suyu/src/video_core/renderer_opengl/gl_arb_decompiler.cpp
Lioncash 09fa1d6a73 video_core: Make use of ordered container contains() where applicable
With C++20, we can use the more concise contains() member function
instead of comparing the result of the find() call with the end
iterator.
2020-12-07 16:30:39 -05:00

2124 lines
77 KiB
C++

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cstddef>
#include <string>
#include <string_view>
#include <utility>
#include <variant>
#include <fmt/format.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/renderer_opengl/gl_arb_decompiler.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/shader/registry.h"
#include "video_core/shader/shader_ir.h"
// Predicates in the decompiled code follow the convention that -1 means true and 0 means false.
// GLASM lacks booleans, so they have to be implemented as integers.
// Using -1 for true is useful because both CMP.S and NOT.U can negate it, and CMP.S can be used to
// select between two values, because -1 will be evaluated as true and 0 as false.
namespace OpenGL {
namespace {
using Tegra::Engines::ShaderType;
using Tegra::Shader::Attribute;
using Tegra::Shader::PixelImap;
using Tegra::Shader::Register;
using namespace VideoCommon::Shader;
using Operation = const OperationNode&;
constexpr std::array INTERNAL_FLAG_NAMES = {"ZERO", "SIGN", "CARRY", "OVERFLOW"};
char Swizzle(std::size_t component) {
static constexpr std::string_view SWIZZLE{"xyzw"};
return SWIZZLE.at(component);
}
constexpr bool IsGenericAttribute(Attribute::Index index) {
return index >= Attribute::Index::Attribute_0 && index <= Attribute::Index::Attribute_31;
}
u32 GetGenericAttributeIndex(Attribute::Index index) {
ASSERT(IsGenericAttribute(index));
return static_cast<u32>(index) - static_cast<u32>(Attribute::Index::Attribute_0);
}
std::string_view Modifiers(Operation operation) {
const auto meta = std::get_if<MetaArithmetic>(&operation.GetMeta());
if (meta && meta->precise) {
return ".PREC";
}
return "";
}
std::string_view GetInputFlags(PixelImap attribute) {
switch (attribute) {
case PixelImap::Perspective:
return "";
case PixelImap::Constant:
return "FLAT ";
case PixelImap::ScreenLinear:
return "NOPERSPECTIVE ";
case PixelImap::Unused:
break;
}
UNIMPLEMENTED_MSG("Unknown attribute usage index={}", attribute);
return {};
}
std::string_view ImageType(Tegra::Shader::ImageType image_type) {
switch (image_type) {
case Tegra::Shader::ImageType::Texture1D:
return "1D";
case Tegra::Shader::ImageType::TextureBuffer:
return "BUFFER";
case Tegra::Shader::ImageType::Texture1DArray:
return "ARRAY1D";
case Tegra::Shader::ImageType::Texture2D:
return "2D";
case Tegra::Shader::ImageType::Texture2DArray:
return "ARRAY2D";
case Tegra::Shader::ImageType::Texture3D:
return "3D";
}
UNREACHABLE();
return {};
}
std::string_view StackName(MetaStackClass stack) {
switch (stack) {
case MetaStackClass::Ssy:
return "SSY";
case MetaStackClass::Pbk:
return "PBK";
}
UNREACHABLE();
return "";
};
std::string_view PrimitiveDescription(Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology topology) {
switch (topology) {
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::Points:
return "POINTS";
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::Lines:
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::LineStrip:
return "LINES";
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::LinesAdjacency:
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::LineStripAdjacency:
return "LINES_ADJACENCY";
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::Triangles:
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::TriangleStrip:
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::TriangleFan:
return "TRIANGLES";
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::TrianglesAdjacency:
case Tegra::Engines::Maxwell3D::Regs::PrimitiveTopology::TriangleStripAdjacency:
return "TRIANGLES_ADJACENCY";
default:
UNIMPLEMENTED_MSG("topology={}", topology);
return "POINTS";
}
}
std::string_view TopologyName(Tegra::Shader::OutputTopology topology) {
switch (topology) {
case Tegra::Shader::OutputTopology::PointList:
return "POINTS";
case Tegra::Shader::OutputTopology::LineStrip:
return "LINE_STRIP";
case Tegra::Shader::OutputTopology::TriangleStrip:
return "TRIANGLE_STRIP";
default:
UNIMPLEMENTED_MSG("Unknown output topology: {}", topology);
return "points";
}
}
std::string_view StageInputName(ShaderType stage) {
switch (stage) {
case ShaderType::Vertex:
case ShaderType::Geometry:
return "vertex";
case ShaderType::Fragment:
return "fragment";
case ShaderType::Compute:
return "invocation";
default:
UNREACHABLE();
return "";
}
}
std::string TextureType(const MetaTexture& meta) {
if (meta.sampler.is_buffer) {
return "BUFFER";
}
std::string type;
if (meta.sampler.is_shadow) {
type += "SHADOW";
}
if (meta.sampler.is_array) {
type += "ARRAY";
}
type += [&meta] {
switch (meta.sampler.type) {
case Tegra::Shader::TextureType::Texture1D:
return "1D";
case Tegra::Shader::TextureType::Texture2D:
return "2D";
case Tegra::Shader::TextureType::Texture3D:
return "3D";
case Tegra::Shader::TextureType::TextureCube:
return "CUBE";
}
UNREACHABLE();
return "2D";
}();
return type;
}
class ARBDecompiler final {
public:
explicit ARBDecompiler(const Device& device_, const ShaderIR& ir_, const Registry& registry_,
ShaderType stage_, std::string_view identifier);
std::string Code() const {
return shader_source;
}
private:
void DefineGlobalMemory();
void DeclareHeader();
void DeclareVertex();
void DeclareGeometry();
void DeclareFragment();
void DeclareCompute();
void DeclareInputAttributes();
void DeclareOutputAttributes();
void DeclareLocalMemory();
void DeclareGlobalMemory();
void DeclareConstantBuffers();
void DeclareRegisters();
void DeclareTemporaries();
void DeclarePredicates();
void DeclareInternalFlags();
void InitializeVariables();
void DecompileAST();
void DecompileBranchMode();
void VisitAST(const ASTNode& node);
std::string VisitExpression(const Expr& node);
void VisitBlock(const NodeBlock& bb);
std::string Visit(const Node& node);
std::tuple<std::string, std::string, std::size_t> BuildCoords(Operation);
std::string BuildAoffi(Operation);
std::string GlobalMemoryPointer(const GmemNode& gmem);
void Exit();
std::string Assign(Operation);
std::string Select(Operation);
std::string FClamp(Operation);
std::string FCastHalf0(Operation);
std::string FCastHalf1(Operation);
std::string FSqrt(Operation);
std::string FSwizzleAdd(Operation);
std::string HAdd2(Operation);
std::string HMul2(Operation);
std::string HFma2(Operation);
std::string HAbsolute(Operation);
std::string HNegate(Operation);
std::string HClamp(Operation);
std::string HCastFloat(Operation);
std::string HUnpack(Operation);
std::string HMergeF32(Operation);
std::string HMergeH0(Operation);
std::string HMergeH1(Operation);
std::string HPack2(Operation);
std::string LogicalAssign(Operation);
std::string LogicalPick2(Operation);
std::string LogicalAnd2(Operation);
std::string FloatOrdered(Operation);
std::string FloatUnordered(Operation);
std::string LogicalAddCarry(Operation);
std::string Texture(Operation);
std::string TextureGather(Operation);
std::string TextureQueryDimensions(Operation);
std::string TextureQueryLod(Operation);
std::string TexelFetch(Operation);
std::string TextureGradient(Operation);
std::string ImageLoad(Operation);
std::string ImageStore(Operation);
std::string Branch(Operation);
std::string BranchIndirect(Operation);
std::string PushFlowStack(Operation);
std::string PopFlowStack(Operation);
std::string Exit(Operation);
std::string Discard(Operation);
std::string EmitVertex(Operation);
std::string EndPrimitive(Operation);
std::string InvocationId(Operation);
std::string YNegate(Operation);
std::string ThreadId(Operation);
std::string ShuffleIndexed(Operation);
std::string Barrier(Operation);
std::string MemoryBarrierGroup(Operation);
std::string MemoryBarrierGlobal(Operation);
template <const std::string_view& op>
std::string Unary(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("{}{} {}, {};", op, Modifiers(operation), temporary, Visit(operation[0]));
return temporary;
}
template <const std::string_view& op>
