suyu/src/video_core/renderer_opengl/gl_shader_decompiler.cpp

1677 lines
61 KiB
C++
Raw Normal View History

2018-12-21 01:45:49 +01:00
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
2018-12-21 01:45:49 +01:00
#include <string>
#include <string_view>
#include <utility>
2018-12-21 01:45:49 +01:00
#include <variant>
#include <vector>
2018-12-21 01:45:49 +01:00
#include <fmt/format.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
2018-12-21 01:45:49 +01:00
#include "video_core/shader/shader_ir.h"
namespace OpenGL::GLShader {
namespace {
2018-12-21 01:45:49 +01:00
using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse;
2018-12-21 01:45:49 +01:00
using Tegra::Shader::Header;
using Tegra::Shader::IpaInterpMode;
using Tegra::Shader::IpaMode;
using Tegra::Shader::IpaSampleMode;
using Tegra::Shader::Register;
2018-12-21 01:45:49 +01:00
using namespace VideoCommon::Shader;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ShaderStage = Tegra::Engines::Maxwell3D::Regs::ShaderStage;
using Operation = const OperationNode&;
enum class Type { Bool, Bool2, Float, Int, Uint, HalfFloat };
struct TextureAoffi {};
using TextureArgument = std::pair<Type, Node>;
using TextureIR = std::variant<TextureAoffi, TextureArgument>;
2018-12-21 01:45:49 +01:00
enum : u32 { POSITION_VARYING_LOCATION = 0, GENERIC_VARYING_START_LOCATION = 1 };
constexpr u32 MAX_CONSTBUFFER_ELEMENTS =
static_cast<u32>(RasterizerOpenGL::MaxConstbufferSize) / (4 * sizeof(float));
constexpr u32 MAX_GLOBALMEMORY_ELEMENTS =
static_cast<u32>(RasterizerOpenGL::MaxGlobalMemorySize) / sizeof(float);
2018-12-21 01:45:49 +01:00
class ShaderWriter {
public:
void AddExpression(std::string_view text) {
DEBUG_ASSERT(scope >= 0);
if (!text.empty()) {
AppendIndentation();
}
shader_source += text;
}
void AddLine(std::string_view text) {
AddExpression(text);
AddNewLine();
}
void AddLine(char character) {
DEBUG_ASSERT(scope >= 0);
AppendIndentation();
shader_source += character;
AddNewLine();
}
void AddNewLine() {
DEBUG_ASSERT(scope >= 0);
shader_source += '\n';
}
std::string GenerateTemporary() {
std::string temporary = "tmp";
temporary += std::to_string(temporary_index++);
return temporary;
2018-12-21 01:45:49 +01:00
}
std::string GetResult() {
return std::move(shader_source);
}
s32 scope = 0;
private:
void AppendIndentation() {
shader_source.append(static_cast<std::size_t>(scope) * 4, ' ');
}
std::string shader_source;
u32 temporary_index = 1;
2018-12-21 01:45:49 +01:00
};
/// Generates code to use for a swizzle operation.
std::string GetSwizzle(u32 elem) {
2018-12-21 01:45:49 +01:00
ASSERT(elem <= 3);
std::string swizzle = ".";
swizzle += "xyzw"[elem];
return swizzle;
}
/// Translate topology
std::string GetTopologyName(Tegra::Shader::OutputTopology topology) {
switch (topology) {
case Tegra::Shader::OutputTopology::PointList:
return "points";
case Tegra::Shader::OutputTopology::LineStrip:
return "line_strip";
case Tegra::Shader::OutputTopology::TriangleStrip:
return "triangle_strip";
default:
UNIMPLEMENTED_MSG("Unknown output topology: {}", static_cast<u32>(topology));
return "points";
}
}
/// Returns true if an object has to be treated as precise
bool IsPrecise(Operation operand) {
2018-12-21 01:45:49 +01:00
const auto& meta = operand.GetMeta();
if (const auto arithmetic = std::get_if<MetaArithmetic>(&meta)) {
return arithmetic->precise;
2018-12-21 01:45:49 +01:00
}
if (const auto half_arithmetic = std::get_if<MetaHalfArithmetic>(&meta)) {
return half_arithmetic->precise;
2018-12-21 01:45:49 +01:00
}
return false;
}
bool IsPrecise(Node node) {
if (const auto operation = std::get_if<OperationNode>(node)) {
return IsPrecise(*operation);
2018-12-21 01:45:49 +01:00
}
return false;
2018-12-21 01:45:49 +01:00
}
class GLSLDecompiler final {
public:
explicit GLSLDecompiler(const ShaderIR& ir, ShaderStage stage, std::string suffix)
: ir{ir}, stage{stage}, suffix{suffix}, header{ir.GetHeader()} {}
void Decompile() {
DeclareVertex();
DeclareGeometry();
2018-12-21 01:45:49 +01:00
DeclareRegisters();
DeclarePredicates();
DeclareLocalMemory();
DeclareInternalFlags();
DeclareInputAttributes();
DeclareOutputAttributes();
DeclareConstantBuffers();
DeclareGlobalMemory();
2018-12-21 01:45:49 +01:00
DeclareSamplers();
code.AddLine("void execute_" + suffix + "() {");
++code.scope;
// VM's program counter
const auto first_address = ir.GetBasicBlocks().begin()->first;
code.AddLine("uint jmp_to = " + std::to_string(first_address) + "u;");
// TODO(Subv): Figure out the actual depth of the flow stack, for now it seems
// unlikely that shaders will use 20 nested SSYs and PBKs.
