, 6);
}
uint Div3Floor(uint v) {
return (v * 0x5556) >> 16;
}
uint Div3Ceil(uint v) {
return Div3Floor(v + 2);
}
uint Div5Floor(uint v) {
return (v * 0x3334) >> 16;
}
uint Div5Ceil(uint v) {
return Div5Floor(v + 4);
}
uint Hash52(uint p) {
p ^= p >> 15;
p -= p << 17;
p += p << 7;
p += p << 4;
p ^= p >> 5;
p += p << 16;
p ^= p >> 7;
p ^= p >> 3;
p ^= p << 6;
p ^= p >> 17;
return p;
}
uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) {
if (small_block) {
x <<= 1;
y <<= 1;
}
seed += (partition_count - 1) * 1024;
uint rnum = Hash52(uint(seed));
uint seed1 = uint(rnum & 0xF);
uint seed2 = uint((rnum >> 4) & 0xF);
uint seed3 = uint((rnum >> 8) & 0xF);
uint seed4 = uint((rnum >> 12) & 0xF);
uint seed5 = uint((rnum >> 16) & 0xF);
uint seed6 = uint((rnum >> 20) & 0xF);
uint seed7 = uint((rnum >> 24) & 0xF);
uint seed8 = uint((rnum >> 28) & 0xF);
seed1 = (seed1 * seed1);
seed2 = (seed2 * seed2);
seed3 = (seed3 * seed3);
seed4 = (seed4 * seed4);
seed5 = (seed5 * seed5);
seed6 = (seed6 * seed6);
seed7 = (seed7 * seed7);
seed8 = (seed8 * seed8);
uint sh1, sh2;
if ((seed & 1) > 0) {
sh1 = (seed & 2) > 0 ? 4 : 5;
sh2 = (partition_count == 3) ? 6 : 5;
} else {
sh1 = (partition_count == 3) ? 6 : 5;
sh2 = (seed & 2) > 0 ? 4 : 5;
}
seed1 >>= sh1;
seed2 >>= sh2;
seed3 >>= sh1;
seed4 >>= sh2;
seed5 >>= sh1;
seed6 >>= sh2;
seed7 >>= sh1;
seed8 >>= sh2;
uint a = seed1 * x + seed2 * y + (rnum >> 14);
uint b = seed3 * x + seed4 * y + (rnum >> 10);
uint c = seed5 * x + seed6 * y + (rnum >> 6);
uint d = seed7 * x + seed8 * y + (rnum >> 2);
a &= 0x3F;
b &= 0x3F;
c &= 0x3F;
d &= 0x3F;
if (partition_count < 4) {
d = 0;
}
if (partition_count < 3) {
c = 0;
}
if (a >= b && a >= c && a >= d) {
return 0;
} else if (b >= c && b >= d) {
return 1;
} else if (c >= d) {
return 2;
} else {
return 3;
}
}
uint ExtractBits(uvec4 payload, int offset, int bits) {
if (bits <= 0) {
return 0;
}
int last_offset = offset + bits - 1;
int shifted_offset = offset >> 5;
if ((last_offset >> 5) == shifted_offset) {
return bitfieldExtract(payload[shifted_offset], offset & 31, bits);
}
int first_bits = 32 - (offset & 31);
int result_first = int(bitfieldExtract(payload[shifted_offset], offset & 31, first_bits));
int result_second = int(bitfieldExtract(payload[shifted_offset + 1], 0, bits - first_bits));
return result_first | (result_second << first_bits);
}
uint StreamBits(uint num_bits) {
int int_bits = int(num_bits);
uint ret = ExtractBits(local_buff, total_bitsread, int_bits);
total_bitsread += int_bits;
return ret;
}
uint StreamColorBits(uint num_bits) {
uint ret = 0;
int int_bits = int(num_bits);
if (texel_flag) {
ret = ExtractBits(texel_weight_data, texel_bitsread, int_bits);
texel_bitsread += int_bits;
} else {
ret = ExtractBits(color_endpoint_data, color_bitsread, int_bits);
color_bitsread += int_bits;
}
return ret;
}
void ResultEmplaceBack(EncodingData val) {
if (texel_flag) {
texel_vector[texel_vector_index] = val;
++texel_vector_index;
} else {
result_vector[result_index] = val;
++result_index;
}
}
// Returns the number of bits required to encode n_vals values.