std::string Binary(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("{}{} {}, {}, {};", op, Modifiers(operation), temporary, Visit(operation[0]),
Visit(operation[1]));
return temporary;
}
template <const std::string_view& op>
std::string Trinary(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("{}{} {}, {}, {}, {};", op, Modifiers(operation), temporary, Visit(operation[0]),
Visit(operation[1]), Visit(operation[2]));
return temporary;
}
template <const std::string_view& op, bool unordered>
std::string FloatComparison(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("TRUNC.U.CC RC.x, {};", Binary<op>(operation));
AddLine("MOV.S {}, 0;", temporary);
AddLine("MOV.S {} (NE.x), -1;", temporary);
const std::string op_a = Visit(operation[0]);
const std::string op_b = Visit(operation[1]);
if constexpr (unordered) {
AddLine("SNE.F RC.x, {}, {};", op_a, op_a);
AddLine("TRUNC.U.CC RC.x, RC.x;");
AddLine("MOV.S {} (NE.x), -1;", temporary);
AddLine("SNE.F RC.x, {}, {};", op_b, op_b);
AddLine("TRUNC.U.CC RC.x, RC.x;");
AddLine("MOV.S {} (NE.x), -1;", temporary);
} else if (op == SNE_F) {
AddLine("SNE.F RC.x, {}, {};", op_a, op_a);
AddLine("TRUNC.U.CC RC.x, RC.x;");
AddLine("MOV.S {} (NE.x), 0;", temporary);
AddLine("SNE.F RC.x, {}, {};", op_b, op_b);
AddLine("TRUNC.U.CC RC.x, RC.x;");
AddLine("MOV.S {} (NE.x), 0;", temporary);
}
return temporary;
}
template <const std::string_view& op, bool is_nan>
std::string HalfComparison(Operation operation) {
std::string tmp1 = AllocVectorTemporary();
const std::string tmp2 = AllocVectorTemporary();
const std::string op_a = Visit(operation[0]);
const std::string op_b = Visit(operation[1]);
AddLine("UP2H.F {}, {};", tmp1, op_a);
AddLine("UP2H.F {}, {};", tmp2, op_b);
AddLine("{} {}, {}, {};", op, tmp1, tmp1, tmp2);
AddLine("TRUNC.U.CC RC.xy, {};", tmp1);
AddLine("MOV.S {}.xy, {{0, 0, 0, 0}};", tmp1);
AddLine("MOV.S {}.x (NE.x), -1;", tmp1);
AddLine("MOV.S {}.y (NE.y), -1;", tmp1);
if constexpr (is_nan) {
AddLine("MOVC.F RC.x, {};", op_a);
AddLine("MOV.S {}.x (NAN.x), -1;", tmp1);
AddLine("MOVC.F RC.x, {};", op_b);
AddLine("MOV.S {}.y (NAN.x), -1;", tmp1);
}
return tmp1;
}
template <const std::string_view& op, const std::string_view& type>
std::string AtomicImage(Operation operation) {
const auto& meta = std::get<MetaImage>(operation.GetMeta());
const u32 image_id = device.GetBaseBindings(stage).image + meta.image.index;
const std::size_t num_coords = operation.GetOperandsCount();
const std::size_t num_values = meta.values.size();
const std::string coord = AllocVectorTemporary();
const std::string value = AllocVectorTemporary();
for (std::size_t i = 0; i < num_coords; ++i) {
AddLine("MOV.S {}.{}, {};", coord, Swizzle(i), Visit(operation[i]));
}
for (std::size_t i = 0; i < num_values; ++i) {
AddLine("MOV.F {}.{}, {};", value, Swizzle(i), Visit(meta.values[i]));
}
AddLine("ATOMIM.{}.{} {}.x, {}, {}, image[{}], {};", op, type, coord, value, coord,
image_id, ImageType(meta.image.type));
return fmt::format("{}.x", coord);
}
template <const std::string_view& op, const std::string_view& type>
std::string Atomic(Operation operation) {
std::string temporary = AllocTemporary();
std::string address;
std::string_view opname;
bool robust = false;
if (const auto gmem = std::get_if<GmemNode>(&*operation[0])) {
address = GlobalMemoryPointer(*gmem);
opname = "ATOM";
robust = true;
} else if (const auto smem = std::get_if<SmemNode>(&*operation[0])) {
address = fmt::format("shared_mem[{}]", Visit(smem->GetAddress()));
opname = "ATOMS";
} else {
UNREACHABLE();
return "{0, 0, 0, 0}";
}
if (robust) {
AddLine("IF NE.x;");
}
AddLine("{}.{}.{} {}, {}, {};", opname, op, type, temporary, Visit(operation[1]), address);
if (robust) {
AddLine("ELSE;");
AddLine("MOV.S {}, 0;", temporary);
AddLine("ENDIF;");
}
return temporary;
}
template <char type>
std::string Negate(Operation operation) {
std::string temporary = AllocTemporary();
if constexpr (type == 'F') {
AddLine("MOV.F32 {}, -{};", temporary, Visit(operation[0]));
} else {
AddLine("MOV.{} {}, -{};", type, temporary, Visit(operation[0]));
}
return temporary;
}
template <char type>
std::string Absolute(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("MOV.{} {}, |{}|;", type, temporary, Visit(operation[0]));
return temporary;
}
template <char type>
std::string BitfieldInsert(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("MOV.{} {}.x, {};", type, temporary, Visit(operation[3]));
AddLine("MOV.{} {}.y, {};", type, temporary, Visit(operation[2]));
AddLine("BFI.{} {}.x, {}, {}, {};", type, temporary, temporary, Visit(operation[1]),
Visit(operation[0]));
return fmt::format("{}.x", temporary);
}
template <char type>
std::string BitfieldExtract(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("MOV.{} {}.x, {};", type, temporary, Visit(operation[2]));
AddLine("MOV.{} {}.y, {};", type, temporary, Visit(operation[1]));
AddLine("BFE.{} {}.x, {}, {};", type, temporary, temporary, Visit(operation[0]));
return fmt::format("{}.x", temporary);
}
template <char swizzle>
std::string LocalInvocationId(Operation) {
return fmt::format("invocation.localid.{}", swizzle);
}
template <char swizzle>
std::string WorkGroupId(Operation) {
return fmt::format("invocation.groupid.{}", swizzle);
}
template <char c1, char c2>
std::string ThreadMask(Operation) {
return fmt::format("{}.thread{}{}mask", StageInputName(stage), c1, c2);
}
template <typename... Args>
void AddExpression(std::string_view text, Args&&... args) {
shader_source += fmt::format(text, std::forward<Args>(args)...);
}
template <typename... Args>
void AddLine(std::string_view text, Args&&... args) {
AddExpression(text, std::forward<Args>(args)...);
shader_source += '\n';
}
std::string AllocLongVectorTemporary() {
max_long_temporaries = std::max(max_long_temporaries, num_long_temporaries + 1);
return fmt::format("L{}", num_long_temporaries++);
}
std::string AllocLongTemporary() {
return fmt::format("{}.x", AllocLongVectorTemporary());
}
std::string AllocVectorTemporary() {
max_temporaries = std::max(max_temporaries, num_temporaries + 1);
return fmt::format("T{}", num_temporaries++);
}
std::string AllocTemporary() {
return fmt::format("{}.x", AllocVectorTemporary());
}
void ResetTemporaries() noexcept {
num_temporaries = 0;
num_long_temporaries = 0;
}
const Device& device;
const ShaderIR& ir;
const Registry& registry;
const ShaderType stage;
std::size_t num_temporaries = 0;
std::size_t max_temporaries = 0;
std::size_t num_long_temporaries = 0;
std::size_t max_long_temporaries = 0;
std::map<GlobalMemoryBase, u32> global_memory_names;
std::string shader_source;
static constexpr std::string_view ADD_F32 = "ADD.F32";
static constexpr std::string_view ADD_S = "ADD.S";
static constexpr std::string_view ADD_U = "ADD.U";
static constexpr std::string_view MUL_F32 = "MUL.F32";
static constexpr std::string_view MUL_S = "MUL.S";
static constexpr std::string_view MUL_U = "MUL.U";
static constexpr std::string_view DIV_F32 = "DIV.F32";
static constexpr std::string_view DIV_S = "DIV.S";
static constexpr std::string_view DIV_U = "DIV.U";
static constexpr std::string_view MAD_F32 = "MAD.F32";
static constexpr std::string_view RSQ_F32 = "RSQ.F32";
static constexpr std::string_view COS_F32 = "COS.F32";
static constexpr std::string_view SIN_F32 = "SIN.F32";
static constexpr std::string_view EX2_F32 = "EX2.F32";
static constexpr std::string_view LG2_F32 = "LG2.F32";
static constexpr std::string_view SLT_F = "SLT.F32";
static constexpr std::string_view SLT_S = "SLT.S";
static constexpr std::string_view SLT_U = "SLT.U";
static constexpr std::string_view SEQ_F = "SEQ.F32";
static constexpr std::string_view SEQ_S = "SEQ.S";
static constexpr std::string_view SEQ_U = "SEQ.U";
static constexpr std::string_view SLE_F = "SLE.F32";
static constexpr std::string_view SLE_S = "SLE.S";
static constexpr std::string_view SLE_U = "SLE.U";
static constexpr std::string_view SGT_F = "SGT.F32";
static constexpr std::string_view SGT_S = "SGT.S";
static constexpr std::string_view SGT_U = "SGT.U";
static constexpr std::string_view SNE_F = "SNE.F32";
static constexpr std::string_view SNE_S = "SNE.S";
static constexpr std::string_view SNE_U = "SNE.U";