constexpr u32 FLOW_STACK_SIZE = 20;
code.AddLine(fmt::format("uint flow_stack[{}];", FLOW_STACK_SIZE));
code.AddLine("uint flow_stack_top = 0u;");
code.AddLine("while (true) {");
++code.scope;
code.AddLine("switch (jmp_to) {");
for (const auto& pair : ir.GetBasicBlocks()) {
const auto [address, bb] = pair;
code.AddLine(fmt::format("case 0x{:x}u: {{", address));
++code.scope;
VisitBlock(bb);
2018-12-21 01:45:49 +01:00
--code.scope;
code.AddLine('}');
}
code.AddLine("default: return;");
code.AddLine('}');
for (std::size_t i = 0; i < 2; ++i) {
--code.scope;
code.AddLine('}');
}
}
std::string GetResult() {
return code.GetResult();
}
ShaderEntries GetShaderEntries() const {
ShaderEntries entries;
for (const auto& cbuf : ir.GetConstantBuffers()) {
entries.const_buffers.emplace_back(cbuf.second.GetMaxOffset(), cbuf.second.IsIndirect(),
cbuf.first);
2018-12-21 01:45:49 +01:00
}
for (const auto& sampler : ir.GetSamplers()) {
entries.samplers.emplace_back(sampler);
}
for (const auto& gmem : ir.GetGlobalMemoryBases()) {
entries.global_memory_entries.emplace_back(gmem.cbuf_index, gmem.cbuf_offset);
2018-12-21 01:45:49 +01:00
}
entries.clip_distances = ir.GetClipDistances();
entries.shader_length = ir.GetLength();
return entries;
}
private:
using OperationDecompilerFn = std::string (GLSLDecompiler::*)(Operation);
using OperationDecompilersArray =
std::array<OperationDecompilerFn, static_cast<std::size_t>(OperationCode::Amount)>;
void DeclareVertex() {
if (stage != ShaderStage::Vertex)
return;
DeclareVertexRedeclarations();
}
void DeclareGeometry() {
if (stage != ShaderStage::Geometry)
return;
const auto topology = GetTopologyName(header.common3.output_topology);
const auto max_vertices = std::to_string(header.common4.max_output_vertices);
code.AddLine("layout (" + topology + ", max_vertices = " + max_vertices + ") out;");
code.AddNewLine();
DeclareVertexRedeclarations();
}
void DeclareVertexRedeclarations() {
2018-12-21 01:45:49 +01:00
bool clip_distances_declared = false;
code.AddLine("out gl_PerVertex {");
++code.scope;
code.AddLine("vec4 gl_Position;");
for (const auto o : ir.GetOutputAttributes()) {
if (o == Attribute::Index::PointSize)
code.AddLine("float gl_PointSize;");
if (!clip_distances_declared && (o == Attribute::Index::ClipDistances0123 ||
o == Attribute::Index::ClipDistances4567)) {
code.AddLine("float gl_ClipDistance[];");
clip_distances_declared = true;
}
}
--code.scope;
code.AddLine("};");
code.AddNewLine();
}
void DeclareRegisters() {
const auto& registers = ir.GetRegisters();
for (const u32 gpr : registers) {
code.AddLine("float " + GetRegister(gpr) + " = 0;");
}
if (!registers.empty())
code.AddNewLine();
}
void DeclarePredicates() {
const auto& predicates = ir.GetPredicates();
for (const auto pred : predicates) {
code.AddLine("bool " + GetPredicate(pred) + " = false;");
}
if (!predicates.empty())
code.AddNewLine();
}
void DeclareLocalMemory() {
if (const u64 local_memory_size = header.GetLocalMemorySize(); local_memory_size > 0) {
const auto element_count = Common::AlignUp(local_memory_size, 4) / 4;
code.AddLine("float " + GetLocalMemory() + '[' + std::to_string(element_count) + "];");
code.AddNewLine();
}
}
void DeclareInternalFlags() {
for (u32 flag = 0; flag < static_cast<u32>(InternalFlag::Amount); flag++) {
const InternalFlag flag_code = static_cast<InternalFlag>(flag);
code.AddLine("bool " + GetInternalFlag(flag_code) + " = false;");
}
code.AddNewLine();
}
std::string GetInputFlags(AttributeUse attribute) {
2018-12-21 01:45:49 +01:00
std::string out;
switch (attribute) {
case AttributeUse::Constant:
2018-12-21 01:45:49 +01:00
out += "flat ";
break;
case AttributeUse::ScreenLinear:
2018-12-21 01:45:49 +01:00
out += "noperspective ";
break;
case AttributeUse::Perspective:
2018-12-21 01:45:49 +01:00
// Default, Smooth
break;
default:
LOG_CRITICAL(HW_GPU, "Unused attribute being fetched");
UNREACHABLE();
2018-12-21 01:45:49 +01:00
}
return out;
}
void DeclareInputAttributes() {
const auto& attributes = ir.GetInputAttributes();
for (const auto element : attributes) {
const Attribute::Index index = element.first;
if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
// Skip when it's not a generic attribute
continue;
}
// TODO(bunnei): Use proper number of elements for these
u32 idx = static_cast<u32>(index) - static_cast<u32>(Attribute::Index::Attribute_0);
if (stage != ShaderStage::Vertex) {
// If inputs are varyings, add an offset
idx += GENERIC_VARYING_START_LOCATION;
}
std::string attr = GetInputAttribute(index);
if (stage == ShaderStage::Geometry) {
attr = "gs_" + attr + "[]";
}
std::string suffix;
if (stage == ShaderStage::Fragment) {
const auto input_mode =
header.ps.GetAttributeUse(idx - GENERIC_VARYING_START_LOCATION);
suffix = GetInputFlags(input_mode);
}
code.AddLine("layout (location = " + std::to_string(idx) + ") " + suffix + "in vec4 " +
attr + ';');
2018-12-21 01:45:49 +01:00
}
if (!attributes.empty())
code.AddNewLine();
}
void DeclareOutputAttributes() {
const auto& attributes = ir.GetOutputAttributes();
for (const auto index : attributes) {
if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
// Skip when it's not a generic attribute
continue;
}
// TODO(bunnei): Use proper number of elements for these
const auto idx = static_cast<u32>(index) -
static_cast<u32>(Attribute::Index::Attribute_0) +
GENERIC_VARYING_START_LOCATION;
code.AddLine("layout (location = " + std::to_string(idx) + ") out vec4 " +
GetOutputAttribute(index) + ';');
}
if (!attributes.empty())
code.AddNewLine();
}
void DeclareConstantBuffers() {
for (const auto& entry : ir.GetConstantBuffers()) {
const auto [index, size] = entry;
2019-01-05 05:00:06 +01:00
code.AddLine("layout (std140, binding = CBUF_BINDING_" + std::to_string(index) +
") uniform " + GetConstBufferBlock(index) + " {");
2018-12-21 01:45:49 +01:00
code.AddLine(" vec4 " + GetConstBuffer(index) + "[MAX_CONSTBUFFER_ELEMENTS];");
code.AddLine("};");
code.AddNewLine();
}
}
void DeclareGlobalMemory() {
for (const auto& entry : ir.GetGlobalMemoryBases()) {
2019-01-05 05:00:06 +01:00
const std::string binding =
fmt::format("GMEM_BINDING_{}_{}", entry.cbuf_index, entry.cbuf_offset);
code.AddLine("layout (std430, binding = " + binding + ") buffer " +
GetGlobalMemoryBlock(entry) + " {");
code.AddLine(" float " + GetGlobalMemory(entry) + "[MAX_GLOBALMEMORY_ELEMENTS];");
code.AddLine("};");
code.AddNewLine();
}
}
2018-12-21 01:45:49 +01:00
void DeclareSamplers() {
const auto& samplers = ir.GetSamplers();
for (const auto& sampler : samplers) {
std::string sampler_type = [&]() {
switch (sampler.GetType()) {
case Tegra::Shader::TextureType::Texture1D:
return "sampler1D";
case Tegra::Shader::TextureType::Texture2D:
return "sampler2D";
case Tegra::Shader::TextureType::Texture3D:
return "sampler3D";
case Tegra::Shader::TextureType::TextureCube:
return "samplerCube";
default:
UNREACHABLE();
return "sampler2D";
2018-12-21 01:45:49 +01:00
}
}();
if (sampler.IsArray())
sampler_type += "Array";
if (sampler.IsShadow())
sampler_type += "Shadow";
2019-01-05 05:00:06 +01:00
code.AddLine("layout (binding = SAMPLER_BINDING_" + std::to_string(sampler.GetIndex()) +
") uniform " + sampler_type + ' ' + GetSampler(sampler) + ';');
2018-12-21 01:45:49 +01:00
}
if (!samplers.empty())
code.AddNewLine();
}
void VisitBlock(const NodeBlock& bb) {
2018-12-21 01:45:49 +01:00
for (const Node node : bb) {
if (const std::string expr = Visit(node); !expr.empty()) {
code.AddLine(expr);
}
}
}
std::string Visit(Node node) {
if (const auto operation = std::get_if<OperationNode>(node)) {
const auto operation_index = static_cast<std::size_t>(operation->GetCode());
if (operation_index >= operation_decompilers.size()) {
UNREACHABLE_MSG("Out of bounds operation: {}", operation_index);
return {};
}
2018-12-21 01:45:49 +01:00
const auto decompiler = operation_decompilers[operation_index];
if (decompiler == nullptr) {
UNREACHABLE_MSG("Undefined operation: {}", operation_index);
return {};
2018-12-21 01:45:49 +01:00
}
return (this->*decompiler)(*operation);
} else if (const auto gpr = std::get_if<GprNode>(node)) {
const u32 index = gpr->GetIndex();
if (index == Register::ZeroIndex) {
2018-12-21 01:45:49 +01:00
return "0";
}
return GetRegister(index);
} else if (const auto immediate = std::get_if<ImmediateNode>(node)) {
const u32 value = immediate->GetValue();
if (value < 10) {
// For eyecandy avoid using hex numbers on single digits
return fmt::format("utof({}u)", immediate->GetValue());
}
return fmt::format("utof(0x{:x}u)", immediate->GetValue());
} else if (const auto predicate = std::get_if<PredicateNode>(node)) {
const auto value = [&]() -> std::string {
switch (const auto index = predicate->GetIndex(); index) {
case Tegra::Shader::Pred::UnusedIndex:
return "true";
case Tegra::Shader::Pred::NeverExecute:
return "false";
default:
return GetPredicate(index);
}
}();
if (predicate->IsNegated()) {
return "!(" + value + ')';
}
return value;
} else if (const auto abuf = std::get_if<AbufNode>(node)) {
const auto attribute = abuf->GetIndex();
const auto element = abuf->GetElement();
const auto GeometryPass = [&](const std::string& name) {
if (stage == ShaderStage::Geometry && abuf->GetBuffer()) {
// TODO(Rodrigo): Guard geometry inputs against out of bound reads. Some games
// set an 0x80000000 index for those and the shader fails to build. Find out why
// this happens and what's its intent.