uint GetBitLength(uint n_vals, uint encoding_index) {
uint total_bits = encoding_values[encoding_index].num_bits * n_vals;
if (encoding_values[encoding_index].encoding == TRIT) {
total_bits += Div5Ceil(n_vals * 8);
} else if (encoding_values[encoding_index].encoding == QUINT) {
total_bits += Div3Ceil(n_vals * 7);
}
return total_bits;
}
uint GetNumWeightValues(uvec2 size, bool dual_plane) {
uint n_vals = size.x * size.y;
if (dual_plane) {
n_vals *= 2;
}
return n_vals;
}
uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) {
uint n_vals = GetNumWeightValues(size, dual_plane);
return GetBitLength(n_vals, max_weight);
}
uint BitsBracket(uint bits, uint pos) {
return ((bits >> pos) & 1);
}
uint BitsOp(uint bits, uint start, uint end) {
if (start == end) {
return BitsBracket(bits, start);
} else if (start > end) {
uint t = start;
start = end;
end = t;
}
uint mask = (1 << (end - start + 1)) - 1;
return ((bits >> start) & mask);
}
void DecodeQuintBlock(uint num_bits) {
uint m[3];
uint q[3];
uint Q;
m[0] = StreamColorBits(num_bits);
Q = StreamColorBits(3);
m[1] = StreamColorBits(num_bits);
Q |= StreamColorBits(2) << 3;
m[2] = StreamColorBits(num_bits);
Q |= StreamColorBits(2) << 5;
if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) {
q[0] = 4;
q[1] = 4;
q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) |
(BitsBracket(Q, 3) & ~BitsBracket(Q, 0));
} else {
uint C = 0;
if (BitsOp(Q, 1, 2) == 3) {
q[2] = 4;
C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0);
} else {
q[2] = BitsOp(Q, 5, 6);
C = BitsOp(Q, 0, 4);
}
if (BitsOp(C, 0, 2) == 5) {
q[1] = 4;
q[0] = BitsOp(C, 3, 4);
} else {
q[1] = BitsOp(C, 3, 4);
q[0] = BitsOp(C, 0, 2);
}
}
for (uint i = 0; i < 3; i++) {
EncodingData val;
val.encoding = QUINT;
val.num_bits = num_bits;
val.bit_value = m[i];
val.quint_trit_value = q[i];
ResultEmplaceBack(val);
}
}
void DecodeTritBlock(uint num_bits) {
uint m[5];
uint t[5];
uint T;
m[0] = StreamColorBits(num_bits);
T = StreamColorBits(2);
m[1] = StreamColorBits(num_bits);
T |= StreamColorBits(2) << 2;
m[2] = StreamColorBits(num_bits);
T |= StreamColorBits(1) << 4;
m[3] = StreamColorBits(num_bits);
T |= StreamColorBits(2) << 5;
m[4] = StreamColorBits(num_bits);
T |= StreamColorBits(1) << 7;
uint C = 0;
if (BitsOp(T, 2, 4) == 7) {
C = (BitsOp(T, 5, 7) << 2) | BitsOp(T, 0, 1);
t[4] = 2;
t[3] = 2;
} else {
C = BitsOp(T, 0, 4);
if (BitsOp(T, 5, 6) == 3) {
t[4] = 2;
t[3] = BitsBracket(T, 7);
} else {
t[4] = BitsBracket(T, 7);
t[3] = BitsOp(T, 5, 6);
}
}
if (BitsOp(C, 0, 1) == 3) {
t[2] = 2;
t[1] = BitsBracket(C, 4);
t[0] = (BitsBracket(C, 3) << 1) | (BitsBracket(C, 2) & ~BitsBracket(C, 3));
} else if (BitsOp(C, 2, 3) == 3) {
t[2] = 2;
t[1] = 2;
t[0] = BitsOp(C, 0, 1);
} else {
t[2] = BitsBracket(C, 4);
t[1] = BitsOp(C, 2, 3);
t[0] = (BitsBracket(C, 1) << 1) | (BitsBracket(C, 0) & ~BitsBracket(C, 1));
}
for (uint i = 0; i < 5; i++) {
EncodingData val;
val.encoding = TRIT;
val.num_bits = num_bits;
val.bit_value = m[i];
val.quint_trit_value = t[i];
ResultEmplaceBack(val);
}
}
void DecodeIntegerSequence(uint max_range, uint num_values) {
EncodingData val = encoding_values[max_range];
uint vals_decoded = 0;
while (vals_decoded < num_values) {
switch (val.encoding) {
case QUINT:
DecodeQuintBlock(val.num_bits);
vals_decoded += 3;
break;
case TRIT:
DecodeTritBlock(val.num_bits);
vals_decoded += 5;
break;
case JUST_BITS:
val.bit_value = StreamColorBits(val.num_bits);
ResultEmplaceBack(val);
vals_decoded++;
break;
}
}
}
void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
uint num_values = 0;
for (uint i = 0; i < num_partitions; i++) {
num_values += ((modes[i] >> 2) + 1) << 1;
}
// Find the largest encoding that's within color_data_bits
// TODO(ameerj): profile with binary search
int range = 0;
while (++range < encoding_values.length()) {
uint bit_length = GetBitLength(num_values, range);
if (bit_length > color_data_bits) {
break;
}
}
DecodeIntegerSequence(range - 1, num_values);
uint out_index = 0;
for (int itr = 0; itr < result_index; ++itr) {
if (out_index >= num_values) {
break;
}
EncodingData val = result_vector[itr];
uint bitlen = val.num_bits;
uint bitval = val.bit_value;
uint A = 0, B = 0, C = 0, D = 0;
A = ReplicateBitTo9((bitval & 1));
switch (val.encoding) {
case JUST_BITS:
color_values[out_index++] = FastReplicateTo8(bitval, bitlen);
break;
case TRIT: {
D = val.quint_trit_value;
switch (bitlen) {
case 1:
C = 204;
break;
case 2: {
C = 93;
uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
break;
}
case 3: {
C = 44;
uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
break;
}
case 4: {
C = 22;
uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
break;
}
case 5: {
C = 11;
uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
break;
}
case 6: {
C = 5;
uint fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
break;
}
}
break;
}
case QUINT: {
D = val.quint_trit_value;
switch (bitlen) {
case 1:
C = 113;
break;
case 2: {
C = 54;
uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
break;
}
case 3: {
C = 26;
uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
break;
}
case 4: {
C = 13;
uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
break;
}
case 5: {
C = 6;
uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
break;
}
}
break;
}
}
if (val.encoding != JUST_BITS) {
uint T = (D * C) + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
color_values[out_index++] = T;
}
}
}
ivec2 BitTransferSigned(int a, int b) {
ivec2 transferred;
transferred.y = b >> 1;
transferred.y |= a & 0x80;
transferred.x = a >> 1;
transferred.x &= 0x3F;
if ((transferred.x & 0x20) > 0) {
transferred.x -= 0x40;
}
return transferred;
}
uvec4 ClampByte(ivec4 color) {
for (uint i = 0; i < 4; ++i) {
color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
}
return uvec4(color);
}
ivec4 BlueContract(int a, int r, int g, int b) {
return ivec4(a, (r + b) >> 1, (g + b) >> 1, b);
}
void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) {
#define READ_UINT_VALUES(N) \
uint v[N]; \
for (uint i = 0; i < N; i++) { \
v[i] = color_values[colvals_index++]; \
}
#define READ_INT_VALUES(N) \
int v[N]; \
for (uint i = 0; i < N; i++) { \
v[i] = int(color_values[colvals_index++]); \
}
switch (color_endpoint_mode) {
case 0: {
READ_UINT_VALUES(2)
ep1 = uvec4(0xFF, v[0], v[0], v[0]);
ep2 = uvec4(0xFF, v[1], v[1], v[1]);
break;
}
case 1: {
READ_UINT_VALUES(2)
uint L0 = (v[0] >> 2) | (v[1] & 0xC0);
uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU);
ep1 = uvec4(0xFF, L0, L0, L0);