static constexpr std::string_view SGE_F = "SGE.F32";
static constexpr std::string_view SGE_S = "SGE.S";
static constexpr std::string_view SGE_U = "SGE.U";
static constexpr std::string_view AND_S = "AND.S";
static constexpr std::string_view AND_U = "AND.U";
static constexpr std::string_view TRUNC_F = "TRUNC.F";
static constexpr std::string_view TRUNC_S = "TRUNC.S";
static constexpr std::string_view TRUNC_U = "TRUNC.U";
static constexpr std::string_view SHL_S = "SHL.S";
static constexpr std::string_view SHL_U = "SHL.U";
static constexpr std::string_view SHR_S = "SHR.S";
static constexpr std::string_view SHR_U = "SHR.U";
static constexpr std::string_view OR_S = "OR.S";
static constexpr std::string_view OR_U = "OR.U";
static constexpr std::string_view XOR_S = "XOR.S";
static constexpr std::string_view XOR_U = "XOR.U";
static constexpr std::string_view NOT_S = "NOT.S";
static constexpr std::string_view NOT_U = "NOT.U";
static constexpr std::string_view BTC_S = "BTC.S";
static constexpr std::string_view BTC_U = "BTC.U";
static constexpr std::string_view BTFM_S = "BTFM.S";
static constexpr std::string_view BTFM_U = "BTFM.U";
static constexpr std::string_view ROUND_F = "ROUND.F";
static constexpr std::string_view CEIL_F = "CEIL.F";
static constexpr std::string_view FLR_F = "FLR.F";
static constexpr std::string_view I2F_S = "I2F.S";
static constexpr std::string_view I2F_U = "I2F.U";
static constexpr std::string_view MIN_F = "MIN.F";
static constexpr std::string_view MIN_S = "MIN.S";
static constexpr std::string_view MIN_U = "MIN.U";
static constexpr std::string_view MAX_F = "MAX.F";
static constexpr std::string_view MAX_S = "MAX.S";
static constexpr std::string_view MAX_U = "MAX.U";
static constexpr std::string_view MOV_U = "MOV.U";
static constexpr std::string_view TGBALLOT_U = "TGBALLOT.U";
static constexpr std::string_view TGALL_U = "TGALL.U";
static constexpr std::string_view TGANY_U = "TGANY.U";
static constexpr std::string_view TGEQ_U = "TGEQ.U";
static constexpr std::string_view EXCH = "EXCH";
static constexpr std::string_view ADD = "ADD";
static constexpr std::string_view MIN = "MIN";
static constexpr std::string_view MAX = "MAX";
static constexpr std::string_view AND = "AND";
static constexpr std::string_view OR = "OR";
static constexpr std::string_view XOR = "XOR";
static constexpr std::string_view U32 = "U32";
static constexpr std::string_view S32 = "S32";
static constexpr std::size_t NUM_ENTRIES = static_cast<std::size_t>(OperationCode::Amount);
using DecompilerType = std::string (ARBDecompiler::*)(Operation);
static constexpr std::array<DecompilerType, NUM_ENTRIES> OPERATION_DECOMPILERS = {
&ARBDecompiler::Assign,
&ARBDecompiler::Select,
&ARBDecompiler::Binary<ADD_F32>,
&ARBDecompiler::Binary<MUL_F32>,
&ARBDecompiler::Binary<DIV_F32>,
&ARBDecompiler::Trinary<MAD_F32>,
&ARBDecompiler::Negate<'F'>,
&ARBDecompiler::Absolute<'F'>,
&ARBDecompiler::FClamp,
&ARBDecompiler::FCastHalf0,
&ARBDecompiler::FCastHalf1,
&ARBDecompiler::Binary<MIN_F>,
&ARBDecompiler::Binary<MAX_F>,
&ARBDecompiler::Unary<COS_F32>,
&ARBDecompiler::Unary<SIN_F32>,
&ARBDecompiler::Unary<EX2_F32>,
&ARBDecompiler::Unary<LG2_F32>,
&ARBDecompiler::Unary<RSQ_F32>,
&ARBDecompiler::FSqrt,
&ARBDecompiler::Unary<ROUND_F>,
&ARBDecompiler::Unary<FLR_F>,
&ARBDecompiler::Unary<CEIL_F>,
&ARBDecompiler::Unary<TRUNC_F>,
&ARBDecompiler::Unary<I2F_S>,
&ARBDecompiler::Unary<I2F_U>,
&ARBDecompiler::FSwizzleAdd,
&ARBDecompiler::Binary<ADD_S>,
&ARBDecompiler::Binary<MUL_S>,
&ARBDecompiler::Binary<DIV_S>,
&ARBDecompiler::Negate<'S'>,
&ARBDecompiler::Absolute<'S'>,
&ARBDecompiler::Binary<MIN_S>,
&ARBDecompiler::Binary<MAX_S>,
&ARBDecompiler::Unary<TRUNC_S>,
&ARBDecompiler::Unary<MOV_U>,
&ARBDecompiler::Binary<SHL_S>,
&ARBDecompiler::Binary<SHR_U>,
&ARBDecompiler::Binary<SHR_S>,
&ARBDecompiler::Binary<AND_S>,
&ARBDecompiler::Binary<OR_S>,
&ARBDecompiler::Binary<XOR_S>,
&ARBDecompiler::Unary<NOT_S>,
&ARBDecompiler::BitfieldInsert<'S'>,
&ARBDecompiler::BitfieldExtract<'S'>,
&ARBDecompiler::Unary<BTC_S>,
&ARBDecompiler::Unary<BTFM_S>,
&ARBDecompiler::Binary<ADD_U>,
&ARBDecompiler::Binary<MUL_U>,
&ARBDecompiler::Binary<DIV_U>,
&ARBDecompiler::Binary<MIN_U>,
&ARBDecompiler::Binary<MAX_U>,
&ARBDecompiler::Unary<TRUNC_U>,
&ARBDecompiler::Unary<MOV_U>,
&ARBDecompiler::Binary<SHL_U>,
&ARBDecompiler::Binary<SHR_U>,
&ARBDecompiler::Binary<SHR_U>,
&ARBDecompiler::Binary<AND_U>,
&ARBDecompiler::Binary<OR_U>,
&ARBDecompiler::Binary<XOR_U>,
&ARBDecompiler::Unary<NOT_U>,
&ARBDecompiler::BitfieldInsert<'U'>,
&ARBDecompiler::BitfieldExtract<'U'>,
&ARBDecompiler::Unary<BTC_U>,
&ARBDecompiler::Unary<BTFM_U>,
&ARBDecompiler::HAdd2,
&ARBDecompiler::HMul2,
&ARBDecompiler::HFma2,
&ARBDecompiler::HAbsolute,
&ARBDecompiler::HNegate,
&ARBDecompiler::HClamp,
&ARBDecompiler::HCastFloat,
&ARBDecompiler::HUnpack,
&ARBDecompiler::HMergeF32,
&ARBDecompiler::HMergeH0,
&ARBDecompiler::HMergeH1,
&ARBDecompiler::HPack2,
&ARBDecompiler::LogicalAssign,
&ARBDecompiler::Binary<AND_U>,
&ARBDecompiler::Binary<OR_U>,
&ARBDecompiler::Binary<XOR_U>,
&ARBDecompiler::Unary<NOT_U>,
&ARBDecompiler::LogicalPick2,
&ARBDecompiler::LogicalAnd2,
&ARBDecompiler::FloatComparison<SLT_F, false>,
&ARBDecompiler::FloatComparison<SEQ_F, false>,
&ARBDecompiler::FloatComparison<SLE_F, false>,
&ARBDecompiler::FloatComparison<SGT_F, false>,
&ARBDecompiler::FloatComparison<SNE_F, false>,
&ARBDecompiler::FloatComparison<SGE_F, false>,
&ARBDecompiler::FloatOrdered,
&ARBDecompiler::FloatUnordered,
&ARBDecompiler::FloatComparison<SLT_F, true>,
&ARBDecompiler::FloatComparison<SEQ_F, true>,
&ARBDecompiler::FloatComparison<SLE_F, true>,
&ARBDecompiler::FloatComparison<SGT_F, true>,
&ARBDecompiler::FloatComparison<SNE_F, true>,
&ARBDecompiler::FloatComparison<SGE_F, true>,
&ARBDecompiler::Binary<SLT_S>,
&ARBDecompiler::Binary<SEQ_S>,
&ARBDecompiler::Binary<SLE_S>,
&ARBDecompiler::Binary<SGT_S>,
&ARBDecompiler::Binary<SNE_S>,
&ARBDecompiler::Binary<SGE_S>,
&ARBDecompiler::Binary<SLT_U>,
&ARBDecompiler::Binary<SEQ_U>,
&ARBDecompiler::Binary<SLE_U>,
&ARBDecompiler::Binary<SGT_U>,
&ARBDecompiler::Binary<SNE_U>,
&ARBDecompiler::Binary<SGE_U>,
&ARBDecompiler::LogicalAddCarry,
&ARBDecompiler::HalfComparison<SLT_F, false>,
&ARBDecompiler::HalfComparison<SEQ_F, false>,
&ARBDecompiler::HalfComparison<SLE_F, false>,
&ARBDecompiler::HalfComparison<SGT_F, false>,
&ARBDecompiler::HalfComparison<SNE_F, false>,
&ARBDecompiler::HalfComparison<SGE_F, false>,
&ARBDecompiler::HalfComparison<SLT_F, true>,
&ARBDecompiler::HalfComparison<SEQ_F, true>,
&ARBDecompiler::HalfComparison<SLE_F, true>,
&ARBDecompiler::HalfComparison<SGT_F, true>,
&ARBDecompiler::HalfComparison<SNE_F, true>,
&ARBDecompiler::HalfComparison<SGE_F, true>,
&ARBDecompiler::Texture,
&ARBDecompiler::Texture,
&ARBDecompiler::TextureGather,
&ARBDecompiler::TextureQueryDimensions,
&ARBDecompiler::TextureQueryLod,
&ARBDecompiler::TexelFetch,
&ARBDecompiler::TextureGradient,
&ARBDecompiler::ImageLoad,
&ARBDecompiler::ImageStore,
&ARBDecompiler::AtomicImage<ADD, U32>,
&ARBDecompiler::AtomicImage<AND, U32>,
&ARBDecompiler::AtomicImage<OR, U32>,
&ARBDecompiler::AtomicImage<XOR, U32>,
&ARBDecompiler::AtomicImage<EXCH, U32>,
&ARBDecompiler::Atomic<EXCH, U32>,
&ARBDecompiler::Atomic<ADD, U32>,
&ARBDecompiler::Atomic<MIN, U32>,
&ARBDecompiler::Atomic<MAX, U32>,
&ARBDecompiler::Atomic<AND, U32>,
&ARBDecompiler::Atomic<OR, U32>,
&ARBDecompiler::Atomic<XOR, U32>,
&ARBDecompiler::Atomic<EXCH, S32>,
&ARBDecompiler::Atomic<ADD, S32>,
&ARBDecompiler::Atomic<MIN, S32>,
&ARBDecompiler::Atomic<MAX, S32>,
&ARBDecompiler::Atomic<AND, S32>,
&ARBDecompiler::Atomic<OR, S32>,
&ARBDecompiler::Atomic<XOR, S32>,
&ARBDecompiler::Atomic<ADD, U32>,
&ARBDecompiler::Atomic<MIN, U32>,
&ARBDecompiler::Atomic<MAX, U32>,
&ARBDecompiler::Atomic<AND, U32>,
&ARBDecompiler::Atomic<OR, U32>,
&ARBDecompiler::Atomic<XOR, U32>,
&ARBDecompiler::Atomic<ADD, S32>,
&ARBDecompiler::Atomic<MIN, S32>,
&ARBDecompiler::Atomic<MAX, S32>,
&ARBDecompiler::Atomic<AND, S32>,
&ARBDecompiler::Atomic<OR, S32>,
&ARBDecompiler::Atomic<XOR, S32>,
&ARBDecompiler::Branch,
&ARBDecompiler::BranchIndirect,
&ARBDecompiler::PushFlowStack,
&ARBDecompiler::PopFlowStack,
