suyu/src/video_core/renderer_vulkan/vk_shader_decompiler.cpp

1303 lines
52 KiB
C++
Raw Normal View History

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <functional>
#include <map>
#include <set>
#include <fmt/format.h>
#include <sirit/sirit.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h"
#include "video_core/renderer_vulkan/vk_shader_decompiler.h"
#include "video_core/shader/shader_ir.h"
namespace Vulkan::VKShader {
using Sirit::Id;
using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse;
using Tegra::Shader::Register;
using namespace VideoCommon::Shader;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ShaderStage = Tegra::Engines::Maxwell3D::Regs::ShaderStage;
using Operation = const OperationNode&;
// TODO(Rodrigo): Use rasterizer's value
constexpr u32 MAX_CONSTBUFFER_ELEMENTS = 0x1000;
constexpr u32 STAGE_BINDING_STRIDE = 0x100;
enum class Type { Bool, Bool2, Float, Int, Uint, HalfFloat };
struct SamplerImage {
Id image_type;
Id sampled_image_type;
Id sampler;
};
namespace {
spv::Dim GetSamplerDim(const Sampler& sampler) {
switch (sampler.GetType()) {
case Tegra::Shader::TextureType::Texture1D:
return spv::Dim::Dim1D;
case Tegra::Shader::TextureType::Texture2D:
return spv::Dim::Dim2D;
case Tegra::Shader::TextureType::Texture3D:
return spv::Dim::Dim3D;
case Tegra::Shader::TextureType::TextureCube:
return spv::Dim::Cube;
default:
UNIMPLEMENTED_MSG("Unimplemented sampler type={}", static_cast<u32>(sampler.GetType()));
return spv::Dim::Dim2D;
}
}
/// Returns true if an attribute index is one of the 32 generic attributes
constexpr bool IsGenericAttribute(Attribute::Index attribute) {
return attribute >= Attribute::Index::Attribute_0 &&
attribute <= Attribute::Index::Attribute_31;
}
/// Returns the location of a generic attribute
constexpr u32 GetGenericAttributeLocation(Attribute::Index attribute) {
ASSERT(IsGenericAttribute(attribute));
return static_cast<u32>(attribute) - static_cast<u32>(Attribute::Index::Attribute_0);
}
/// Returns true if an object has to be treated as precise
bool IsPrecise(Operation operand) {
const auto& meta = operand.GetMeta();
if (std::holds_alternative<MetaArithmetic>(meta)) {
return std::get<MetaArithmetic>(meta).precise;
}
if (std::holds_alternative<MetaHalfArithmetic>(meta)) {
return std::get<MetaHalfArithmetic>(meta).precise;
}
return false;
}
} // namespace
class SPIRVDecompiler : public Sirit::Module {
public:
explicit SPIRVDecompiler(const ShaderIR& ir, ShaderStage stage)
: Module(0x00010300), ir{ir}, stage{stage}, header{ir.GetHeader()} {
AddCapability(spv::Capability::Shader);
AddExtension("SPV_KHR_storage_buffer_storage_class");
AddExtension("SPV_KHR_variable_pointers");
}
void Decompile() {
AllocateBindings();
AllocateLabels();
DeclareVertex();
DeclareGeometry();
DeclareFragment();
DeclareRegisters();
DeclarePredicates();
DeclareLocalMemory();
DeclareInternalFlags();
DeclareInputAttributes();
DeclareOutputAttributes();
DeclareConstantBuffers();
DeclareGlobalBuffers();
DeclareSamplers();
execute_function =
Emit(OpFunction(t_void, spv::FunctionControlMask::Inline, TypeFunction(t_void)));
Emit(OpLabel());
const u32 first_address = ir.GetBasicBlocks().begin()->first;
const Id loop_label = OpLabel("loop");
const Id merge_label = OpLabel("merge");
const Id dummy_label = OpLabel();
const Id jump_label = OpLabel();
continue_label = OpLabel("continue");
std::vector<Sirit::Literal> literals;
std::vector<Id> branch_labels;
for (const auto& pair : labels) {
const auto [literal, label] = pair;
literals.push_back(literal);
branch_labels.push_back(label);
}
// TODO(Rodrigo): Figure out the actual depth of the flow stack, for now it seems unlikely
// that shaders will use 20 nested SSYs and PBKs.