ep2 = uvec4(0xFF, L1, L1, L1);
break;
}
case 4: {
READ_UINT_VALUES(4)
ep1 = uvec4(v[2], v[0], v[0], v[0]);
ep2 = uvec4(v[3], v[1], v[1], v[1]);
break;
}
case 5: {
READ_INT_VALUES(4)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
v[1] = transferred.x;
v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
v[3] = transferred.x;
v[2] = transferred.y;
ep1 = ClampByte(ivec4(v[2], v[0], v[0], v[0]));
ep2 = ClampByte(ivec4(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]));
break;
}
case 6: {
READ_UINT_VALUES(4)
ep1 = uvec4(0xFF, (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
ep2 = uvec4(0xFF, v[0], v[1], v[2]);
break;
}
case 8: {
READ_UINT_VALUES(6)
if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
ep1 = uvec4(0xFF, v[0], v[2], v[4]);
ep2 = uvec4(0xFF, v[1], v[3], v[5]);
} else {
ep1 = uvec4(BlueContract(0xFF, int(v[1]), int(v[3]), int(v[5])));
ep2 = uvec4(BlueContract(0xFF, int(v[0]), int(v[2]), int(v[4])));
}
break;
}
case 9: {
READ_INT_VALUES(6)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
v[1] = transferred.x;
v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
v[3] = transferred.x;
v[2] = transferred.y;
transferred = BitTransferSigned(v[5], v[4]);
v[5] = transferred.x;
v[4] = transferred.y;
if ((v[1] + v[3] + v[5]) >= 0) {
ep1 = ClampByte(ivec4(0xFF, v[0], v[2], v[4]));
ep2 = ClampByte(ivec4(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
} else {
ep1 = ClampByte(BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
ep2 = ClampByte(BlueContract(0xFF, v[0], v[2], v[4]));
}
break;
}
case 10: {
READ_UINT_VALUES(6)
ep1 = uvec4(v[4], (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
ep2 = uvec4(v[5], v[0], v[1], v[2]);
break;
}
case 12: {
READ_UINT_VALUES(8)
if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
ep1 = uvec4(v[6], v[0], v[2], v[4]);
ep2 = uvec4(v[7], v[1], v[3], v[5]);
} else {
ep1 = uvec4(BlueContract(int(v[7]), int(v[1]), int(v[3]), int(v[5])));
ep2 = uvec4(BlueContract(int(v[6]), int(v[0]), int(v[2]), int(v[4])));
}
break;
}
case 13: {
READ_INT_VALUES(8)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
v[1] = transferred.x;
v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
v[3] = transferred.x;
v[2] = transferred.y;
transferred = BitTransferSigned(v[5], v[4]);
v[5] = transferred.x;
v[4] = transferred.y;
transferred = BitTransferSigned(v[7], v[6]);
v[7] = transferred.x;
v[6] = transferred.y;
if ((v[1] + v[3] + v[5]) >= 0) {
ep1 = ClampByte(ivec4(v[6], v[0], v[2], v[4]));
ep2 = ClampByte(ivec4(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
} else {
ep1 = ClampByte(BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
ep2 = ClampByte(BlueContract(v[6], v[0], v[2], v[4]));
}
break;
}
default: {
// HDR mode, or more likely a bug computing the color_endpoint_mode
ep1 = uvec4(0xFF, 0xFF, 0, 0);
ep2 = uvec4(0xFF, 0xFF, 0, 0);
break;
}
}
#undef READ_UINT_VALUES
#undef READ_INT_VALUES
}
uint UnquantizeTexelWeight(EncodingData val) {
uint bitval = val.bit_value;
uint bitlen = val.num_bits;
uint A = ReplicateBitTo7((bitval & 1));
uint B = 0, C = 0, D = 0;
uint result = 0;
switch (val.encoding) {
case JUST_BITS:
result = FastReplicateTo6(bitval, bitlen);
break;
case TRIT: {
D = val.quint_trit_value;