&ARBDecompiler::Exit,
&ARBDecompiler::Discard,
&ARBDecompiler::EmitVertex,
&ARBDecompiler::EndPrimitive,
&ARBDecompiler::InvocationId,
&ARBDecompiler::YNegate,
&ARBDecompiler::LocalInvocationId<'x'>,
&ARBDecompiler::LocalInvocationId<'y'>,
&ARBDecompiler::LocalInvocationId<'z'>,
&ARBDecompiler::WorkGroupId<'x'>,
&ARBDecompiler::WorkGroupId<'y'>,
&ARBDecompiler::WorkGroupId<'z'>,
&ARBDecompiler::Unary<TGBALLOT_U>,
&ARBDecompiler::Unary<TGALL_U>,
&ARBDecompiler::Unary<TGANY_U>,
&ARBDecompiler::Unary<TGEQ_U>,
&ARBDecompiler::ThreadId,
&ARBDecompiler::ThreadMask<'e', 'q'>,
&ARBDecompiler::ThreadMask<'g', 'e'>,
&ARBDecompiler::ThreadMask<'g', 't'>,
&ARBDecompiler::ThreadMask<'l', 'e'>,
&ARBDecompiler::ThreadMask<'l', 't'>,
&ARBDecompiler::ShuffleIndexed,
&ARBDecompiler::Barrier,
&ARBDecompiler::MemoryBarrierGroup,
&ARBDecompiler::MemoryBarrierGlobal,
};
};
ARBDecompiler::ARBDecompiler(const Device& device_, const ShaderIR& ir_, const Registry& registry_,
ShaderType stage_, std::string_view identifier)
: device{device_}, ir{ir_}, registry{registry_}, stage{stage_} {
DefineGlobalMemory();
AddLine("TEMP RC;");
AddLine("TEMP FSWZA[4];");
AddLine("TEMP FSWZB[4];");
if (ir.IsDecompiled()) {
DecompileAST();
} else {
DecompileBranchMode();
}
AddLine("END");
const std::string code = std::move(shader_source);
DeclareHeader();
DeclareVertex();
DeclareGeometry();
DeclareFragment();
DeclareCompute();
DeclareInputAttributes();
DeclareOutputAttributes();
DeclareLocalMemory();
DeclareGlobalMemory();
DeclareConstantBuffers();
DeclareRegisters();
DeclareTemporaries();
DeclarePredicates();
DeclareInternalFlags();
shader_source += code;
}
std::string_view HeaderStageName(ShaderType stage) {
switch (stage) {
case ShaderType::Vertex:
return "vp";
case ShaderType::Geometry:
return "gp";
case ShaderType::Fragment:
return "fp";
case ShaderType::Compute:
return "cp";
default:
UNREACHABLE();
return "";
}
}
void ARBDecompiler::DefineGlobalMemory() {
u32 binding = 0;
for (const auto& pair : ir.GetGlobalMemory()) {
const GlobalMemoryBase base = pair.first;
global_memory_names.emplace(base, binding);
++binding;
}
}
void ARBDecompiler::DeclareHeader() {
AddLine("!!NV{}5.0", HeaderStageName(stage));
// Enabling this allows us to cheat on some instructions like TXL with SHADOWARRAY2D
AddLine("OPTION NV_internal;");
AddLine("OPTION NV_gpu_program_fp64;");
AddLine("OPTION NV_shader_thread_group;");
if (ir.UsesWarps() && device.HasWarpIntrinsics()) {
AddLine("OPTION NV_shader_thread_shuffle;");
}
if (stage == ShaderType::Vertex) {
if (device.HasNvViewportArray2()) {
AddLine("OPTION NV_viewport_array2;");
}
}
if (stage == ShaderType::Fragment) {
AddLine("OPTION ARB_draw_buffers;");
}
if (device.HasImageLoadFormatted()) {
AddLine("OPTION EXT_shader_image_load_formatted;");
}
}
void ARBDecompiler::DeclareVertex() {
if (stage != ShaderType::Vertex) {
return;
}
AddLine("OUTPUT result_clip[] = {{ result.clip[0..7] }};");
}
void ARBDecompiler::DeclareGeometry() {
if (stage != ShaderType::Geometry) {
return;
}
const auto& info = registry.GetGraphicsInfo();
const auto& header = ir.GetHeader();
AddLine("PRIMITIVE_IN {};", PrimitiveDescription(info.primitive_topology));
AddLine("PRIMITIVE_OUT {};", TopologyName(header.common3.output_topology));
AddLine("VERTICES_OUT {};", header.common4.max_output_vertices.Value());
AddLine("ATTRIB vertex_position = vertex.position;");
}
void ARBDecompiler::DeclareFragment() {
if (stage != ShaderType::Fragment) {
return;
}
AddLine("OUTPUT result_color7 = result.color[7];");
AddLine("OUTPUT result_color6 = result.color[6];");
AddLine("OUTPUT result_color5 = result.color[5];");
AddLine("OUTPUT result_color4 = result.color[4];");
AddLine("OUTPUT result_color3 = result.color[3];");
AddLine("OUTPUT result_color2 = result.color[2];");
AddLine("OUTPUT result_color1 = result.color[1];");
AddLine("OUTPUT result_color0 = result.color;");
}
void ARBDecompiler::DeclareCompute() {
if (stage != ShaderType::Compute) {
return;
}
const ComputeInfo& info = registry.GetComputeInfo();
AddLine("GROUP_SIZE {} {} {};", info.workgroup_size[0], info.workgroup_size[1],
info.workgroup_size[2]);
if (info.shared_memory_size_in_words == 0) {
return;
}
const u32 limit = device.GetMaxComputeSharedMemorySize();
u32 size_in_bytes = info.shared_memory_size_in_words * 4;
if (size_in_bytes > limit) {
LOG_ERROR(Render_OpenGL, "Shared memory size {} is clamped to host's limit {}",
size_in_bytes, limit);
size_in_bytes = limit;
}
AddLine("SHARED_MEMORY {};", size_in_bytes);
AddLine("SHARED shared_mem[] = {{program.sharedmem}};");
}
void ARBDecompiler::DeclareInputAttributes() {
if (stage == ShaderType::Compute) {
return;
}
const std::string_view stage_name = StageInputName(stage);
for (const auto attribute : ir.GetInputAttributes()) {
if (!IsGenericAttribute(attribute)) {
continue;
}
const u32 index = GetGenericAttributeIndex(attribute);
std::string_view suffix;
if (stage == ShaderType::Fragment) {
const auto input_mode{ir.GetHeader().ps.GetPixelImap(index)};
if (input_mode == PixelImap::Unused) {
return;
}
suffix = GetInputFlags(input_mode);
}
AddLine("{}ATTRIB in_attr{}[] = {{ {}.attrib[{}..{}] }};", suffix, index, stage_name, index,
index);
}
}
void ARBDecompiler::DeclareOutputAttributes() {
if (stage == ShaderType::Compute) {
return;
}
for (const auto attribute : ir.GetOutputAttributes()) {
if (!IsGenericAttribute(attribute)) {
continue;
}
const u32 index = GetGenericAttributeIndex(attribute);
AddLine("OUTPUT out_attr{}[] = {{ result.attrib[{}..{}] }};", index, index, index);
}
}
void ARBDecompiler::DeclareLocalMemory() {
u64 size = 0;
if (stage == ShaderType::Compute) {
size = registry.GetComputeInfo().local_memory_size_in_words * 4ULL;
} else {
size = ir.GetHeader().GetLocalMemorySize();
}
if (size == 0) {
return;
}
const u64 element_count = Common::AlignUp(size, 4) / 4;
AddLine("TEMP lmem[{}];", element_count);
}
void ARBDecompiler::DeclareGlobalMemory() {
const size_t num_entries = ir.GetGlobalMemory().size();
if (num_entries > 0) {
AddLine("PARAM c[{}] = {{ program.local[0..{}] }};", num_entries, num_entries - 1);
}
}
void ARBDecompiler::DeclareConstantBuffers() {
u32 binding = 0;
for (const auto& cbuf : ir.GetConstantBuffers()) {
AddLine("CBUFFER cbuf{}[] = {{ program.buffer[{}] }};", cbuf.first, binding);
++binding;
}
}
void ARBDecompiler::DeclareRegisters() {
for (const u32 gpr : ir.GetRegisters()) {
AddLine("TEMP R{};", gpr);
}
}
void ARBDecompiler::DeclareTemporaries() {
for (std::size_t i = 0; i < max_temporaries; ++i) {
AddLine("TEMP T{};", i);
}
for (std::size_t i = 0; i < max_long_temporaries; ++i) {
AddLine("LONG TEMP L{};", i);
}
}
void ARBDecompiler::DeclarePredicates() {
for (const Tegra::Shader::Pred pred : ir.GetPredicates()) {
AddLine("TEMP P{};", static_cast<u64>(pred));
}
}
void ARBDecompiler::DeclareInternalFlags() {
for (const char* name : INTERNAL_FLAG_NAMES) {
AddLine("TEMP {};", name);
}
}
void ARBDecompiler::InitializeVariables() {
AddLine("MOV.F32 FSWZA[0], -1;");
AddLine("MOV.F32 FSWZA[1], 1;");
AddLine("MOV.F32 FSWZA[2], -1;");
AddLine("MOV.F32 FSWZA[3], 0;");
AddLine("MOV.F32 FSWZB[0], -1;");
AddLine("MOV.F32 FSWZB[1], -1;");
AddLine("MOV.F32 FSWZB[2], 1;");
AddLine("MOV.F32 FSWZB[3], -1;");
if (stage == ShaderType::Vertex || stage == ShaderType::Geometry) {
AddLine("MOV.F result.position, {{0, 0, 0, 1}};");
}
for (const auto attribute : ir.GetOutputAttributes()) {
if (!IsGenericAttribute(attribute)) {
continue;
}
const u32 index = GetGenericAttributeIndex(attribute);
AddLine("MOV.F result.attrib[{}], {{0, 0, 0, 1}};", index);
}
for (const u32 gpr : ir.GetRegisters()) {
AddLine("MOV.F R{}, {{0, 0, 0, 0}};", gpr);
}
for (const Tegra::Shader::Pred pred : ir.GetPredicates()) {
AddLine("MOV.U P{}, {{0, 0, 0, 0}};", static_cast<u64>(pred));
}
}
void ARBDecompiler::DecompileAST() {
const u32 num_flow_variables = ir.GetASTNumVariables();
for (u32 i = 0; i < num_flow_variables; ++i) {
AddLine("TEMP F{};", i);
}
for (u32 i = 0; i < num_flow_variables; ++i) {
AddLine("MOV.U F{}, {{0, 0, 0, 0}};", i);
}
InitializeVariables();
VisitAST(ir.GetASTProgram());
}
void ARBDecompiler::DecompileBranchMode() {
static constexpr u32 FLOW_STACK_SIZE = 20;