constexpr u32 FLOW_STACK_SIZE = 20;
const Id flow_stack_type = TypeArray(t_uint, Constant(t_uint, FLOW_STACK_SIZE));
jmp_to = Emit(OpVariable(TypePointer(spv::StorageClass::Function, t_uint),
spv::StorageClass::Function, Constant(t_uint, first_address)));
flow_stack = Emit(OpVariable(TypePointer(spv::StorageClass::Function, flow_stack_type),
spv::StorageClass::Function, ConstantNull(flow_stack_type)));
flow_stack_top =
Emit(OpVariable(t_func_uint, spv::StorageClass::Function, Constant(t_uint, 0)));
Name(jmp_to, "jmp_to");
Name(flow_stack, "flow_stack");
Name(flow_stack_top, "flow_stack_top");
Emit(OpBranch(loop_label));
Emit(loop_label);
Emit(OpLoopMerge(merge_label, continue_label, spv::LoopControlMask::Unroll));
Emit(OpBranch(dummy_label));
Emit(dummy_label);
const Id default_branch = OpLabel();
const Id jmp_to_load = Emit(OpLoad(t_uint, jmp_to));
Emit(OpSelectionMerge(jump_label, spv::SelectionControlMask::MaskNone));
Emit(OpSwitch(jmp_to_load, default_branch, literals, branch_labels));
Emit(default_branch);
Emit(OpReturn());
2019-03-14 06:30:19 +01:00
for (const auto& pair : ir.GetBasicBlocks()) {
const auto& [address, bb] = pair;
Emit(labels.at(address));
VisitBasicBlock(bb);
const auto next_it = labels.lower_bound(address + 1);
const Id next_label = next_it != labels.end() ? next_it->second : default_branch;
Emit(OpBranch(next_label));
}
Emit(jump_label);
Emit(OpBranch(continue_label));
Emit(continue_label);
Emit(OpBranch(loop_label));
Emit(merge_label);
Emit(OpReturn());
Emit(OpFunctionEnd());
}
ShaderEntries GetShaderEntries() const {
ShaderEntries entries;
entries.const_buffers_base_binding = const_buffers_base_binding;
entries.global_buffers_base_binding = global_buffers_base_binding;
entries.samplers_base_binding = samplers_base_binding;
for (const auto& cbuf : ir.GetConstantBuffers()) {
entries.const_buffers.emplace_back(cbuf.second, cbuf.first);
}
for (const auto& gmem : ir.GetGlobalMemoryBases()) {
entries.global_buffers.emplace_back(gmem.cbuf_index, gmem.cbuf_offset);
}
for (const auto& sampler : ir.GetSamplers()) {
entries.samplers.emplace_back(sampler);
}
for (const auto& attr : ir.GetInputAttributes()) {
entries.attributes.insert(GetGenericAttributeLocation(attr.first));
}
entries.clip_distances = ir.GetClipDistances();
entries.shader_length = ir.GetLength();
entries.entry_function = execute_function;
entries.interfaces = interfaces;
return entries;
}
private:
using OperationDecompilerFn = Id (SPIRVDecompiler::*)(Operation);
using OperationDecompilersArray =
std::array<OperationDecompilerFn, static_cast<std::size_t>(OperationCode::Amount)>;
static constexpr auto INTERNAL_FLAGS_COUNT = static_cast<std::size_t>(InternalFlag::Amount);
static constexpr u32 CBUF_STRIDE = 16;
void AllocateBindings() {
const u32 binding_base = static_cast<u32>(stage) * STAGE_BINDING_STRIDE;
u32 binding_iterator = binding_base;
const auto Allocate = [&binding_iterator](std::size_t count) {
const u32 current_binding = binding_iterator;
binding_iterator += static_cast<u32>(count);
return current_binding;
};
const_buffers_base_binding = Allocate(ir.GetConstantBuffers().size());
global_buffers_base_binding = Allocate(ir.GetGlobalMemoryBases().size());
samplers_base_binding = Allocate(ir.GetSamplers().size());
ASSERT_MSG(binding_iterator - binding_base < STAGE_BINDING_STRIDE,
"Stage binding stride is too small");
}
void AllocateLabels() {
for (const auto& pair : ir.GetBasicBlocks()) {
const u32 address = pair.first;
labels.emplace(address, OpLabel(fmt::format("label_0x{:x}", address)));
}
}
void DeclareVertex() {
if (stage != ShaderStage::Vertex)
return;
DeclareVertexRedeclarations();
}
void DeclareGeometry() {
if (stage != ShaderStage::Geometry)
return;
UNIMPLEMENTED();
}
void DeclareFragment() {