return "gs_" + name + "[ftou(" + Visit(abuf->GetBuffer()) +
") % MAX_VERTEX_INPUT]";
}
return name;
};
2018-12-21 01:45:49 +01:00
switch (attribute) {
case Attribute::Index::Position:
if (stage != ShaderStage::Fragment) {
return GeometryPass("position") + GetSwizzle(element);
} else {
return element == 3 ? "1.0f" : "gl_FragCoord" + GetSwizzle(element);
}
2018-12-21 01:45:49 +01:00
case Attribute::Index::PointCoord:
switch (element) {
case 0:
return "gl_PointCoord.x";
case 1:
return "gl_PointCoord.y";
case 2:
case 3:
return "0";
}
UNREACHABLE();
return "0";
case Attribute::Index::TessCoordInstanceIDVertexID:
// TODO(Subv): Find out what the values are for the first two elements when inside a
// vertex shader, and what's the value of the fourth element when inside a Tess Eval
// shader.
ASSERT(stage == ShaderStage::Vertex);
switch (element) {
case 2:
// Config pack's first value is instance_id.
return "uintBitsToFloat(config_pack[0])";
case 3:
return "uintBitsToFloat(gl_VertexID)";
}
UNIMPLEMENTED_MSG("Unmanaged TessCoordInstanceIDVertexID element={}", element);
return "0";
case Attribute::Index::FrontFacing:
// TODO(Subv): Find out what the values are for the other elements.
ASSERT(stage == ShaderStage::Fragment);
switch (element) {
case 3:
return "itof(gl_FrontFacing ? -1 : 0)";
}
UNIMPLEMENTED_MSG("Unmanaged FrontFacing element={}", element);
return "0";
default:
if (attribute >= Attribute::Index::Attribute_0 &&
attribute <= Attribute::Index::Attribute_31) {
return GeometryPass(GetInputAttribute(attribute)) + GetSwizzle(element);
2018-12-21 01:45:49 +01:00
}
break;
}
UNIMPLEMENTED_MSG("Unhandled input attribute: {}", static_cast<u32>(attribute));
} else if (const auto cbuf = std::get_if<CbufNode>(node)) {
const Node offset = cbuf->GetOffset();
if (const auto immediate = std::get_if<ImmediateNode>(offset)) {
// Direct access
const u32 offset_imm = immediate->GetValue();
ASSERT_MSG(offset_imm % 4 == 0, "Unaligned cbuf direct access");
return fmt::format("{}[{}][{}]", GetConstBuffer(cbuf->GetIndex()),
offset_imm / (4 * 4), (offset_imm / 4) % 4);
2018-12-21 01:45:49 +01:00
} else if (std::holds_alternative<OperationNode>(*offset)) {
// Indirect access
const std::string final_offset = code.GenerateTemporary();
2019-04-10 02:02:11 +02:00
code.AddLine("uint " + final_offset + " = (ftou(" + Visit(offset) + ") / 4);");
2018-12-21 01:45:49 +01:00
return fmt::format("{}[{} / 4][{} % 4]", GetConstBuffer(cbuf->GetIndex()),
final_offset, final_offset);
} else {
UNREACHABLE_MSG("Unmanaged offset node type");
}
} else if (const auto gmem = std::get_if<GmemNode>(node)) {
const std::string real = Visit(gmem->GetRealAddress());
const std::string base = Visit(gmem->GetBaseAddress());
const std::string final_offset = "(ftou(" + real + ") - ftou(" + base + ")) / 4";
return fmt::format("{}[{}]", GetGlobalMemory(gmem->GetDescriptor()), final_offset);
2018-12-21 01:45:49 +01:00
} else if (const auto lmem = std::get_if<LmemNode>(node)) {
return fmt::format("{}[ftou({}) / 4]", GetLocalMemory(), Visit(lmem->GetAddress()));
} else if (const auto internal_flag = std::get_if<InternalFlagNode>(node)) {
return GetInternalFlag(internal_flag->GetFlag());
} else if (const auto conditional = std::get_if<ConditionalNode>(node)) {
// It's invalid to call conditional on nested nodes, use an operation instead
code.AddLine("if (" + Visit(conditional->GetCondition()) + ") {");
++code.scope;
VisitBlock(conditional->GetCode());
2018-12-21 01:45:49 +01:00
--code.scope;
code.AddLine('}');
return {};
} else if (const auto comment = std::get_if<CommentNode>(node)) {
return "// " + comment->GetText();
}
UNREACHABLE();
return {};
2018-12-21 01:45:49 +01:00
}
std::string ApplyPrecise(Operation operation, const std::string& value) {
if (!IsPrecise(operation)) {
return value;
}
// There's a bug in NVidia's proprietary drivers that makes precise fail on fragment shaders
const std::string precise = stage != ShaderStage::Fragment ? "precise " : "";
const std::string temporary = code.GenerateTemporary();
code.AddLine(precise + "float " + temporary + " = " + value + ';');
return temporary;
2018-12-21 01:45:49 +01:00
}
std::string VisitOperand(Operation operation, std::size_t operand_index) {
const auto& operand = operation[operand_index];
const bool parent_precise = IsPrecise(operation);
const bool child_precise = IsPrecise(operand);
const bool child_trivial = !std::holds_alternative<OperationNode>(*operand);
if (!parent_precise || child_precise || child_trivial) {
return Visit(operand);
}
const std::string temporary = code.GenerateTemporary();
code.AddLine("float " + temporary + " = " + Visit(operand) + ';');
return temporary;
2018-12-21 01:45:49 +01:00
}
std::string VisitOperand(Operation operation, std::size_t operand_index, Type type) {
const std::string value = VisitOperand(operation, operand_index);
2018-12-21 01:45:49 +01:00
switch (type) {
case Type::HalfFloat: {
const auto half_meta = std::get_if<MetaHalfArithmetic>(&operation.GetMeta());
ASSERT(half_meta);
2018-12-21 01:45:49 +01:00
switch (half_meta->types.at(operand_index)) {
2018-12-21 01:45:49 +01:00
case Tegra::Shader::HalfType::H0_H1:
return "toHalf2(" + value + ')';
case Tegra::Shader::HalfType::F32:
return "vec2(" + value + ')';
case Tegra::Shader::HalfType::H0_H0:
return "vec2(toHalf2(" + value + ")[0])";
case Tegra::Shader::HalfType::H1_H1:
return "vec2(toHalf2(" + value + ")[1])";
}
}
default:
return CastOperand(value, type);