if (!ir.IsFlowStackDisabled()) {
AddLine("TEMP SSY[{}];", FLOW_STACK_SIZE);
AddLine("TEMP PBK[{}];", FLOW_STACK_SIZE);
AddLine("TEMP SSY_TOP;");
AddLine("TEMP PBK_TOP;");
}
AddLine("TEMP PC;");
if (!ir.IsFlowStackDisabled()) {
AddLine("MOV.U SSY_TOP.x, 0;");
AddLine("MOV.U PBK_TOP.x, 0;");
}
InitializeVariables();
const auto basic_block_end = ir.GetBasicBlocks().end();
auto basic_block_it = ir.GetBasicBlocks().begin();
const u32 first_address = basic_block_it->first;
AddLine("MOV.U PC.x, {};", first_address);
AddLine("REP;");
std::size_t num_blocks = 0;
while (basic_block_it != basic_block_end) {
const auto& [address, bb] = *basic_block_it;
++num_blocks;
AddLine("SEQ.S.CC RC.x, PC.x, {};", address);
AddLine("IF NE.x;");
VisitBlock(bb);
++basic_block_it;
if (basic_block_it != basic_block_end) {
const auto op = std::get_if<OperationNode>(&*bb[bb.size() - 1]);
if (!op || op->GetCode() != OperationCode::Branch) {
const u32 next_address = basic_block_it->first;
AddLine("MOV.U PC.x, {};", next_address);
AddLine("CONT;");
}
}
AddLine("ELSE;");
}
AddLine("RET;");
while (num_blocks--) {
AddLine("ENDIF;");
}
AddLine("ENDREP;");
}
void ARBDecompiler::VisitAST(const ASTNode& node) {
if (const auto ast = std::get_if<ASTProgram>(&*node->GetInnerData())) {
for (ASTNode current = ast->nodes.GetFirst(); current; current = current->GetNext()) {
VisitAST(current);
}
} else if (const auto if_then = std::get_if<ASTIfThen>(&*node->GetInnerData())) {
const std::string condition = VisitExpression(if_then->condition);
ResetTemporaries();
AddLine("MOVC.U RC.x, {};", condition);
AddLine("IF NE.x;");
for (ASTNode current = if_then->nodes.GetFirst(); current; current = current->GetNext()) {
VisitAST(current);
}
AddLine("ENDIF;");
} else if (const auto if_else = std::get_if<ASTIfElse>(&*node->GetInnerData())) {
AddLine("ELSE;");
for (ASTNode current = if_else->nodes.GetFirst(); current; current = current->GetNext()) {
VisitAST(current);
}
} else if (const auto decoded = std::get_if<ASTBlockDecoded>(&*node->GetInnerData())) {
VisitBlock(decoded->nodes);
} else if (const auto var_set = std::get_if<ASTVarSet>(&*node->GetInnerData())) {
AddLine("MOV.U F{}, {};", var_set->index, VisitExpression(var_set->condition));
ResetTemporaries();
} else if (const auto do_while = std::get_if<ASTDoWhile>(&*node->GetInnerData())) {
const std::string condition = VisitExpression(do_while->condition);
ResetTemporaries();
AddLine("REP;");
for (ASTNode current = do_while->nodes.GetFirst(); current; current = current->GetNext()) {
VisitAST(current);
}
AddLine("MOVC.U RC.x, {};", condition);
AddLine("BRK (NE.x);");
AddLine("ENDREP;");
} else if (const auto ast_return = std::get_if<ASTReturn>(&*node->GetInnerData())) {
const bool is_true = ExprIsTrue(ast_return->condition);
if (!is_true) {
AddLine("MOVC.U RC.x, {};", VisitExpression(ast_return->condition));
AddLine("IF NE.x;");
ResetTemporaries();
}
if (ast_return->kills) {
AddLine("KIL TR;");
} else {
Exit();
}
if (!is_true) {
AddLine("ENDIF;");
}
} else if (const auto ast_break = std::get_if<ASTBreak>(&*node->GetInnerData())) {
if (ExprIsTrue(ast_break->condition)) {
AddLine("BRK;");
} else {
AddLine("MOVC.U RC.x, {};", VisitExpression(ast_break->condition));
AddLine("BRK (NE.x);");
ResetTemporaries();
}
} else if (std::holds_alternative<ASTLabel>(*node->GetInnerData())) {
// Nothing to do
} else {
UNREACHABLE();
}
}
std::string ARBDecompiler::VisitExpression(const Expr& node) {
if (const auto expr = std::get_if<ExprAnd>(&*node)) {
std::string result = AllocTemporary();
AddLine("AND.U {}, {}, {};", result, VisitExpression(expr->operand1),
VisitExpression(expr->operand2));
return result;
}
if (const auto expr = std::get_if<ExprOr>(&*node)) {
std::string result = AllocTemporary();
AddLine("OR.U {}, {}, {};", result, VisitExpression(expr->operand1),
VisitExpression(expr->operand2));
return result;
}
if (const auto expr = std::get_if<ExprNot>(&*node)) {
std::string result = AllocTemporary();
AddLine("CMP.S {}, {}, 0, -1;", result, VisitExpression(expr->operand1));
return result;
}
if (const auto expr = std::get_if<ExprPredicate>(&*node)) {
return fmt::format("P{}.x", static_cast<u64>(expr->predicate));
}
if (const auto expr = std::get_if<ExprCondCode>(&*node)) {
return Visit(ir.GetConditionCode(expr->cc));
}
if (const auto expr = std::get_if<ExprVar>(&*node)) {
return fmt::format("F{}.x", expr->var_index);
}
if (const auto expr = std::get_if<ExprBoolean>(&*node)) {
return expr->value ? "0xffffffff" : "0";
}
if (const auto expr = std::get_if<ExprGprEqual>(&*node)) {
std::string result = AllocTemporary();
AddLine("SEQ.U {}, R{}.x, {};", result, expr->gpr, expr->value);
return result;
}
UNREACHABLE();
return "0";
}
void ARBDecompiler::VisitBlock(const NodeBlock& bb) {
for (const auto& node : bb) {
Visit(node);
}
}
std::string ARBDecompiler::Visit(const Node& node) {
if (const auto operation = std::get_if<OperationNode>(&*node)) {
if (const auto amend_index = operation->GetAmendIndex()) {
Visit(ir.GetAmendNode(*amend_index));
}
const std::size_t index = static_cast<std::size_t>(operation->GetCode());
if (index >= OPERATION_DECOMPILERS.size()) {
UNREACHABLE_MSG("Out of bounds operation: {}", index);
return {};
}
const auto decompiler = OPERATION_DECOMPILERS[index];
if (decompiler == nullptr) {
UNREACHABLE_MSG("Undefined operation: {}", index);
return {};
}
return (this->*decompiler)(*operation);
}
if (const auto gpr = std::get_if<GprNode>(&*node)) {
const u32 index = gpr->GetIndex();
if (index == Register::ZeroIndex) {
return "{0, 0, 0, 0}.x";
}
return fmt::format("R{}.x", index);
}
if (const auto cv = std::get_if<CustomVarNode>(&*node)) {
return fmt::format("CV{}.x", cv->GetIndex());
}
if (const auto immediate = std::get_if<ImmediateNode>(&*node)) {
std::string temporary = AllocTemporary();
AddLine("MOV.U {}, {};", temporary, immediate->GetValue());
return temporary;
}
if (const auto predicate = std::get_if<PredicateNode>(&*node)) {
std::string temporary = AllocTemporary();
switch (const auto index = predicate->GetIndex(); index) {
case Tegra::Shader::Pred::UnusedIndex:
AddLine("MOV.S {}, -1;", temporary);
break;
case Tegra::Shader::Pred::NeverExecute:
AddLine("MOV.S {}, 0;", temporary);
break;
default:
AddLine("MOV.S {}, P{}.x;", temporary, static_cast<u64>(index));
break;
}
if (predicate->IsNegated()) {
AddLine("CMP.S {}, {}, 0, -1;", temporary, temporary);
}
return temporary;
}
if (const auto abuf = std::get_if<AbufNode>(&*node)) {
if (abuf->IsPhysicalBuffer()) {
UNIMPLEMENTED_MSG("Physical buffers are not implemented");
return "{0, 0, 0, 0}.x";
}
const Attribute::Index index = abuf->GetIndex();
const u32 element = abuf->GetElement();
const char swizzle = Swizzle(element);
switch (index) {
case Attribute::Index::Position: {
if (stage == ShaderType::Geometry) {
return fmt::format("{}_position[{}].{}", StageInputName(stage),
Visit(abuf->GetBuffer()), swizzle);
} else {
return fmt::format("{}.position.{}", StageInputName(stage), swizzle);
}
}
case Attribute::Index::TessCoordInstanceIDVertexID:
ASSERT(stage == ShaderType::Vertex);
switch (element) {
case 2:
return "vertex.instance";
case 3:
return "vertex.id";
}
UNIMPLEMENTED_MSG("Unmanaged TessCoordInstanceIDVertexID element={}", element);
break;
case Attribute::Index::PointCoord:
switch (element) {
case 0:
return "fragment.pointcoord.x";
case 1:
return "fragment.pointcoord.y";
}
UNIMPLEMENTED();
break;
case Attribute::Index::FrontFacing: {
ASSERT(stage == ShaderType::Fragment);
ASSERT(element == 3);
const std::string temporary = AllocVectorTemporary();
AddLine("SGT.S RC.x, fragment.facing, {{0, 0, 0, 0}};");
AddLine("MOV.U.CC RC.x, -RC;");
AddLine("MOV.S {}.x, 0;", temporary);
AddLine("MOV.S {}.x (NE.x), -1;", temporary);
return fmt::format("{}.x", temporary);
}
default:
if (IsGenericAttribute(index)) {
if (stage == ShaderType::Geometry) {
return fmt::format("in_attr{}[{}][0].{}", GetGenericAttributeIndex(index),
Visit(abuf->GetBuffer()), swizzle);
} else {
return fmt::format("{}.attrib[{}].{}", StageInputName(stage),
GetGenericAttributeIndex(index), swizzle);
}
}
UNIMPLEMENTED_MSG("Unimplemented input attribute={}", index);
break;
}
return "{0, 0, 0, 0}.x";
}