if (stage != ShaderStage::Fragment)
return;
for (u32 rt = 0; rt < static_cast<u32>(frag_colors.size()); ++rt) {
if (!IsRenderTargetUsed(rt)) {
continue;
}
const Id id = AddGlobalVariable(OpVariable(t_out_float4, spv::StorageClass::Output));
Name(id, fmt::format("frag_color{}", rt));
Decorate(id, spv::Decoration::Location, rt);
frag_colors[rt] = id;
interfaces.push_back(id);
}
if (header.ps.omap.depth) {
frag_depth = AddGlobalVariable(OpVariable(t_out_float, spv::StorageClass::Output));
Name(frag_depth, "frag_depth");
Decorate(frag_depth, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::FragDepth));
interfaces.push_back(frag_depth);
}
frag_coord = DeclareBuiltIn(spv::BuiltIn::FragCoord, spv::StorageClass::Input, t_in_float4,
"frag_coord");
front_facing = DeclareBuiltIn(spv::BuiltIn::FrontFacing, spv::StorageClass::Input,
t_in_bool, "front_facing");
}
void DeclareRegisters() {
for (const u32 gpr : ir.GetRegisters()) {
const Id id = OpVariable(t_prv_float, spv::StorageClass::Private, v_float_zero);
Name(id, fmt::format("gpr_{}", gpr));
registers.emplace(gpr, AddGlobalVariable(id));
}
}
void DeclarePredicates() {
for (const auto pred : ir.GetPredicates()) {
const Id id = OpVariable(t_prv_bool, spv::StorageClass::Private, v_false);
Name(id, fmt::format("pred_{}", static_cast<u32>(pred)));
predicates.emplace(pred, AddGlobalVariable(id));
}
}
void DeclareLocalMemory() {
if (const u64 local_memory_size = header.GetLocalMemorySize(); local_memory_size > 0) {
const auto element_count = static_cast<u32>(Common::AlignUp(local_memory_size, 4) / 4);
const Id type_array = TypeArray(t_float, Constant(t_uint, element_count));
const Id type_pointer = TypePointer(spv::StorageClass::Private, type_array);
Name(type_pointer, "LocalMemory");
local_memory =
OpVariable(type_pointer, spv::StorageClass::Private, ConstantNull(type_array));
AddGlobalVariable(Name(local_memory, "local_memory"));
}
}
void DeclareInternalFlags() {
constexpr std::array<const char*, INTERNAL_FLAGS_COUNT> names = {"zero", "sign", "carry",
"overflow"};
for (std::size_t flag = 0; flag < INTERNAL_FLAGS_COUNT; ++flag) {
const auto flag_code = static_cast<InternalFlag>(flag);
const Id id = OpVariable(t_prv_bool, spv::StorageClass::Private, v_false);
internal_flags[flag] = AddGlobalVariable(Name(id, names[flag]));
}
}
void DeclareInputAttributes() {
for (const auto element : ir.GetInputAttributes()) {
const Attribute::Index index = element.first;
if (!IsGenericAttribute(index)) {
continue;
}
UNIMPLEMENTED_IF(stage == ShaderStage::Geometry);
const u32 location = GetGenericAttributeLocation(index);
const Id id = OpVariable(t_in_float4, spv::StorageClass::Input);
Name(AddGlobalVariable(id), fmt::format("in_attr{}", location));
input_attributes.emplace(index, id);
interfaces.push_back(id);
Decorate(id, spv::Decoration::Location, location);
if (stage != ShaderStage::Fragment) {
continue;
}
switch (header.ps.GetAttributeUse(location)) {
case AttributeUse::Constant:
Decorate(id, spv::Decoration::Flat);
break;
case AttributeUse::ScreenLinear:
Decorate(id, spv::Decoration::NoPerspective);
break;
case AttributeUse::Perspective:
// Default
break;
default:
UNREACHABLE_MSG("Unused attribute being fetched");
}
}
}
void DeclareOutputAttributes() {
for (const auto index : ir.GetOutputAttributes()) {
if (!IsGenericAttribute(index)) {
continue;
}
const auto location = GetGenericAttributeLocation(index);
const Id id = OpVariable(t_out_float4, spv::StorageClass::Output);
Name(AddGlobalVariable(id), fmt::format("out_attr{}", location));
output_attributes.emplace(index, id);
interfaces.push_back(id);
Decorate(id, spv::Decoration::Location, location);
}
}
void DeclareConstantBuffers() {
u32 binding = const_buffers_base_binding;
for (const auto& entry : ir.GetConstantBuffers()) {