}
}
std::string CastOperand(const std::string& value, Type type) const {
switch (type) {
case Type::Bool:
case Type::Bool2:
case Type::Float:
return value;
case Type::Int:
return "ftoi(" + value + ')';
case Type::Uint:
return "ftou(" + value + ')';
case Type::HalfFloat:
// Can't be handled as a stand-alone value
UNREACHABLE();
return value;
}
2018-12-21 01:45:49 +01:00
UNREACHABLE();
return value;
2018-12-21 01:45:49 +01:00
}
std::string BitwiseCastResult(std::string value, Type type, bool needs_parenthesis = false) {
switch (type) {
case Type::Bool:
case Type::Bool2:
2018-12-21 01:45:49 +01:00
case Type::Float:
if (needs_parenthesis) {
return '(' + value + ')';
}
return value;
case Type::Int:
return "itof(" + value + ')';
case Type::Uint:
return "utof(" + value + ')';
case Type::HalfFloat:
return "fromHalf2(" + value + ')';
}
UNREACHABLE();
return value;
2018-12-21 01:45:49 +01:00
}
std::string GenerateUnary(Operation operation, const std::string& func, Type result_type,
Type type_a, bool needs_parenthesis = true) {
return ApplyPrecise(operation,
BitwiseCastResult(func + '(' + VisitOperand(operation, 0, type_a) + ')',
result_type, needs_parenthesis));
}
std::string GenerateBinaryInfix(Operation operation, const std::string& func, Type result_type,
Type type_a, Type type_b) {
const std::string op_a = VisitOperand(operation, 0, type_a);
const std::string op_b = VisitOperand(operation, 1, type_b);
return ApplyPrecise(
operation, BitwiseCastResult('(' + op_a + ' ' + func + ' ' + op_b + ')', result_type));
}
std::string GenerateBinaryCall(Operation operation, const std::string& func, Type result_type,
Type type_a, Type type_b) {
const std::string op_a = VisitOperand(operation, 0, type_a);
const std::string op_b = VisitOperand(operation, 1, type_b);
return ApplyPrecise(operation,
BitwiseCastResult(func + '(' + op_a + ", " + op_b + ')', result_type));
}
std::string GenerateTernary(Operation operation, const std::string& func, Type result_type,
Type type_a, Type type_b, Type type_c) {
const std::string op_a = VisitOperand(operation, 0, type_a);
const std::string op_b = VisitOperand(operation, 1, type_b);
const std::string op_c = VisitOperand(operation, 2, type_c);
return ApplyPrecise(
operation,
BitwiseCastResult(func + '(' + op_a + ", " + op_b + ", " + op_c + ')', result_type));
}
std::string GenerateQuaternary(Operation operation, const std::string& func, Type result_type,
Type type_a, Type type_b, Type type_c, Type type_d) {
const std::string op_a = VisitOperand(operation, 0, type_a);
const std::string op_b = VisitOperand(operation, 1, type_b);
const std::string op_c = VisitOperand(operation, 2, type_c);
const std::string op_d = VisitOperand(operation, 3, type_d);
return ApplyPrecise(operation, BitwiseCastResult(func + '(' + op_a + ", " + op_b + ", " +
op_c + ", " + op_d + ')',
result_type));
}
std::string GenerateTexture(Operation operation, const std::string& function_suffix,
const std::vector<TextureIR>& extras) {
2018-12-21 01:45:49 +01:00
constexpr std::array<const char*, 4> coord_constructors = {"float", "vec2", "vec3", "vec4"};
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
2018-12-21 01:45:49 +01:00
const std::size_t count = operation.GetOperandsCount();
const bool has_array = meta->sampler.IsArray();
const bool has_shadow = meta->sampler.IsShadow();
std::string expr = "texture" + function_suffix;
if (!meta->aoffi.empty()) {
expr += "Offset";
}
expr += '(' + GetSampler(meta->sampler) + ", ";
expr += coord_constructors.at(count + (has_array ? 1 : 0) + (has_shadow ? 1 : 0) - 1);
2018-12-21 01:45:49 +01:00
expr += '(';
for (std::size_t i = 0; i < count; ++i) {
expr += Visit(operation[i]);
const std::size_t next = i + 1;
if (next < count)
expr += ", ";
}
if (has_array) {
expr += ", float(ftoi(" + Visit(meta->array) + "))";
}
if (has_shadow) {
expr += ", " + Visit(meta->depth_compare);
}
expr += ')';
for (const auto& variant : extras) {
if (const auto argument = std::get_if<TextureArgument>(&variant)) {
expr += GenerateTextureArgument(*argument);
} else if (std::get_if<TextureAoffi>(&variant)) {
expr += GenerateTextureAoffi(meta->aoffi);
} else {
UNREACHABLE();
}
}
return expr + ')';
}
std::string GenerateTextureArgument(TextureArgument argument) {
const auto [type, operand] = argument;
if (operand == nullptr) {
return {};
}
std::string expr = ", ";
switch (type) {
case Type::Int:
if (const auto immediate = std::get_if<ImmediateNode>(operand)) {
// Inline the string as an immediate integer in GLSL (some extra arguments are
// required to be constant)
expr += std::to_string(static_cast<s32>(immediate->GetValue()));
} else {
expr += "ftoi(" + Visit(operand) + ')';
}
break;
case Type::Float:
expr += Visit(operand);
break;
default: {
const auto type_int = static_cast<u32>(type);
UNIMPLEMENTED_MSG("Unimplemented extra type={}", type_int);
expr += '0';
break;
}
}
return expr;
}
std::string GenerateTextureAoffi(const std::vector<Node>& aoffi) {
if (aoffi.empty()) {
return {};
}
constexpr std::array<const char*, 3> coord_constructors = {"int", "ivec2", "ivec3"};
std::string expr = ", ";
expr += coord_constructors.at(aoffi.size() - 1);
expr += '(';
for (std::size_t index = 0; index < aoffi.size(); ++index) {
const auto operand{aoffi.at(index)};
if (const auto immediate = std::get_if<ImmediateNode>(operand)) {
// Inline the string as an immediate integer in GLSL (AOFFI arguments are required
// to be constant by the standard).