if (const auto cbuf = std::get_if<CbufNode>(&*node)) {
std::string offset_string;
const auto& offset = cbuf->GetOffset();
if (const auto imm = std::get_if<ImmediateNode>(&*offset)) {
offset_string = std::to_string(imm->GetValue());
} else {
offset_string = Visit(offset);
}
std::string temporary = AllocTemporary();
AddLine("LDC.F32 {}, cbuf{}[{}];", temporary, cbuf->GetIndex(), offset_string);
return temporary;
}
if (const auto gmem = std::get_if<GmemNode>(&*node)) {
std::string temporary = AllocTemporary();
AddLine("MOV {}, 0;", temporary);
AddLine("LOAD.U32 {} (NE.x), {};", temporary, GlobalMemoryPointer(*gmem));
return temporary;
}
if (const auto lmem = std::get_if<LmemNode>(&*node)) {
std::string temporary = Visit(lmem->GetAddress());
AddLine("SHR.U {}, {}, 2;", temporary, temporary);
AddLine("MOV.U {}, lmem[{}].x;", temporary, temporary);
return temporary;
}
if (const auto smem = std::get_if<SmemNode>(&*node)) {
std::string temporary = Visit(smem->GetAddress());
AddLine("LDS.U32 {}, shared_mem[{}];", temporary, temporary);
return temporary;
}
if (const auto internal_flag = std::get_if<InternalFlagNode>(&*node)) {
const std::size_t index = static_cast<std::size_t>(internal_flag->GetFlag());
return fmt::format("{}.x", INTERNAL_FLAG_NAMES[index]);
}
if (const auto conditional = std::get_if<ConditionalNode>(&*node)) {
if (const auto amend_index = conditional->GetAmendIndex()) {
Visit(ir.GetAmendNode(*amend_index));
}
AddLine("MOVC.U RC.x, {};", Visit(conditional->GetCondition()));
AddLine("IF NE.x;");
VisitBlock(conditional->GetCode());
AddLine("ENDIF;");
return {};
}
if ([[maybe_unused]] const auto cmt = std::get_if<CommentNode>(&*node)) {
// Uncommenting this will generate invalid code. GLASM lacks comments.
// AddLine("// {}", cmt->GetText());
return {};
}
UNIMPLEMENTED();
return {};
}
std::tuple<std::string, std::string, std::size_t> ARBDecompiler::BuildCoords(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
UNIMPLEMENTED_IF(meta.sampler.is_indexed);
const bool is_extended = meta.sampler.is_shadow && meta.sampler.is_array &&
meta.sampler.type == Tegra::Shader::TextureType::TextureCube;
const std::size_t count = operation.GetOperandsCount();
std::string temporary = AllocVectorTemporary();
std::size_t i = 0;
for (; i < count; ++i) {
AddLine("MOV.F {}.{}, {};", temporary, Swizzle(i), Visit(operation[i]));
}
if (meta.sampler.is_array) {
AddLine("I2F.S {}.{}, {};", temporary, Swizzle(i), Visit(meta.array));
++i;
}
if (meta.sampler.is_shadow) {
std::string compare = Visit(meta.depth_compare);
if (is_extended) {
ASSERT(i == 4);
std::string extra_coord = AllocVectorTemporary();
AddLine("MOV.F {}.x, {};", extra_coord, compare);
return {fmt::format("{}, {}", temporary, extra_coord), extra_coord, 0};
}
AddLine("MOV.F {}.{}, {};", temporary, Swizzle(i), compare);
++i;
}
return {temporary, temporary, i};
}
std::string ARBDecompiler::BuildAoffi(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
if (meta.aoffi.empty()) {
return {};
}
const std::string temporary = AllocVectorTemporary();
std::size_t i = 0;
for (auto& node : meta.aoffi) {
AddLine("MOV.S {}.{}, {};", temporary, Swizzle(i++), Visit(node));
}
return fmt::format(", offset({})", temporary);
}
std::string ARBDecompiler::GlobalMemoryPointer(const GmemNode& gmem) {
// Read a bindless SSBO, return its address and set CC accordingly
// address = c[binding].xy
// length = c[binding].z
const u32 binding = global_memory_names.at(gmem.GetDescriptor());
const std::string pointer = AllocLongVectorTemporary();
std::string temporary = AllocTemporary();
AddLine("PK64.U {}, c[{}];", pointer, binding);
AddLine("SUB.U {}, {}, {};", temporary, Visit(gmem.GetRealAddress()),
Visit(gmem.GetBaseAddress()));
AddLine("CVT.U64.U32 {}.z, {};", pointer, temporary);
AddLine("ADD.U64 {}.x, {}.x, {}.z;", pointer, pointer, pointer);
// Compare offset to length and set CC
AddLine("SLT.U.CC RC.x, {}, c[{}].z;", temporary, binding);
return fmt::format("{}.x", pointer);
}
void ARBDecompiler::Exit() {
if (stage != ShaderType::Fragment) {
AddLine("RET;");
return;
}
const auto safe_get_register = [this](u32 reg) -> std::string {
if (ir.GetRegisters().contains(reg)) {
return fmt::format("R{}.x", reg);
}
return "{0, 0, 0, 0}.x";
};
const auto& header = ir.GetHeader();
u32 current_reg = 0;
for (u32 rt = 0; rt < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; ++rt) {
for (u32 component = 0; component < 4; ++component) {
if (!header.ps.IsColorComponentOutputEnabled(rt, component)) {
continue;
}
AddLine("MOV.F result_color{}.{}, {};", rt, Swizzle(component),
safe_get_register(current_reg));
++current_reg;
}
}
if (header.ps.omap.depth) {
AddLine("MOV.F result.depth.z, {};", safe_get_register(current_reg + 1));
}
AddLine("RET;");
}
std::string ARBDecompiler::Assign(Operation operation) {
const Node& dest = operation[0];
const Node& src = operation[1];
std::string dest_name;
if (const auto gpr = std::get_if<GprNode>(&*dest)) {
if (gpr->GetIndex() == Register::ZeroIndex) {
// Writing to Register::ZeroIndex is a no op
return {};
}
dest_name = fmt::format("R{}.x", gpr->GetIndex());
} else if (const auto abuf = std::get_if<AbufNode>(&*dest)) {
const u32 element = abuf->GetElement();
const char swizzle = Swizzle(element);
switch (const Attribute::Index index = abuf->GetIndex()) {
case Attribute::Index::Position:
dest_name = fmt::format("result.position.{}", swizzle);
break;
case Attribute::Index::LayerViewportPointSize:
switch (element) {
case 0:
UNIMPLEMENTED();
return {};
case 1:
case 2:
if (!device.HasNvViewportArray2()) {
LOG_ERROR(
Render_OpenGL,
"NV_viewport_array2 is missing. Maxwell gen 2 or better is required.");
return {};
}
dest_name = element == 1 ? "result.layer.x" : "result.viewport.x";
break;
case 3:
dest_name = "result.pointsize.x";
break;
}
break;
case Attribute::Index::ClipDistances0123:
dest_name = fmt::format("result.clip[{}].x", element);
break;
case Attribute::Index::ClipDistances4567:
dest_name = fmt::format("result.clip[{}].x", element + 4);
break;
default:
if (!IsGenericAttribute(index)) {
UNREACHABLE();
return {};
}
dest_name =
fmt::format("result.attrib[{}].{}", GetGenericAttributeIndex(index), swizzle);
break;
}
} else if (const auto lmem = std::get_if<LmemNode>(&*dest)) {
const std::string address = Visit(lmem->GetAddress());
AddLine("SHR.U {}, {}, 2;", address, address);
dest_name = fmt::format("lmem[{}].x", address);
} else if (const auto smem = std::get_if<SmemNode>(&*dest)) {
AddLine("STS.U32 {}, shared_mem[{}];", Visit(src), Visit(smem->GetAddress()));
ResetTemporaries();
return {};
} else if (const auto gmem = std::get_if<GmemNode>(&*dest)) {
AddLine("IF NE.x;");
AddLine("STORE.U32 {}, {};", Visit(src), GlobalMemoryPointer(*gmem));
AddLine("ENDIF;");
ResetTemporaries();
return {};
} else {
UNREACHABLE();
ResetTemporaries();
return {};
}
AddLine("MOV.U {}, {};", dest_name, Visit(src));
ResetTemporaries();
return {};
}
std::string ARBDecompiler::Select(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("CMP.S {}, {}, {}, {};", temporary, Visit(operation[0]), Visit(operation[1]),
Visit(operation[2]));
return temporary;
}
std::string ARBDecompiler::FClamp(Operation operation) {
// 1.0f in hex, replace with std::bit_cast on C++20
static constexpr u32 POSITIVE_ONE = 0x3f800000;
std::string temporary = AllocTemporary();
const Node& value = operation[0];
const Node& low = operation[1];
const Node& high = operation[2];
const auto* const imm_low = std::get_if<ImmediateNode>(&*low);
const auto* const imm_high = std::get_if<ImmediateNode>(&*high);
if (imm_low && imm_high && imm_low->GetValue() == 0 && imm_high->GetValue() == POSITIVE_ONE) {
AddLine("MOV.F32.SAT {}, {};", temporary, Visit(value));
} else {
AddLine("MIN.F {}, {}, {};", temporary, Visit(value), Visit(high));
AddLine("MAX.F {}, {}, {};", temporary, temporary, Visit(low));
}
return temporary;
}
std::string ARBDecompiler::FCastHalf0(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.x, {};", temporary, Visit(operation[0]));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::FCastHalf1(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.y, {};", temporary, Visit(operation[0]));