const auto [index, size] = entry;
const Id id = OpVariable(t_cbuf_ubo, spv::StorageClass::Uniform);
AddGlobalVariable(Name(id, fmt::format("cbuf_{}", index)));
Decorate(id, spv::Decoration::Binding, binding++);
Decorate(id, spv::Decoration::DescriptorSet, DESCRIPTOR_SET);
constant_buffers.emplace(index, id);
}
}
void DeclareGlobalBuffers() {
u32 binding = global_buffers_base_binding;
for (const auto& entry : ir.GetGlobalMemoryBases()) {
const Id id = OpVariable(t_gmem_ssbo, spv::StorageClass::StorageBuffer);
AddGlobalVariable(
Name(id, fmt::format("gmem_{}_{}", entry.cbuf_index, entry.cbuf_offset)));
Decorate(id, spv::Decoration::Binding, binding++);
Decorate(id, spv::Decoration::DescriptorSet, DESCRIPTOR_SET);
global_buffers.emplace(entry, id);
}
}
void DeclareSamplers() {
u32 binding = samplers_base_binding;
for (const auto& sampler : ir.GetSamplers()) {
const auto dim = GetSamplerDim(sampler);
const int depth = sampler.IsShadow() ? 1 : 0;
const int arrayed = sampler.IsArray() ? 1 : 0;
// TODO(Rodrigo): Sampled 1 indicates that the image will be used with a sampler. When
// SULD and SUST instructions are implemented, replace this value.
const int sampled = 1;
const Id image_type =
TypeImage(t_float, dim, depth, arrayed, false, sampled, spv::ImageFormat::Unknown);
const Id sampled_image_type = TypeSampledImage(image_type);
const Id pointer_type =
TypePointer(spv::StorageClass::UniformConstant, sampled_image_type);
const Id id = OpVariable(pointer_type, spv::StorageClass::UniformConstant);
AddGlobalVariable(Name(id, fmt::format("sampler_{}", sampler.GetIndex())));
sampler_images.insert(
{static_cast<u32>(sampler.GetIndex()), {image_type, sampled_image_type, id}});
Decorate(id, spv::Decoration::Binding, binding++);
Decorate(id, spv::Decoration::DescriptorSet, DESCRIPTOR_SET);
}
}
void DeclareVertexRedeclarations() {
vertex_index = DeclareBuiltIn(spv::BuiltIn::VertexIndex, spv::StorageClass::Input,
t_in_uint, "vertex_index");
instance_index = DeclareBuiltIn(spv::BuiltIn::InstanceIndex, spv::StorageClass::Input,
t_in_uint, "instance_index");
bool is_point_size_declared = false;
bool is_clip_distances_declared = false;
for (const auto index : ir.GetOutputAttributes()) {
if (index == Attribute::Index::PointSize) {
is_point_size_declared = true;
} else if (index == Attribute::Index::ClipDistances0123 ||
index == Attribute::Index::ClipDistances4567) {
is_clip_distances_declared = true;
}
}
std::vector<Id> members;
members.push_back(t_float4);
if (is_point_size_declared) {
members.push_back(t_float);
}
if (is_clip_distances_declared) {
members.push_back(TypeArray(t_float, Constant(t_uint, 8)));
}
const Id gl_per_vertex_struct = Name(TypeStruct(members), "PerVertex");
Decorate(gl_per_vertex_struct, spv::Decoration::Block);
u32 declaration_index = 0;
const auto MemberDecorateBuiltIn = [&](spv::BuiltIn builtin, std::string name,
bool condition) {
if (!condition)
return u32{};
MemberName(gl_per_vertex_struct, declaration_index, name);
MemberDecorate(gl_per_vertex_struct, declaration_index, spv::Decoration::BuiltIn,
static_cast<u32>(builtin));
return declaration_index++;
};
position_index = MemberDecorateBuiltIn(spv::BuiltIn::Position, "position", true);
point_size_index =
MemberDecorateBuiltIn(spv::BuiltIn::PointSize, "point_size", is_point_size_declared);
clip_distances_index = MemberDecorateBuiltIn(spv::BuiltIn::ClipDistance, "clip_distances",
is_clip_distances_declared);
const Id type_pointer = TypePointer(spv::StorageClass::Output, gl_per_vertex_struct);
per_vertex = OpVariable(type_pointer, spv::StorageClass::Output);
AddGlobalVariable(Name(per_vertex, "per_vertex"));
interfaces.push_back(per_vertex);
}
2019-03-14 06:30:19 +01:00
void VisitBasicBlock(const NodeBlock& bb) {
for (const Node node : bb) {