expr += std::to_string(static_cast<s32>(immediate->GetValue()));
} else {
expr += "ftoi(" + Visit(operand) + ')';
}
if (index + 1 < aoffi.size()) {
expr += ", ";
2018-12-21 01:45:49 +01:00
}
}
expr += ')';
return expr;
2018-12-21 01:45:49 +01:00
}
std::string Assign(Operation operation) {
const Node dest = operation[0];
const Node src = operation[1];
std::string target;
if (const auto gpr = std::get_if<GprNode>(dest)) {
if (gpr->GetIndex() == Register::ZeroIndex) {
// Writing to Register::ZeroIndex is a no op
2018-12-21 01:45:49 +01:00
return {};
}
target = GetRegister(gpr->GetIndex());
} else if (const auto abuf = std::get_if<AbufNode>(dest)) {
target = [&]() -> std::string {
switch (const auto attribute = abuf->GetIndex(); abuf->GetIndex()) {
case Attribute::Index::Position:
return "position" + GetSwizzle(abuf->GetElement());
case Attribute::Index::PointSize:
return "gl_PointSize";
case Attribute::Index::ClipDistances0123:
return "gl_ClipDistance[" + std::to_string(abuf->GetElement()) + ']';
case Attribute::Index::ClipDistances4567:
return "gl_ClipDistance[" + std::to_string(abuf->GetElement() + 4) + ']';
default:
if (attribute >= Attribute::Index::Attribute_0 &&
attribute <= Attribute::Index::Attribute_31) {
return GetOutputAttribute(attribute) + GetSwizzle(abuf->GetElement());
}
UNIMPLEMENTED_MSG("Unhandled output attribute: {}",
static_cast<u32>(attribute));
return "0";
2018-12-21 01:45:49 +01:00
}
}();
} else if (const auto lmem = std::get_if<LmemNode>(dest)) {
target = GetLocalMemory() + "[ftou(" + Visit(lmem->GetAddress()) + ") / 4]";
} else {
UNREACHABLE_MSG("Assign called without a proper target");
}
code.AddLine(target + " = " + Visit(src) + ';');
return {};
}
std::string Composite(Operation operation) {
std::string value = "vec4(";
for (std::size_t i = 0; i < 4; ++i) {
value += Visit(operation[i]);
if (i < 3)
value += ", ";
}
value += ')';
return value;
}
template <Type type>
std::string Add(Operation operation) {
return GenerateBinaryInfix(operation, "+", type, type, type);
}
template <Type type>
std::string Mul(Operation operation) {
return GenerateBinaryInfix(operation, "*", type, type, type);
}
template <Type type>
std::string Div(Operation operation) {
return GenerateBinaryInfix(operation, "/", type, type, type);
}
2018-12-23 06:26:35 +01:00
template <Type type>
std::string Fma(Operation operation) {
return GenerateTernary(operation, "fma", type, type, type, type);
2018-12-21 01:45:49 +01:00
}
template <Type type>
std::string Negate(Operation operation) {
return GenerateUnary(operation, "-", type, type, true);
}
template <Type type>
std::string Absolute(Operation operation) {
return GenerateUnary(operation, "abs", type, type, false);
}
std::string FClamp(Operation operation) {
return GenerateTernary(operation, "clamp", Type::Float, Type::Float, Type::Float,
Type::Float);
}
template <Type type>
std::string Min(Operation operation) {
return GenerateBinaryCall(operation, "min", type, type, type);
}
template <Type type>
std::string Max(Operation operation) {
return GenerateBinaryCall(operation, "max", type, type, type);
}
std::string Select(Operation operation) {
const std::string condition = Visit(operation[0]);
const std::string true_case = Visit(operation[1]);
const std::string false_case = Visit(operation[2]);
return ApplyPrecise(operation,
'(' + condition + " ? " + true_case + " : " + false_case + ')');
}
std::string FCos(Operation operation) {
return GenerateUnary(operation, "cos", Type::Float, Type::Float, false);
}
std::string FSin(Operation operation) {
return GenerateUnary(operation, "sin", Type::Float, Type::Float, false);
}
std::string FExp2(Operation operation) {
return GenerateUnary(operation, "exp2", Type::Float, Type::Float, false);
}
std::string FLog2(Operation operation) {
return GenerateUnary(operation, "log2", Type::Float, Type::Float, false);
}
std::string FInverseSqrt(Operation operation) {
return GenerateUnary(operation, "inversesqrt", Type::Float, Type::Float, false);
}
std::string FSqrt(Operation operation) {
return GenerateUnary(operation, "sqrt", Type::Float, Type::Float, false);
}
std::string FRoundEven(Operation operation) {
return GenerateUnary(operation, "roundEven", Type::Float, Type::Float, false);
}
std::string FFloor(Operation operation) {
return GenerateUnary(operation, "floor", Type::Float, Type::Float, false);
}
std::string FCeil(Operation operation) {
return GenerateUnary(operation, "ceil", Type::Float, Type::Float, false);
}
std::string FTrunc(Operation operation) {
return GenerateUnary(operation, "trunc", Type::Float, Type::Float, false);
}
template <Type type>
std::string FCastInteger(Operation operation) {
return GenerateUnary(operation, "float", Type::Float, type, false);
}
std::string ICastFloat(Operation operation) {
return GenerateUnary(operation, "int", Type::Int, Type::Float, false);
}
std::string ICastUnsigned(Operation operation) {
return GenerateUnary(operation, "int", Type::Int, Type::Uint, false);
}
template <Type type>
std::string LogicalShiftLeft(Operation operation) {
return GenerateBinaryInfix(operation, "<<", type, type, Type::Uint);
}
std::string ILogicalShiftRight(Operation operation) {
const std::string op_a = VisitOperand(operation, 0, Type::Uint);
const std::string op_b = VisitOperand(operation, 1, Type::Uint);
return ApplyPrecise(operation,
BitwiseCastResult("int(" + op_a + " >> " + op_b + ')', Type::Int));
}
std::string IArithmeticShiftRight(Operation operation) {
return GenerateBinaryInfix(operation, ">>", Type::Int, Type::Int, Type::Uint);
}
template <Type type>
std::string BitwiseAnd(Operation operation) {
return GenerateBinaryInfix(operation, "&", type, type, type);
}
template <Type type>
std::string BitwiseOr(Operation operation) {
return GenerateBinaryInfix(operation, "|", type, type, type);
}
template <Type type>
std::string BitwiseXor(Operation operation) {
return GenerateBinaryInfix(operation, "^", type, type, type);
}
template <Type type>
std::string BitwiseNot(Operation operation) {
return GenerateUnary(operation, "~", type, type, false);
}
std::string UCastFloat(Operation operation) {
return GenerateUnary(operation, "uint", Type::Uint, Type::Float, false);
}
std::string UCastSigned(Operation operation) {
return GenerateUnary(operation, "uint", Type::Uint, Type::Int, false);
}
std::string UShiftRight(Operation operation) {
return GenerateBinaryInfix(operation, ">>", Type::Uint, Type::Uint, Type::Uint);
}
template <Type type>
std::string BitfieldInsert(Operation operation) {
return GenerateQuaternary(operation, "bitfieldInsert", type, type, type, Type::Int,
Type::Int);
}
template <Type type>
std::string BitfieldExtract(Operation operation) {
return GenerateTernary(operation, "bitfieldExtract", type, type, Type::Int, Type::Int);
}
2018-12-23 05:33:47 +01:00
template <Type type>
std::string BitCount(Operation operation) {
return GenerateUnary(operation, "bitCount", type, type, false);
}
2018-12-21 01:45:49 +01:00
std::string HNegate(Operation operation) {
const auto GetNegate = [&](std::size_t index) -> std::string {
return VisitOperand(operation, index, Type::Bool) + " ? -1 : 1";
};
const std::string value = '(' + VisitOperand(operation, 0, Type::HalfFloat) + " * vec2(" +
GetNegate(1) + ", " + GetNegate(2) + "))";
return BitwiseCastResult(value, Type::HalfFloat);
}
std::string HClamp(Operation operation) {
const std::string value = VisitOperand(operation, 0, Type::HalfFloat);
const std::string min = VisitOperand(operation, 1, Type::Float);
const std::string max = VisitOperand(operation, 2, Type::Float);
const std::string clamped = "clamp(" + value + ", vec2(" + min + "), vec2(" + max + "))";
return ApplyPrecise(operation, BitwiseCastResult(clamped, Type::HalfFloat));
}
2018-12-21 01:45:49 +01:00
std::string HMergeF32(Operation operation) {
return "float(toHalf2(" + Visit(operation[0]) + ")[0])";
}
std::string HMergeH0(Operation operation) {
return "fromHalf2(vec2(toHalf2(" + Visit(operation[1]) + ")[0], toHalf2(" +
Visit(operation[0]) + ")[1]))";
2018-12-21 01:45:49 +01:00
}
std::string HMergeH1(Operation operation) {
return "fromHalf2(vec2(toHalf2(" + Visit(operation[0]) + ")[0], toHalf2(" +