AddLine("MOV {}.x, {}.y;", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::FSqrt(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("RSQ.F32 {}, {};", temporary, Visit(operation[0]));
AddLine("RCP.F32 {}, {};", temporary, temporary);
return temporary;
}
std::string ARBDecompiler::FSwizzleAdd(Operation operation) {
const std::string temporary = AllocVectorTemporary();
if (!device.HasWarpIntrinsics()) {
LOG_ERROR(Render_OpenGL,
"NV_shader_thread_shuffle is missing. Kepler or better is required.");
AddLine("ADD.F {}.x, {}, {};", temporary, Visit(operation[0]), Visit(operation[1]));
return fmt::format("{}.x", temporary);
}
AddLine("AND.U {}.z, {}.threadid, 3;", temporary, StageInputName(stage));
AddLine("SHL.U {}.z, {}.z, 1;", temporary, temporary);
AddLine("SHR.U {}.z, {}, {}.z;", temporary, Visit(operation[2]), temporary);
AddLine("AND.U {}.z, {}.z, 3;", temporary, temporary);
AddLine("MUL.F32 {}.x, {}, FSWZA[{}.z];", temporary, Visit(operation[0]), temporary);
AddLine("MUL.F32 {}.y, {}, FSWZB[{}.z];", temporary, Visit(operation[1]), temporary);
AddLine("ADD.F32 {}.x, {}.x, {}.y;", temporary, temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HAdd2(Operation operation) {
const std::string tmp1 = AllocVectorTemporary();
const std::string tmp2 = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", tmp1, Visit(operation[0]));
AddLine("UP2H.F {}.xy, {};", tmp2, Visit(operation[1]));
AddLine("ADD.F16 {}, {}, {};", tmp1, tmp1, tmp2);
AddLine("PK2H.F {}.x, {};", tmp1, tmp1);
return fmt::format("{}.x", tmp1);
}
std::string ARBDecompiler::HMul2(Operation operation) {
const std::string tmp1 = AllocVectorTemporary();
const std::string tmp2 = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", tmp1, Visit(operation[0]));
AddLine("UP2H.F {}.xy, {};", tmp2, Visit(operation[1]));
AddLine("MUL.F16 {}, {}, {};", tmp1, tmp1, tmp2);
AddLine("PK2H.F {}.x, {};", tmp1, tmp1);
return fmt::format("{}.x", tmp1);
}
std::string ARBDecompiler::HFma2(Operation operation) {
const std::string tmp1 = AllocVectorTemporary();
const std::string tmp2 = AllocVectorTemporary();
const std::string tmp3 = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", tmp1, Visit(operation[0]));
AddLine("UP2H.F {}.xy, {};", tmp2, Visit(operation[1]));
AddLine("UP2H.F {}.xy, {};", tmp3, Visit(operation[2]));
AddLine("MAD.F16 {}, {}, {}, {};", tmp1, tmp1, tmp2, tmp3);
AddLine("PK2H.F {}.x, {};", tmp1, tmp1);
return fmt::format("{}.x", tmp1);
}
std::string ARBDecompiler::HAbsolute(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, Visit(operation[0]));
AddLine("PK2H.F {}.x, |{}|;", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HNegate(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, Visit(operation[0]));
AddLine("MOVC.S RC.x, {};", Visit(operation[1]));
AddLine("MOV.F {}.x (NE.x), -{}.x;", temporary, temporary);
AddLine("MOVC.S RC.x, {};", Visit(operation[2]));
AddLine("MOV.F {}.y (NE.x), -{}.y;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HClamp(Operation operation) {
const std::string tmp1 = AllocVectorTemporary();
const std::string tmp2 = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", tmp1, Visit(operation[0]));
AddLine("MOV.U {}.x, {};", tmp2, Visit(operation[1]));
AddLine("MOV.U {}.y, {}.x;", tmp2, tmp2);
AddLine("MAX.F {}, {}, {};", tmp1, tmp1, tmp2);
AddLine("MOV.U {}.x, {};", tmp2, Visit(operation[2]));
AddLine("MOV.U {}.y, {}.x;", tmp2, tmp2);
AddLine("MIN.F {}, {}, {};", tmp1, tmp1, tmp2);
AddLine("PK2H.F {}.x, {};", tmp1, tmp1);
return fmt::format("{}.x", tmp1);
}
std::string ARBDecompiler::HCastFloat(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("MOV.F {}.y, {{0, 0, 0, 0}};", temporary);
AddLine("MOV.F {}.x, {};", temporary, Visit(operation[0]));
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HUnpack(Operation operation) {
std::string operand = Visit(operation[0]);
switch (std::get<Tegra::Shader::HalfType>(operation.GetMeta())) {
case Tegra::Shader::HalfType::H0_H1:
return operand;
case Tegra::Shader::HalfType::F32: {
const std::string temporary = AllocVectorTemporary();
AddLine("MOV.U {}.x, {};", temporary, operand);
AddLine("MOV.U {}.y, {}.x;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
case Tegra::Shader::HalfType::H0_H0: {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, operand);
AddLine("MOV.U {}.y, {}.x;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
case Tegra::Shader::HalfType::H1_H1: {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, operand);
AddLine("MOV.U {}.x, {}.y;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
}
UNREACHABLE();
return "{0, 0, 0, 0}.x";
}
std::string ARBDecompiler::HMergeF32(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, Visit(operation[0]));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HMergeH0(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, Visit(operation[0]));
AddLine("UP2H.F {}.zw, {};", temporary, Visit(operation[1]));
AddLine("MOV.U {}.x, {}.z;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HMergeH1(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("UP2H.F {}.xy, {};", temporary, Visit(operation[0]));
AddLine("UP2H.F {}.zw, {};", temporary, Visit(operation[1]));
AddLine("MOV.U {}.y, {}.w;", temporary, temporary);
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::HPack2(Operation operation) {
const std::string temporary = AllocVectorTemporary();
AddLine("MOV.U {}.x, {};", temporary, Visit(operation[0]));
AddLine("MOV.U {}.y, {};", temporary, Visit(operation[1]));
AddLine("PK2H.F {}.x, {};", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::LogicalAssign(Operation operation) {
const Node& dest = operation[0];
const Node& src = operation[1];
std::string target;
if (const auto pred = std::get_if<PredicateNode>(&*dest)) {
ASSERT_MSG(!pred->IsNegated(), "Negating logical assignment");
const Tegra::Shader::Pred index = pred->GetIndex();
switch (index) {
case Tegra::Shader::Pred::NeverExecute:
case Tegra::Shader::Pred::UnusedIndex:
// Writing to these predicates is a no-op
return {};
}
target = fmt::format("P{}.x", static_cast<u64>(index));
} else if (const auto internal_flag = std::get_if<InternalFlagNode>(&*dest)) {
const std::size_t index = static_cast<std::size_t>(internal_flag->GetFlag());
target = fmt::format("{}.x", INTERNAL_FLAG_NAMES[index]);
} else {
UNREACHABLE();
ResetTemporaries();
return {};
}
AddLine("MOV.U {}, {};", target, Visit(src));
ResetTemporaries();
return {};
}
std::string ARBDecompiler::LogicalPick2(Operation operation) {
std::string temporary = AllocTemporary();
const u32 index = std::get<ImmediateNode>(*operation[1]).GetValue();
AddLine("MOV.U {}, {}.{};", temporary, Visit(operation[0]), Swizzle(index));
return temporary;
}
std::string ARBDecompiler::LogicalAnd2(Operation operation) {
std::string temporary = AllocTemporary();
const std::string op = Visit(operation[0]);
AddLine("AND.U {}, {}.x, {}.y;", temporary, op, op);
return temporary;
}
std::string ARBDecompiler::FloatOrdered(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("MOVC.F32 RC.x, {};", Visit(operation[0]));
AddLine("MOVC.F32 RC.y, {};", Visit(operation[1]));
AddLine("MOV.S {}, -1;", temporary);
AddLine("MOV.S {} (NAN.x), 0;", temporary);
AddLine("MOV.S {} (NAN.y), 0;", temporary);
return temporary;
}
std::string ARBDecompiler::FloatUnordered(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("MOVC.F32 RC.x, {};", Visit(operation[0]));
AddLine("MOVC.F32 RC.y, {};", Visit(operation[1]));
AddLine("MOV.S {}, 0;", temporary);
AddLine("MOV.S {} (NAN.x), -1;", temporary);
AddLine("MOV.S {} (NAN.y), -1;", temporary);
return temporary;
}
std::string ARBDecompiler::LogicalAddCarry(Operation operation) {
std::string temporary = AllocTemporary();
AddLine("ADDC.U RC, {}, {};", Visit(operation[0]), Visit(operation[1]));
AddLine("MOV.S {}, 0;", temporary);
AddLine("IF CF.x;");
AddLine("MOV.S {}, -1;", temporary);
AddLine("ENDIF;");
return temporary;
}
std::string ARBDecompiler::Texture(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
const auto [coords, temporary, swizzle] = BuildCoords(operation);
std::string_view opcode = "TEX";
std::string extra;
if (meta.bias) {
ASSERT(!meta.lod);
opcode = "TXB";
if (swizzle < 4) {