static_cast<void>(Visit(node));
}
}
Id Visit(Node node) {
if (const auto operation = std::get_if<OperationNode>(node)) {
const auto operation_index = static_cast<std::size_t>(operation->GetCode());
const auto decompiler = operation_decompilers[operation_index];
if (decompiler == nullptr) {
UNREACHABLE_MSG("Operation decompiler {} not defined", operation_index);
}
return (this->*decompiler)(*operation);
2019-03-14 06:30:19 +01:00
} else if (const auto gpr = std::get_if<GprNode>(node)) {
const u32 index = gpr->GetIndex();
if (index == Register::ZeroIndex) {
return Constant(t_float, 0.0f);
}
return Emit(OpLoad(t_float, registers.at(index)));
2019-03-14 06:30:19 +01:00
} else if (const auto immediate = std::get_if<ImmediateNode>(node)) {
return BitcastTo<Type::Float>(Constant(t_uint, immediate->GetValue()));
2019-03-14 06:30:19 +01:00
} else if (const auto predicate = std::get_if<PredicateNode>(node)) {
const auto value = [&]() -> Id {
switch (const auto index = predicate->GetIndex(); index) {
case Tegra::Shader::Pred::UnusedIndex:
return v_true;
case Tegra::Shader::Pred::NeverExecute:
return v_false;
default:
return Emit(OpLoad(t_bool, predicates.at(index)));
}
}();
if (predicate->IsNegated()) {
return Emit(OpLogicalNot(t_bool, value));
}
return value;
2019-03-14 06:30:19 +01:00
} else if (const auto abuf = std::get_if<AbufNode>(node)) {
const auto attribute = abuf->GetIndex();
const auto element = abuf->GetElement();
switch (attribute) {
case Attribute::Index::Position:
if (stage != ShaderStage::Fragment) {
UNIMPLEMENTED();
break;
} else {
if (element == 3) {
return Constant(t_float, 1.0f);
}
return Emit(OpLoad(t_float, AccessElement(t_in_float, frag_coord, element)));
}
case Attribute::Index::TessCoordInstanceIDVertexID:
// TODO(Subv): Find out what the values are for the first two elements when inside a
// vertex shader, and what's the value of the fourth element when inside a Tess Eval
// shader.
ASSERT(stage == ShaderStage::Vertex);
switch (element) {
case 2:
return BitcastFrom<Type::Uint>(Emit(OpLoad(t_uint, instance_index)));
case 3:
return BitcastFrom<Type::Uint>(Emit(OpLoad(t_uint, vertex_index)));
}
UNIMPLEMENTED_MSG("Unmanaged TessCoordInstanceIDVertexID element={}", element);
return Constant(t_float, 0);
case Attribute::Index::FrontFacing:
// TODO(Subv): Find out what the values are for the other elements.
ASSERT(stage == ShaderStage::Fragment);
if (element == 3) {
const Id is_front_facing = Emit(OpLoad(t_bool, front_facing));
const Id true_value =
BitcastTo<Type::Float>(Constant(t_int, static_cast<s32>(-1)));
const Id false_value = BitcastTo<Type::Float>(Constant(t_int, 0));
return Emit(OpSelect(t_float, is_front_facing, true_value, false_value));
}
UNIMPLEMENTED_MSG("Unmanaged FrontFacing element={}", element);
return Constant(t_float, 0.0f);
default:
if (IsGenericAttribute(attribute)) {
const Id pointer =
AccessElement(t_in_float, input_attributes.at(attribute), element);
return Emit(OpLoad(t_float, pointer));
}
break;
}
UNIMPLEMENTED_MSG("Unhandled input attribute: {}", static_cast<u32>(attribute));
2019-03-14 06:30:19 +01:00
} else if (const auto cbuf = std::get_if<CbufNode>(node)) {
const Node offset = cbuf->GetOffset();
const Id buffer_id = constant_buffers.at(cbuf->GetIndex());
Id buffer_index{};
Id buffer_element{};
if (const auto immediate = std::get_if<ImmediateNode>(offset)) {
// Direct access
const u32 offset_imm = immediate->GetValue();
ASSERT(offset_imm % 4 == 0);
buffer_index = Constant(t_uint, offset_imm / 16);
buffer_element = Constant(t_uint, (offset_imm / 4) % 4);
} else if (std::holds_alternative<OperationNode>(*offset)) {
// Indirect access
// TODO(Rodrigo): Use a uniform buffer stride of 4 and drop this slow math (which
// emits sub-optimal code on GLSL from my testing).