Visit(operation[1]) + ")[1]))";
}
std::string HPack2(Operation operation) {
return "utof(packHalf2x16(vec2(" + Visit(operation[0]) + ", " + Visit(operation[1]) + ")))";
}
2018-12-21 01:45:49 +01:00
template <Type type>
std::string LogicalLessThan(Operation operation) {
return GenerateBinaryInfix(operation, "<", Type::Bool, type, type);
}
template <Type type>
std::string LogicalEqual(Operation operation) {
return GenerateBinaryInfix(operation, "==", Type::Bool, type, type);
}
template <Type type>
std::string LogicalLessEqual(Operation operation) {
return GenerateBinaryInfix(operation, "<=", Type::Bool, type, type);
}
template <Type type>
std::string LogicalGreaterThan(Operation operation) {
return GenerateBinaryInfix(operation, ">", Type::Bool, type, type);
}
template <Type type>
std::string LogicalNotEqual(Operation operation) {
return GenerateBinaryInfix(operation, "!=", Type::Bool, type, type);
}
template <Type type>
std::string LogicalGreaterEqual(Operation operation) {
return GenerateBinaryInfix(operation, ">=", Type::Bool, type, type);
}
std::string LogicalFIsNan(Operation operation) {
return GenerateUnary(operation, "isnan", Type::Bool, Type::Float, false);
}
std::string LogicalAssign(Operation operation) {
const Node dest = operation[0];
const Node src = operation[1];
std::string target;
if (const auto pred = std::get_if<PredicateNode>(dest)) {
ASSERT_MSG(!pred->IsNegated(), "Negating logical assignment");
const auto index = pred->GetIndex();
switch (index) {
case Tegra::Shader::Pred::NeverExecute:
case Tegra::Shader::Pred::UnusedIndex:
// Writing to these predicates is a no-op
return {};
}
target = GetPredicate(index);
} else if (const auto flag = std::get_if<InternalFlagNode>(dest)) {
target = GetInternalFlag(flag->GetFlag());
}
code.AddLine(target + " = " + Visit(src) + ';');
return {};
}
std::string LogicalAnd(Operation operation) {
return GenerateBinaryInfix(operation, "&&", Type::Bool, Type::Bool, Type::Bool);
}
std::string LogicalOr(Operation operation) {
return GenerateBinaryInfix(operation, "||", Type::Bool, Type::Bool, Type::Bool);
}
std::string LogicalXor(Operation operation) {
return GenerateBinaryInfix(operation, "^^", Type::Bool, Type::Bool, Type::Bool);
}
std::string LogicalNegate(Operation operation) {
return GenerateUnary(operation, "!", Type::Bool, Type::Bool, false);
}
2018-12-24 04:51:52 +01:00
std::string LogicalPick2(Operation operation) {
const std::string pair = VisitOperand(operation, 0, Type::Bool2);
return pair + '[' + VisitOperand(operation, 1, Type::Uint) + ']';
}
2018-12-24 00:59:49 +01:00
std::string LogicalAll2(Operation operation) {
return GenerateUnary(operation, "all", Type::Bool, Type::Bool2);
}
2018-12-21 01:45:49 +01:00
2018-12-24 00:59:49 +01:00
std::string LogicalAny2(Operation operation) {
return GenerateUnary(operation, "any", Type::Bool, Type::Bool2);
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
std::string GenerateHalfComparison(Operation operation, std::string compare_op) {
std::string comparison{GenerateBinaryCall(operation, compare_op, Type::Bool2,
Type::HalfFloat, Type::HalfFloat)};
if constexpr (!with_nan) {
return comparison;
}
return "halfFloatNanComparison(" + comparison + ", " +
VisitOperand(operation, 0, Type::HalfFloat) + ", " +
VisitOperand(operation, 1, Type::HalfFloat) + ')';
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HLessThan(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "lessThan");
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HEqual(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "equal");
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HLessEqual(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "lessThanEqual");
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HGreaterThan(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "greaterThan");
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HNotEqual(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "notEqual");
2018-12-21 01:45:49 +01:00
}
template <bool with_nan>
2018-12-24 00:59:49 +01:00
std::string Logical2HGreaterEqual(Operation operation) {
return GenerateHalfComparison<with_nan>(operation, "greaterThanEqual");
2018-12-21 01:45:49 +01:00
}
std::string Texture(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
std::string expr = GenerateTexture(
operation, "", {TextureAoffi{}, TextureArgument{Type::Float, meta->bias}});
if (meta->sampler.IsShadow()) {
2018-12-21 01:45:49 +01:00
expr = "vec4(" + expr + ')';
}
return expr + GetSwizzle(meta->element);
2018-12-21 01:45:49 +01:00
}
std::string TextureLod(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
std::string expr = GenerateTexture(
operation, "Lod", {TextureArgument{Type::Float, meta->lod}, TextureAoffi{}});
if (meta->sampler.IsShadow()) {
2018-12-21 01:45:49 +01:00
expr = "vec4(" + expr + ')';
}
return expr + GetSwizzle(meta->element);
2018-12-21 01:45:49 +01:00
}
std::string TextureGather(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
const auto type = meta->sampler.IsShadow() ? Type::Float : Type::Int;
return GenerateTexture(operation, "Gather",
{TextureArgument{type, meta->component}, TextureAoffi{}}) +
GetSwizzle(meta->element);
2018-12-21 01:45:49 +01:00
}
std::string TextureQueryDimensions(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
const std::string sampler = GetSampler(meta->sampler);
2018-12-21 01:45:49 +01:00
const std::string lod = VisitOperand(operation, 0, Type::Int);
switch (meta->element) {
case 0:
case 1:
return "itof(int(textureSize(" + sampler + ", " + lod + ')' +
GetSwizzle(meta->element) + "))";
case 2:
return "0";
case 3:
return "itof(textureQueryLevels(" + sampler + "))";
}
UNREACHABLE();
return "0";
2018-12-21 01:45:49 +01:00
}
std::string TextureQueryLod(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
if (meta->element < 2) {
return "itof(int((" + GenerateTexture(operation, "QueryLod", {}) + " * vec2(256))" +
GetSwizzle(meta->element) + "))";
}
return "0";
2018-12-21 01:45:49 +01:00
}
std::string TexelFetch(Operation operation) {
constexpr std::array<const char*, 4> constructors = {"int", "ivec2", "ivec3", "ivec4"};
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
UNIMPLEMENTED_IF(meta->sampler.IsArray());
const std::size_t count = operation.GetOperandsCount();
std::string expr = "texelFetch(";
expr += GetSampler(meta->sampler);
expr += ", ";
expr += constructors.at(operation.GetOperandsCount() - 1);
expr += '(';
for (std::size_t i = 0; i < count; ++i) {
expr += VisitOperand(operation, i, Type::Int);
const std::size_t next = i + 1;
if (next == count)
expr += ')';
else if (next < count)
expr += ", ";
}
if (meta->lod) {
expr += ", ";
expr += CastOperand(Visit(meta->lod), Type::Int);
}
expr += ')';
return expr + GetSwizzle(meta->element);
}
std::string Branch(Operation operation) {
const auto target = std::get_if<ImmediateNode>(operation[0]);
UNIMPLEMENTED_IF(!target);
code.AddLine(fmt::format("jmp_to = 0x{:x}u;", target->GetValue()));
2018-12-21 01:45:49 +01:00
code.AddLine("break;");
return {};
}
std::string PushFlowStack(Operation operation) {
const auto target = std::get_if<ImmediateNode>(operation[0]);
UNIMPLEMENTED_IF(!target);
code.AddLine(fmt::format("flow_stack[flow_stack_top++] = 0x{:x}u;", target->GetValue()));
2018-12-21 01:45:49 +01:00
return {};
}
std::string PopFlowStack(Operation operation) {
code.AddLine("jmp_to = flow_stack[--flow_stack_top];");
2018-12-21 01:45:49 +01:00
code.AddLine("break;");
return {};
}
std::string Exit(Operation operation) {
if (stage != ShaderStage::Fragment) {
code.AddLine("return;");
return {};
}
const auto& used_registers = ir.GetRegisters();
const auto SafeGetRegister = [&](u32 reg) -> std::string {
// TODO(Rodrigo): Replace with contains once C++20 releases
if (used_registers.find(reg) != used_registers.end()) {
return GetRegister(reg);
}
return "0.0f";
};
UNIMPLEMENTED_IF_MSG(header.ps.omap.sample_mask != 0, "Sample mask write is unimplemented");
code.AddLine("if (alpha_test[0] != 0) {");
++code.scope;
// We start on the register containing the alpha value in the first RT.