switch (bitlen) {
case 0: {
uint results[3] = {0, 32, 63};
result = results[D];
break;
}
case 1: {
C = 50;
break;
}
case 2: {
C = 23;
uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 2) | b;
break;
}
case 3: {
C = 11;
uint cb = (bitval >> 1) & 3;
B = (cb << 5) | cb;
break;
}
default:
break;
}
break;
}
case QUINT: {
D = val.quint_trit_value;
switch (bitlen) {
case 0: {
uint results[5] = {0, 16, 32, 47, 63};
result = results[D];
break;
}
case 1: {
C = 28;
break;
}
case 2: {
C = 13;
uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 1);
break;
}
}
break;
}
}
if (val.encoding != JUST_BITS && bitlen > 0) {
result = D * C + B;
result ^= A;
result = (A & 0x20) | (result >> 2);
}
if (result > 32) {
result += 1;
}
return result;
}
void UnquantizeTexelWeights(bool dual_plane, uvec2 size) {
uint weight_idx = 0;
uint unquantized[2][144];
uint area = size.x * size.y;
for (uint itr = 0; itr < texel_vector_index; itr++) {
unquantized[0][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]);
if (dual_plane) {
++itr;
unquantized[1][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]);
if (itr == texel_vector_index) {
break;
}
}
if (++weight_idx >= (area))
break;
}
const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1));
const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1));
const uint k_plane_scale = dual_plane ? 2 : 1;
for (uint plane = 0; plane < k_plane_scale; plane++) {
for (uint t = 0; t < block_dims.y; t++) {
for (uint s = 0; s < block_dims.x; s++) {
uint cs = Ds * s;
uint ct = Dt * t;
uint gs = (cs * (size.x - 1) + 32) >> 6;
uint gt = (ct * (size.y - 1) + 32) >> 6;
uint js = gs >> 4;
uint fs = gs & 0xF;
uint jt = gt >> 4;
uint ft = gt & 0x0F;
uint w11 = (fs * ft + 8) >> 4;
uint w10 = ft - w11;
uint w01 = fs - w11;
uint w00 = 16 - fs - ft + w11;
uvec4 w = uvec4(w00, w01, w10, w11);
uint v0 = jt * size.x + js;
uvec4 p = uvec4(0);
if (v0 < area) {
p.x = unquantized[plane][v0];
}
if ((v0 + 1) < (area)) {
p.y = unquantized[plane][v0 + 1];
}
if ((v0 + size.x) < (area)) {
p.z = unquantized[plane][(v0 + size.x)];
}
if ((v0 + size.x + 1) < (area)) {
p.w = unquantized[plane][(v0 + size.x + 1)];
}
unquantized_texel_weights[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4;
}
}
}
}
int FindLayout(uint mode) {
if ((mode & 3) != 0) {
if ((mode & 8) != 0) {
if ((mode & 4) != 0) {
if ((mode & 0x100) != 0) {
return 4;
}
return 3;
}
return 2;
}
if ((mode & 4) != 0) {
return 1;
}
return 0;
}
if ((mode & 0x100) != 0) {
if ((mode & 0x80) != 0) {
if ((mode & 0x20) != 0) {
return 8;
}
return 7;
}
return 9;
}
if ((mode & 0x80) != 0) {
return 6;
}
return 5;
}
TexelWeightParams DecodeBlockInfo() {
TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false);
uint mode = StreamBits(11);
if ((mode & 0x1ff) == 0x1fc) {
if ((mode & 0x200) != 0) {
params.void_extent_hdr = true;
} else {
params.void_extent_ldr = true;
}
if ((mode & 0x400) == 0 || StreamBits(1) == 0) {
params.error_state = true;
}
return params;
}
if ((mode & 0xf) == 0) {
params.error_state = true;
return params;
}
if ((mode & 3) == 0 && (mode & 0x1c0) == 0x1c0) {
params.error_state = true;
return params;
}
uint A, B;
uint mode_layout = FindLayout(mode);
switch (mode_layout) {
case 0:
A = (mode >> 5) & 0x3;
B = (mode >> 7) & 0x3;