const Id offset_id = BitcastTo<Type::Uint>(Visit(offset));
const Id unsafe_offset = Emit(OpUDiv(t_uint, offset_id, Constant(t_uint, 4)));
const Id final_offset = Emit(
OpUMod(t_uint, unsafe_offset, Constant(t_uint, MAX_CONSTBUFFER_ELEMENTS - 1)));
buffer_index = Emit(OpUDiv(t_uint, final_offset, Constant(t_uint, 4)));
buffer_element = Emit(OpUMod(t_uint, final_offset, Constant(t_uint, 4)));
} else {
UNREACHABLE_MSG("Unmanaged offset node type");
}
const Id pointer = Emit(OpAccessChain(t_cbuf_float, buffer_id, Constant(t_uint, 0),
buffer_index, buffer_element));
return Emit(OpLoad(t_float, pointer));
2019-03-14 06:30:19 +01:00
} else if (const auto gmem = std::get_if<GmemNode>(node)) {
const Id gmem_buffer = global_buffers.at(gmem->GetDescriptor());
const Id real = BitcastTo<Type::Uint>(Visit(gmem->GetRealAddress()));
const Id base = BitcastTo<Type::Uint>(Visit(gmem->GetBaseAddress()));
Id offset = Emit(OpISub(t_uint, real, base));
offset = Emit(OpUDiv(t_uint, offset, Constant(t_uint, 4u)));
return Emit(OpLoad(t_float, Emit(OpAccessChain(t_gmem_float, gmem_buffer,
Constant(t_uint, 0u), offset))));
2019-03-14 06:30:19 +01:00
} else if (const auto conditional = std::get_if<ConditionalNode>(node)) {
// It's invalid to call conditional on nested nodes, use an operation instead
const Id true_label = OpLabel();
const Id skip_label = OpLabel();
Emit(OpBranchConditional(Visit(conditional->GetCondition()), true_label, skip_label));
Emit(true_label);
VisitBasicBlock(conditional->GetCode());
Emit(OpBranch(skip_label));
Emit(skip_label);
return {};
2019-03-14 06:30:19 +01:00
} else if (const auto comment = std::get_if<CommentNode>(node)) {
Name(Emit(OpUndef(t_void)), comment->GetText());
return {};
}
UNREACHABLE();
return {};
}
template <Id (Module::*func)(Id, Id), Type result_type, Type type_a = result_type>
Id Unary(Operation operation) {
const Id type_def = GetTypeDefinition(result_type);
const Id op_a = VisitOperand<type_a>(operation, 0);
const Id value = BitcastFrom<result_type>(Emit((this->*func)(type_def, op_a)));
if (IsPrecise(operation)) {
Decorate(value, spv::Decoration::NoContraction);
}
return value;
}
template <Id (Module::*func)(Id, Id, Id), Type result_type, Type type_a = result_type,
Type type_b = type_a>
Id Binary(Operation operation) {
const Id type_def = GetTypeDefinition(result_type);
const Id op_a = VisitOperand<type_a>(operation, 0);
const Id op_b = VisitOperand<type_b>(operation, 1);
const Id value = BitcastFrom<result_type>(Emit((this->*func)(type_def, op_a, op_b)));
if (IsPrecise(operation)) {
Decorate(value, spv::Decoration::NoContraction);
}
return value;
}
template <Id (Module::*func)(Id, Id, Id, Id), Type result_type, Type type_a = result_type,
Type type_b = type_a, Type type_c = type_b>
Id Ternary(Operation operation) {
const Id type_def = GetTypeDefinition(result_type);
const Id op_a = VisitOperand<type_a>(operation, 0);
const Id op_b = VisitOperand<type_b>(operation, 1);
const Id op_c = VisitOperand<type_c>(operation, 2);
const Id value = BitcastFrom<result_type>(Emit((this->*func)(type_def, op_a, op_b, op_c)));
if (IsPrecise(operation)) {
Decorate(value, spv::Decoration::NoContraction);
}
return value;
}
template <Id (Module::*func)(Id, Id, Id, Id, Id), Type result_type, Type type_a = result_type,
Type type_b = type_a, Type type_c = type_b, Type type_d = type_c>
Id Quaternary(Operation operation) {
const Id type_def = GetTypeDefinition(result_type);
const Id op_a = VisitOperand<type_a>(operation, 0);
const Id op_b = VisitOperand<type_b>(operation, 1);
const Id op_c = VisitOperand<type_c>(operation, 2);
const Id op_d = VisitOperand<type_d>(operation, 3);
const Id value =
BitcastFrom<result_type>(Emit((this->*func)(type_def, op_a, op_b, op_c, op_d)));
if (IsPrecise(operation)) {
Decorate(value, spv::Decoration::NoContraction);
}
return value;
}
Id Assign(Operation operation) {
const Node dest = operation[0];
const Node src = operation[1];
Id target{};
if (const auto gpr = std::get_if<GprNode>(dest)) {
if (gpr->GetIndex() == Register::ZeroIndex) {
// Writing to Register::ZeroIndex is a no op
return {};