u32 current_reg = 3;
for (u32 render_target = 0; render_target < Maxwell::NumRenderTargets; ++render_target) {
// TODO(Blinkhawk): verify the behavior of alpha testing on hardware when
// multiple render targets are used.
if (header.ps.IsColorComponentOutputEnabled(render_target, 0) ||
header.ps.IsColorComponentOutputEnabled(render_target, 1) ||
header.ps.IsColorComponentOutputEnabled(render_target, 2) ||
header.ps.IsColorComponentOutputEnabled(render_target, 3)) {
code.AddLine(
fmt::format("if (!AlphaFunc({})) discard;", SafeGetRegister(current_reg)));
current_reg += 4;
}
}
--code.scope;
code.AddLine('}');
// Write the color outputs using the data in the shader registers, disabled
// rendertargets/components are skipped in the register assignment.
current_reg = 0;
for (u32 render_target = 0; render_target < Maxwell::NumRenderTargets; ++render_target) {
// TODO(Subv): Figure out how dual-source blending is configured in the Switch.
for (u32 component = 0; component < 4; ++component) {
if (header.ps.IsColorComponentOutputEnabled(render_target, component)) {
code.AddLine(fmt::format("FragColor{}[{}] = {};", render_target, component,
SafeGetRegister(current_reg)));
++current_reg;
}
}
}
if (header.ps.omap.depth) {
// The depth output is always 2 registers after the last color output, and current_reg
// already contains one past the last color register.
code.AddLine("gl_FragDepth = " + SafeGetRegister(current_reg + 1) + ';');
}
code.AddLine("return;");
return {};
}
std::string Discard(Operation operation) {
2018-12-21 01:45:49 +01:00
// Enclose "discard" in a conditional, so that GLSL compilation does not complain
// about unexecuted instructions that may follow this.
code.AddLine("if (true) {");
++code.scope;
code.AddLine("discard;");
--code.scope;
code.AddLine("}");
return {};
}
std::string EmitVertex(Operation operation) {
ASSERT_MSG(stage == ShaderStage::Geometry,
"EmitVertex is expected to be used in a geometry shader.");
// If a geometry shader is attached, it will always flip (it's the last stage before
// fragment). For more info about flipping, refer to gl_shader_gen.cpp.
code.AddLine("position.xy *= viewport_flip.xy;");
code.AddLine("gl_Position = position;");
code.AddLine("position.w = 1.0;");
code.AddLine("EmitVertex();");
return {};
}
std::string EndPrimitive(Operation operation) {
ASSERT_MSG(stage == ShaderStage::Geometry,
"EndPrimitive is expected to be used in a geometry shader.");
code.AddLine("EndPrimitive();");
return {};
}
2018-12-21 01:45:49 +01:00
std::string YNegate(Operation operation) {
// Config pack's third value is Y_NEGATE's state.
return "uintBitsToFloat(config_pack[2])";
}
static constexpr OperationDecompilersArray operation_decompilers = {
&GLSLDecompiler::Assign,
&GLSLDecompiler::Select,
&GLSLDecompiler::Add<Type::Float>,
&GLSLDecompiler::Mul<Type::Float>,
&GLSLDecompiler::Div<Type::Float>,
&GLSLDecompiler::Fma<Type::Float>,
&GLSLDecompiler::Negate<Type::Float>,
&GLSLDecompiler::Absolute<Type::Float>,
&GLSLDecompiler::FClamp,
&GLSLDecompiler::Min<Type::Float>,
&GLSLDecompiler::Max<Type::Float>,
&GLSLDecompiler::FCos,
&GLSLDecompiler::FSin,
&GLSLDecompiler::FExp2,
&GLSLDecompiler::FLog2,
&GLSLDecompiler::FInverseSqrt,
&GLSLDecompiler::FSqrt,
&GLSLDecompiler::FRoundEven,
&GLSLDecompiler::FFloor,
&GLSLDecompiler::FCeil,
&GLSLDecompiler::FTrunc,
&GLSLDecompiler::FCastInteger<Type::Int>,
&GLSLDecompiler::FCastInteger<Type::Uint>,
&GLSLDecompiler::Add<Type::Int>,
&GLSLDecompiler::Mul<Type::Int>,
&GLSLDecompiler::Div<Type::Int>,
&GLSLDecompiler::Negate<Type::Int>,
&GLSLDecompiler::Absolute<Type::Int>,
&GLSLDecompiler::Min<Type::Int>,
&GLSLDecompiler::Max<Type::Int>,
&GLSLDecompiler::ICastFloat,
&GLSLDecompiler::ICastUnsigned,
&GLSLDecompiler::LogicalShiftLeft<Type::Int>,
&GLSLDecompiler::ILogicalShiftRight,
&GLSLDecompiler::IArithmeticShiftRight,
&GLSLDecompiler::BitwiseAnd<Type::Int>,
&GLSLDecompiler::BitwiseOr<Type::Int>,
&GLSLDecompiler::BitwiseXor<Type::Int>,
&GLSLDecompiler::BitwiseNot<Type::Int>,
&GLSLDecompiler::BitfieldInsert<Type::Int>,
&GLSLDecompiler::BitfieldExtract<Type::Int>,
&GLSLDecompiler::BitCount<Type::Int>,
&GLSLDecompiler::Add<Type::Uint>,
&GLSLDecompiler::Mul<Type::Uint>,
&GLSLDecompiler::Div<Type::Uint>,
&GLSLDecompiler::Min<Type::Uint>,
&GLSLDecompiler::Max<Type::Uint>,
&GLSLDecompiler::UCastFloat,
&GLSLDecompiler::UCastSigned,
&GLSLDecompiler::LogicalShiftLeft<Type::Uint>,
&GLSLDecompiler::UShiftRight,
&GLSLDecompiler::UShiftRight,
&GLSLDecompiler::BitwiseAnd<Type::Uint>,
&GLSLDecompiler::BitwiseOr<Type::Uint>,
&GLSLDecompiler::BitwiseXor<Type::Uint>,
&GLSLDecompiler::BitwiseNot<Type::Uint>,
&GLSLDecompiler::BitfieldInsert<Type::Uint>,
&GLSLDecompiler::BitfieldExtract<Type::Uint>,
&GLSLDecompiler::BitCount<Type::Uint>,
&GLSLDecompiler::Add<Type::HalfFloat>,
&GLSLDecompiler::Mul<Type::HalfFloat>,
&GLSLDecompiler::Fma<Type::HalfFloat>,
&GLSLDecompiler::Absolute<Type::HalfFloat>,
&GLSLDecompiler::HNegate,
&GLSLDecompiler::HClamp,
&GLSLDecompiler::HMergeF32,
&GLSLDecompiler::HMergeH0,
&GLSLDecompiler::HMergeH1,
&GLSLDecompiler::HPack2,
&GLSLDecompiler::LogicalAssign,
&GLSLDecompiler::LogicalAnd,
&GLSLDecompiler::LogicalOr,
&GLSLDecompiler::LogicalXor,
&GLSLDecompiler::LogicalNegate,