params.size = uvec2(B + 4, A + 2);
break;
case 1:
A = (mode >> 5) & 0x3;
B = (mode >> 7) & 0x3;
params.size = uvec2(B + 8, A + 2);
break;
case 2:
A = (mode >> 5) & 0x3;
B = (mode >> 7) & 0x3;
params.size = uvec2(A + 2, B + 8);
break;
case 3:
A = (mode >> 5) & 0x3;
B = (mode >> 7) & 0x1;
params.size = uvec2(A + 2, B + 6);
break;
case 4:
A = (mode >> 5) & 0x3;
B = (mode >> 7) & 0x1;
params.size = uvec2(B + 2, A + 2);
break;
case 5:
A = (mode >> 5) & 0x3;
params.size = uvec2(12, A + 2);
break;
case 6:
A = (mode >> 5) & 0x3;
params.size = uvec2(A + 2, 12);
break;
case 7:
params.size = uvec2(6, 10);
break;
case 8:
params.size = uvec2(10, 6);
break;
case 9:
A = (mode >> 5) & 0x3;
B = (mode >> 9) & 0x3;
params.size = uvec2(A + 6, B + 6);
break;
default:
params.error_state = true;
break;
}
params.dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0);
uint weight_index = (mode & 0x10) != 0 ? 1 : 0;
if (mode_layout < 5) {
weight_index |= (mode & 0x3) << 1;
} else {
weight_index |= (mode & 0xc) >> 1;
}
weight_index -= 2;
if ((mode_layout != 9) && ((mode & 0x200) != 0)) {
const int max_weights[6] = int[6](7, 8, 9, 10, 11, 12);
params.max_weight = max_weights[weight_index];
} else {
const int max_weights[6] = int[6](1, 2, 3, 4, 5, 6);
params.max_weight = max_weights[weight_index];
}
return params;
}
void FillError(ivec3 coord) {
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
imageStore(dest_image, coord + ivec3(i, j, 0), vec4(1.0, 1.0, 0.0, 1.0));
}
}
}
void FillVoidExtentLDR(ivec3 coord) {
StreamBits(52);
uint r_u = StreamBits(16);
uint g_u = StreamBits(16);
uint b_u = StreamBits(16);
uint a_u = StreamBits(16);
float a = float(a_u) / 65535.0f;
float r = float(r_u) / 65535.0f;
float g = float(g_u) / 65535.0f;
float b = float(b_u) / 65535.0f;
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a));
}
}
}
void DecompressBlock(ivec3 coord) {
TexelWeightParams params = DecodeBlockInfo();
if (params.error_state) {
FillError(coord);
return;
}
if (params.void_extent_hdr) {
FillError(coord);
return;
}
if (params.void_extent_ldr) {
FillVoidExtentLDR(coord);
return;
}
if ((params.size.x > block_dims.x) || (params.size.y > block_dims.y)) {
FillError(coord);
return;
}
uint num_partitions = StreamBits(2) + 1;
if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) {
FillError(coord);
return;
}
int plane_index = -1;
uint partition_index = 1;
uvec4 color_endpoint_mode = uvec4(0);
uint ced_pointer = 0;
uint base_cem = 0;
if (num_partitions == 1) {
color_endpoint_mode.x = StreamBits(4);
partition_index = 0;
} else {
partition_index = StreamBits(10);
base_cem = StreamBits(6);
}
uint base_mode = base_cem & 3;
uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight);
uint remaining_bits = 128 - weight_bits - total_bitsread;
uint extra_cem_bits = 0;
if (base_mode > 0) {
switch (num_partitions) {
case 2:
extra_cem_bits += 2;
break;
case 3:
extra_cem_bits += 5;
break;
case 4:
extra_cem_bits += 8;
break;
default:
return;
}
}
remaining_bits -= extra_cem_bits;
uint plane_selector_bits = 0;
if (params.dual_plane) {
plane_selector_bits = 2;
}
remaining_bits -= plane_selector_bits;
if (remaining_bits > 128) {
// Bad data, more remaining bits than 4 bytes
// return early
return;
}
// Read color data...