}
target = registers.at(gpr->GetIndex());
} else if (const auto abuf = std::get_if<AbufNode>(dest)) {
target = [&]() -> Id {
switch (const auto attribute = abuf->GetIndex(); attribute) {
case Attribute::Index::Position:
return AccessElement(t_out_float, per_vertex, position_index,
abuf->GetElement());
case Attribute::Index::PointSize:
return AccessElement(t_out_float, per_vertex, point_size_index);
case Attribute::Index::ClipDistances0123:
return AccessElement(t_out_float, per_vertex, clip_distances_index,
abuf->GetElement());
case Attribute::Index::ClipDistances4567:
return AccessElement(t_out_float, per_vertex, clip_distances_index,
abuf->GetElement() + 4);
default:
if (IsGenericAttribute(attribute)) {
return AccessElement(t_out_float, output_attributes.at(attribute),
abuf->GetElement());
}
UNIMPLEMENTED_MSG("Unhandled output attribute: {}",
static_cast<u32>(attribute));
return {};
}
}();
} else if (const auto lmem = std::get_if<LmemNode>(dest)) {
Id address = BitcastTo<Type::Uint>(Visit(lmem->GetAddress()));
address = Emit(OpUDiv(t_uint, address, Constant(t_uint, 4)));
target = Emit(OpAccessChain(t_prv_float, local_memory, {address}));
}
Emit(OpStore(target, Visit(src)));
return {};
}
Id HNegate(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id HMergeF32(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id HMergeH0(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id HMergeH1(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id HPack2(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id LogicalAssign(Operation operation) {
const Node dest = operation[0];
const Node src = operation[1];
Id target{};
if (const auto pred = std::get_if<PredicateNode>(dest)) {
ASSERT_MSG(!pred->IsNegated(), "Negating logical assignment");
const auto index = pred->GetIndex();
switch (index) {
case Tegra::Shader::Pred::NeverExecute:
case Tegra::Shader::Pred::UnusedIndex:
// Writing to these predicates is a no-op
return {};
}
target = predicates.at(index);
} else if (const auto flag = std::get_if<InternalFlagNode>(dest)) {
target = internal_flags.at(static_cast<u32>(flag->GetFlag()));
}
Emit(OpStore(target, Visit(src)));
return {};
}
Id LogicalPick2(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id LogicalAll2(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id LogicalAny2(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id GetTextureSampler(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
const auto entry = sampler_images.at(static_cast<u32>(meta->sampler.GetIndex()));
return Emit(OpLoad(entry.sampled_image_type, entry.sampler));
}
Id GetTextureImage(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
const auto entry = sampler_images.at(static_cast<u32>(meta->sampler.GetIndex()));
return Emit(OpImage(entry.image_type, GetTextureSampler(operation)));
}
Id GetTextureCoordinates(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
std::vector<Id> coords;
for (std::size_t i = 0; i < operation.GetOperandsCount(); ++i) {
coords.push_back(Visit(operation[i]));
}
if (meta->sampler.IsArray()) {
const Id array_integer = BitcastTo<Type::Int>(Visit(meta->array));
coords.push_back(Emit(OpConvertSToF(t_float, array_integer)));
}
if (meta->sampler.IsShadow()) {
coords.push_back(Visit(meta->depth_compare));
}
const std::array<Id, 4> t_float_lut = {nullptr, t_float2, t_float3, t_float4};
return coords.size() == 1
? coords[0]
: Emit(OpCompositeConstruct(t_float_lut.at(coords.size() - 1), coords));
}
Id GetTextureElement(Operation operation, Id sample_value) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
ASSERT(meta);
return Emit(OpCompositeExtract(t_float, sample_value, meta->element));
}
Id Texture(Operation operation) {
const Id texture = Emit(OpImageSampleImplicitLod(t_float4, GetTextureSampler(operation),
GetTextureCoordinates(operation)));
return GetTextureElement(operation, texture);
}
Id TextureLod(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
const Id texture = Emit(OpImageSampleExplicitLod(
t_float4, GetTextureSampler(operation), GetTextureCoordinates(operation),
spv::ImageOperandsMask::Lod, Visit(meta->lod)));