AddLine("MOV.F {}.w, {};", temporary, Visit(meta.bias));
} else {
const std::string bias = AllocTemporary();
AddLine("MOV.F {}, {};", bias, Visit(meta.bias));
extra = fmt::format(" {},", bias);
}
}
if (meta.lod) {
ASSERT(!meta.bias);
opcode = "TXL";
if (swizzle < 4) {
AddLine("MOV.F {}.w, {};", temporary, Visit(meta.lod));
} else {
const std::string lod = AllocTemporary();
AddLine("MOV.F {}, {};", lod, Visit(meta.lod));
extra = fmt::format(" {},", lod);
}
}
AddLine("{}.F {}, {},{} texture[{}], {}{};", opcode, temporary, coords, extra, sampler_id,
TextureType(meta), BuildAoffi(operation));
AddLine("MOV.U {}.x, {}.{};", temporary, temporary, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::TextureGather(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
const auto [coords, temporary, swizzle] = BuildCoords(operation);
std::string comp;
if (!meta.sampler.is_shadow) {
const auto& immediate = std::get<ImmediateNode>(*meta.component);
comp = fmt::format(".{}", Swizzle(immediate.GetValue()));
}
AddLine("TXG.F {}, {}, texture[{}]{}, {}{};", temporary, temporary, sampler_id, comp,
TextureType(meta), BuildAoffi(operation));
AddLine("MOV.U {}.x, {}.{};", temporary, coords, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::TextureQueryDimensions(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const std::string temporary = AllocVectorTemporary();
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
ASSERT(!meta.sampler.is_array);
const std::string lod = operation.GetOperandsCount() > 0 ? Visit(operation[0]) : "0";
AddLine("TXQ {}, {}, texture[{}], {};", temporary, lod, sampler_id, TextureType(meta));
AddLine("MOV.U {}.x, {}.{};", temporary, temporary, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::TextureQueryLod(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const std::string temporary = AllocVectorTemporary();
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
ASSERT(!meta.sampler.is_array);
const std::size_t count = operation.GetOperandsCount();
for (std::size_t i = 0; i < count; ++i) {
AddLine("MOV.F {}.{}, {};", temporary, Swizzle(i), Visit(operation[i]));
}
AddLine("LOD.F {}, {}, texture[{}], {};", temporary, temporary, sampler_id, TextureType(meta));
AddLine("MUL.F32 {}, {}, {{256, 256, 0, 0}};", temporary, temporary);
AddLine("TRUNC.S {}, {};", temporary, temporary);
AddLine("MOV.U {}.x, {}.{};", temporary, temporary, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::TexelFetch(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
const auto [coords, temporary, swizzle] = BuildCoords(operation);
if (!meta.sampler.is_buffer) {
ASSERT(swizzle < 4);
AddLine("MOV.F {}.w, {};", temporary, Visit(meta.lod));
}
AddLine("TXF.F {}, {}, texture[{}], {}{};", temporary, coords, sampler_id, TextureType(meta),
BuildAoffi(operation));
AddLine("MOV.U {}.x, {}.{};", temporary, temporary, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::TextureGradient(Operation operation) {
const auto& meta = std::get<MetaTexture>(operation.GetMeta());
const u32 sampler_id = device.GetBaseBindings(stage).sampler + meta.sampler.index;
const std::string ddx = AllocVectorTemporary();
const std::string ddy = AllocVectorTemporary();
const std::string coord = std::get<1>(BuildCoords(operation));
const std::size_t num_components = meta.derivates.size() / 2;
for (std::size_t index = 0; index < num_components; ++index) {
const char swizzle = Swizzle(index);
AddLine("MOV.F {}.{}, {};", ddx, swizzle, Visit(meta.derivates[index * 2]));
AddLine("MOV.F {}.{}, {};", ddy, swizzle, Visit(meta.derivates[index * 2 + 1]));
}
const std::string_view result = coord;
AddLine("TXD.F {}, {}, {}, {}, texture[{}], {}{};", result, coord, ddx, ddy, sampler_id,
TextureType(meta), BuildAoffi(operation));
AddLine("MOV.F {}.x, {}.{};", result, result, Swizzle(meta.element));
return fmt::format("{}.x", result);
}
std::string ARBDecompiler::ImageLoad(Operation operation) {
const auto& meta = std::get<MetaImage>(operation.GetMeta());
const u32 image_id = device.GetBaseBindings(stage).image + meta.image.index;
const std::size_t count = operation.GetOperandsCount();
const std::string_view type = ImageType(meta.image.type);
const std::string temporary = AllocVectorTemporary();
for (std::size_t i = 0; i < count; ++i) {
AddLine("MOV.S {}.{}, {};", temporary, Swizzle(i), Visit(operation[i]));
}
AddLine("LOADIM.F {}, {}, image[{}], {};", temporary, temporary, image_id, type);
AddLine("MOV.F {}.x, {}.{};", temporary, temporary, Swizzle(meta.element));
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::ImageStore(Operation operation) {
const auto& meta = std::get<MetaImage>(operation.GetMeta());
const u32 image_id = device.GetBaseBindings(stage).image + meta.image.index;
const std::size_t num_coords = operation.GetOperandsCount();
const std::size_t num_values = meta.values.size();
const std::string_view type = ImageType(meta.image.type);
const std::string coord = AllocVectorTemporary();
const std::string value = AllocVectorTemporary();
for (std::size_t i = 0; i < num_coords; ++i) {
AddLine("MOV.S {}.{}, {};", coord, Swizzle(i), Visit(operation[i]));
}
for (std::size_t i = 0; i < num_values; ++i) {
AddLine("MOV.F {}.{}, {};", value, Swizzle(i), Visit(meta.values[i]));
}
AddLine("STOREIM.F image[{}], {}, {}, {};", image_id, value, coord, type);
return {};
}
std::string ARBDecompiler::Branch(Operation operation) {
const auto target = std::get<ImmediateNode>(*operation[0]);
AddLine("MOV.U PC.x, {};", target.GetValue());
AddLine("CONT;");
return {};
}
std::string ARBDecompiler::BranchIndirect(Operation operation) {
AddLine("MOV.U PC.x, {};", Visit(operation[0]));
AddLine("CONT;");
return {};
}
std::string ARBDecompiler::PushFlowStack(Operation operation) {
const auto stack = std::get<MetaStackClass>(operation.GetMeta());
const u32 target = std::get<ImmediateNode>(*operation[0]).GetValue();
const std::string_view stack_name = StackName(stack);
AddLine("MOV.U {}[{}_TOP.x].x, {};", stack_name, stack_name, target);
AddLine("ADD.S {}_TOP.x, {}_TOP.x, 1;", stack_name, stack_name);
return {};
}
std::string ARBDecompiler::PopFlowStack(Operation operation) {
const auto stack = std::get<MetaStackClass>(operation.GetMeta());
const std::string_view stack_name = StackName(stack);
AddLine("SUB.S {}_TOP.x, {}_TOP.x, 1;", stack_name, stack_name);
AddLine("MOV.U PC.x, {}[{}_TOP.x].x;", stack_name, stack_name);
AddLine("CONT;");
return {};
}
std::string ARBDecompiler::Exit(Operation) {
Exit();
return {};
}
std::string ARBDecompiler::Discard(Operation) {
AddLine("KIL TR;");
return {};
}
std::string ARBDecompiler::EmitVertex(Operation) {
AddLine("EMIT;");
return {};
}
std::string ARBDecompiler::EndPrimitive(Operation) {
AddLine("ENDPRIM;");
return {};
}
std::string ARBDecompiler::InvocationId(Operation) {
return "primitive.invocation";
}
std::string ARBDecompiler::YNegate(Operation) {
LOG_WARNING(Render_OpenGL, "(STUBBED)");
std::string temporary = AllocTemporary();
AddLine("MOV.F {}, 1;", temporary);
return temporary;
}
std::string ARBDecompiler::ThreadId(Operation) {
return fmt::format("{}.threadid", StageInputName(stage));
}
std::string ARBDecompiler::ShuffleIndexed(Operation operation) {
if (!device.HasWarpIntrinsics()) {
LOG_ERROR(Render_OpenGL,
"NV_shader_thread_shuffle is missing. Kepler or better is required.");
return Visit(operation[0]);
}
const std::string temporary = AllocVectorTemporary();
AddLine("SHFIDX.U {}, {}, {}, {{31, 0, 0, 0}};", temporary, Visit(operation[0]),
Visit(operation[1]));
AddLine("MOV.U {}.x, {}.y;", temporary, temporary);
return fmt::format("{}.x", temporary);
}
std::string ARBDecompiler::Barrier(Operation) {
AddLine("BAR;");
return {};
}
std::string ARBDecompiler::MemoryBarrierGroup(Operation) {
AddLine("MEMBAR.CTA;");
return {};
}
std::string ARBDecompiler::MemoryBarrierGlobal(Operation) {
AddLine("MEMBAR;");
return {};
}
} // Anonymous namespace
std::string DecompileAssemblyShader(const Device& device, const VideoCommon::Shader::ShaderIR& ir,
const VideoCommon::Shader::Registry& registry,
Tegra::Engines::ShaderType stage, std::string_view identifier) {
return ARBDecompiler(device, ir, registry, stage, identifier).Code();
}
} // namespace OpenGL