&GLSLDecompiler::LogicalPick2,
&GLSLDecompiler::LogicalAll2,
&GLSLDecompiler::LogicalAny2,
&GLSLDecompiler::LogicalLessThan<Type::Float>,
&GLSLDecompiler::LogicalEqual<Type::Float>,
&GLSLDecompiler::LogicalLessEqual<Type::Float>,
&GLSLDecompiler::LogicalGreaterThan<Type::Float>,
&GLSLDecompiler::LogicalNotEqual<Type::Float>,
&GLSLDecompiler::LogicalGreaterEqual<Type::Float>,
&GLSLDecompiler::LogicalFIsNan,
&GLSLDecompiler::LogicalLessThan<Type::Int>,
&GLSLDecompiler::LogicalEqual<Type::Int>,
&GLSLDecompiler::LogicalLessEqual<Type::Int>,
&GLSLDecompiler::LogicalGreaterThan<Type::Int>,
&GLSLDecompiler::LogicalNotEqual<Type::Int>,
&GLSLDecompiler::LogicalGreaterEqual<Type::Int>,
&GLSLDecompiler::LogicalLessThan<Type::Uint>,
&GLSLDecompiler::LogicalEqual<Type::Uint>,
&GLSLDecompiler::LogicalLessEqual<Type::Uint>,
&GLSLDecompiler::LogicalGreaterThan<Type::Uint>,
&GLSLDecompiler::LogicalNotEqual<Type::Uint>,
&GLSLDecompiler::LogicalGreaterEqual<Type::Uint>,
&GLSLDecompiler::Logical2HLessThan<false>,
&GLSLDecompiler::Logical2HEqual<false>,
&GLSLDecompiler::Logical2HLessEqual<false>,
&GLSLDecompiler::Logical2HGreaterThan<false>,
&GLSLDecompiler::Logical2HNotEqual<false>,
&GLSLDecompiler::Logical2HGreaterEqual<false>,
&GLSLDecompiler::Logical2HLessThan<true>,
&GLSLDecompiler::Logical2HEqual<true>,
&GLSLDecompiler::Logical2HLessEqual<true>,
&GLSLDecompiler::Logical2HGreaterThan<true>,
&GLSLDecompiler::Logical2HNotEqual<true>,
&GLSLDecompiler::Logical2HGreaterEqual<true>,
&GLSLDecompiler::Texture,
&GLSLDecompiler::TextureLod,
&GLSLDecompiler::TextureGather,
&GLSLDecompiler::TextureQueryDimensions,
&GLSLDecompiler::TextureQueryLod,
&GLSLDecompiler::TexelFetch,
&GLSLDecompiler::Branch,
&GLSLDecompiler::PushFlowStack,
&GLSLDecompiler::PopFlowStack,
&GLSLDecompiler::Exit,
&GLSLDecompiler::Discard,
&GLSLDecompiler::EmitVertex,
&GLSLDecompiler::EndPrimitive,
&GLSLDecompiler::YNegate,
2018-12-21 01:45:49 +01:00
};
std::string GetRegister(u32 index) const {
return GetDeclarationWithSuffix(index, "gpr");
}
std::string GetPredicate(Tegra::Shader::Pred pred) const {
return GetDeclarationWithSuffix(static_cast<u32>(pred), "pred");
}
std::string GetInputAttribute(Attribute::Index attribute) const {
const auto index{static_cast<u32>(attribute) -
static_cast<u32>(Attribute::Index::Attribute_0)};
return GetDeclarationWithSuffix(index, "input_attr");
}
std::string GetOutputAttribute(Attribute::Index attribute) const {
const auto index{static_cast<u32>(attribute) -
static_cast<u32>(Attribute::Index::Attribute_0)};
return GetDeclarationWithSuffix(index, "output_attr");
}
std::string GetConstBuffer(u32 index) const {
return GetDeclarationWithSuffix(index, "cbuf");
}
std::string GetGlobalMemory(const GlobalMemoryBase& descriptor) const {
return fmt::format("gmem_{}_{}_{}", descriptor.cbuf_index, descriptor.cbuf_offset, suffix);
}
std::string GetGlobalMemoryBlock(const GlobalMemoryBase& descriptor) const {
return fmt::format("gmem_block_{}_{}_{}", descriptor.cbuf_index, descriptor.cbuf_offset,
suffix);
}
2018-12-21 01:45:49 +01:00
std::string GetConstBufferBlock(u32 index) const {
return GetDeclarationWithSuffix(index, "cbuf_block");
}
std::string GetLocalMemory() const {
return "lmem_" + suffix;
}
std::string GetInternalFlag(InternalFlag flag) const {
constexpr std::array<const char*, 4> InternalFlagNames = {"zero_flag", "sign_flag",
"carry_flag", "overflow_flag"};
const auto index = static_cast<u32>(flag);
ASSERT(index < static_cast<u32>(InternalFlag::Amount));
return std::string(InternalFlagNames[index]) + '_' + suffix;
}
std::string GetSampler(const Sampler& sampler) const {
2018-12-21 07:39:46 +01:00
return GetDeclarationWithSuffix(static_cast<u32>(sampler.GetIndex()), "sampler");
2018-12-21 01:45:49 +01:00
}
std::string GetDeclarationWithSuffix(u32 index, const std::string& name) const {
return name + '_' + std::to_string(index) + '_' + suffix;
}
const ShaderIR& ir;
const ShaderStage stage;
const std::string suffix;
const Header header;
ShaderWriter code;
};
} // Anonymous namespace
2018-12-21 01:45:49 +01:00
std::string GetCommonDeclarations() {
const auto cbuf = std::to_string(MAX_CONSTBUFFER_ELEMENTS);
const auto gmem = std::to_string(MAX_GLOBALMEMORY_ELEMENTS);
return "#define MAX_CONSTBUFFER_ELEMENTS " + cbuf + "\n" +
"#define MAX_GLOBALMEMORY_ELEMENTS " + gmem + "\n" +
2018-12-21 01:45:49 +01:00
"#define ftoi floatBitsToInt\n"
"#define ftou floatBitsToUint\n"
"#define itof intBitsToFloat\n"
"#define utof uintBitsToFloat\n\n"
"float fromHalf2(vec2 pair) {\n"
" return utof(packHalf2x16(pair));\n"
"}\n\n"
"vec2 toHalf2(float value) {\n"
" return unpackHalf2x16(ftou(value));\n"
"}\n\n"
"bvec2 halfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {\n"
" bvec2 is_nan1 = isnan(pair1);\n"
" bvec2 is_nan2 = isnan(pair2);\n"
" return bvec2(comparison.x || is_nan1.x || is_nan2.x, comparison.y || is_nan1.y || "
"is_nan2.y);\n"
2018-12-26 06:08:32 +01:00
"}\n";
2018-12-21 01:45:49 +01:00
}
ProgramResult Decompile(const ShaderIR& ir, Maxwell::ShaderStage stage, const std::string& suffix) {
GLSLDecompiler decompiler(ir, stage, suffix);
decompiler.Decompile();
return {decompiler.GetResult(), decompiler.GetShaderEntries()};
}
} // namespace OpenGL::GLShader