uint color_data_bits = remaining_bits;
while (remaining_bits > 0) {
int nb = int(min(remaining_bits, 32U));
uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
++ced_pointer;
remaining_bits -= nb;
}
plane_index = int(StreamBits(plane_selector_bits));
if (base_mode > 0) {
uint extra_cem = StreamBits(extra_cem_bits);
uint cem = (extra_cem << 6) | base_cem;
cem >>= 2;
uvec4 C = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
C[i] = (cem & 1);
cem >>= 1;
}
uvec4 M = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
M[i] = cem & 3;
cem >>= 2;
}
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = base_mode;
if (C[i] == 0) {
--color_endpoint_mode[i];
}
color_endpoint_mode[i] <<= 2;
color_endpoint_mode[i] |= M[i];
}
} else if (num_partitions > 1) {
uint cem = base_cem >> 2;
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = cem;
}
}
DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits);
uvec4 endpoints[4][2];
for (uint i = 0; i < num_partitions; i++) {
ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]);
}
texel_weight_data = local_buff;
texel_weight_data = bitfieldReverse(texel_weight_data).wzyx;
uint clear_byte_start =
(GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1;
uint byte_insert = ExtractBits(texel_weight_data, int(clear_byte_start - 1) * 8, 8) &
uint(
((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1));
uint vec_index = (clear_byte_start - 1) >> 2;
texel_weight_data[vec_index] =
bitfieldInsert(texel_weight_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8);
for (uint i = clear_byte_start; i < 16; ++i) {
uint idx = i >> 2;
texel_weight_data[idx] = bitfieldInsert(texel_weight_data[idx], 0, int(i % 4) * 8, 8);
}
texel_flag = true; // use texel "vector" and bit stream in integer decoding
DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane));
UnquantizeTexelWeights(params.dual_plane, params.size);
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
uint local_partition = 0;
if (num_partitions > 1) {
local_partition = Select2DPartition(partition_index, i, j, num_partitions,
(block_dims.y * block_dims.x) < 32);
}
vec4 p;
uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]);
uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]);
uvec4 plane_vec = uvec4(0);
uvec4 weight_vec = uvec4(0);
for (uint c = 0; c < 4; c++) {
if (params.dual_plane && (((plane_index + 1) & 3) == c)) {
plane_vec[c] = 1;
}
weight_vec[c] = unquantized_texel_weights[plane_vec[c]][j * block_dims.x + i];
}
vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64);
p = (Cf / 65535.0);
imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar);
}
}
}
void main() {
uvec3 pos = gl_GlobalInvocationID;
pos.x <<= BYTES_PER_BLOCK_LOG2;
// Read as soon as possible due to its latency
const uint swizzle = SwizzleOffset(pos.xy);
const uint block_y = pos.y >> GOB_SIZE_Y_SHIFT;
uint offset = 0;
offset += pos.z * layer_stride;
offset += (block_y >> block_height) * block_size;
offset += (block_y & block_height_mask) << GOB_SIZE_SHIFT;
offset += (pos.x >> GOB_SIZE_X_SHIFT) << x_shift;
offset += swizzle;
const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1));
if (any(greaterThanEqual(coord, imageSize(dest_image)))) {
return;
}
current_index = 0;
bitsread = 0;
local_buff = astc_data[offset / 16];
DecompressBlock(coord);
}