return GetTextureElement(operation, texture);
}
Id TextureGather(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
const auto coords = GetTextureCoordinates(operation);
Id texture;
if (meta->sampler.IsShadow()) {
texture = Emit(OpImageDrefGather(t_float4, GetTextureSampler(operation), coords,
Visit(meta->component)));
} else {
u32 component_value = 0;
if (meta->component) {
const auto component = std::get_if<ImmediateNode>(meta->component);
ASSERT_MSG(component, "Component is not an immediate value");
component_value = component->GetValue();
}
texture = Emit(OpImageGather(t_float4, GetTextureSampler(operation), coords,
Constant(t_uint, component_value)));
}
return GetTextureElement(operation, texture);
}
Id TextureQueryDimensions(Operation operation) {
const auto meta = std::get_if<MetaTexture>(&operation.GetMeta());
const auto image_id = GetTextureImage(operation);
AddCapability(spv::Capability::ImageQuery);
if (meta->element == 3) {
return BitcastTo<Type::Float>(Emit(OpImageQueryLevels(t_int, image_id)));
}
const Id lod = VisitOperand<Type::Uint>(operation, 0);
const std::size_t coords_count = [&]() {
switch (const auto type = meta->sampler.GetType(); type) {
case Tegra::Shader::TextureType::Texture1D:
return 1;
case Tegra::Shader::TextureType::Texture2D:
case Tegra::Shader::TextureType::TextureCube:
return 2;
case Tegra::Shader::TextureType::Texture3D:
return 3;
default:
UNREACHABLE_MSG("Invalid texture type={}", static_cast<u32>(type));
return 2;
}
}();
if (meta->element >= coords_count) {
return Constant(t_float, 0.0f);
}
const std::array<Id, 3> types = {t_int, t_int2, t_int3};
const Id sizes = Emit(OpImageQuerySizeLod(types.at(coords_count - 1), image_id, lod));
const Id size = Emit(OpCompositeExtract(t_int, sizes, meta->element));
return BitcastTo<Type::Float>(size);
}
Id TextureQueryLod(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id TexelFetch(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id Branch(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id PushFlowStack(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id PopFlowStack(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id Exit(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id Discard(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id EmitVertex(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id EndPrimitive(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id YNegate(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id DeclareBuiltIn(spv::BuiltIn builtin, spv::StorageClass storage, Id type,
const std::string& name) {
const Id id = OpVariable(type, storage);
Decorate(id, spv::Decoration::BuiltIn, static_cast<u32>(builtin));
AddGlobalVariable(Name(id, name));
interfaces.push_back(id);
return id;
}
bool IsRenderTargetUsed(u32 rt) const {
for (u32 component = 0; component < 4; ++component) {
if (header.ps.IsColorComponentOutputEnabled(rt, component)) {
return true;
}
}
return false;
}
template <typename... Args>
Id AccessElement(Id pointer_type, Id composite, Args... elements_) {
std::vector<Id> members;
auto elements = {elements_...};
for (const auto element : elements) {
members.push_back(Constant(t_uint, element));
}
return Emit(OpAccessChain(pointer_type, composite, members));
}
template <Type type>
Id VisitOperand(Operation operation, std::size_t operand_index) {
const Id value = Visit(operation[operand_index]);
switch (type) {
case Type::Bool:
case Type::Bool2:
case Type::Float:
return value;
case Type::Int:
return Emit(OpBitcast(t_int, value));
case Type::Uint:
return Emit(OpBitcast(t_uint, value));
case Type::HalfFloat:
UNIMPLEMENTED();
}
UNREACHABLE();
return value;
}
template <Type type>
Id BitcastFrom(Id value) {
switch (type) {
case Type::Bool:
case Type::Bool2:
case Type::Float:
return value;
case Type::Int:
case Type::Uint:
return Emit(OpBitcast(t_float, value));
case Type::HalfFloat:
UNIMPLEMENTED();
}
UNREACHABLE();
return value;
}
template <Type type>
Id BitcastTo(Id value) {
switch (type) {
case Type::Bool:
case Type::Bool2:
UNREACHABLE();
case Type::Float:
return Emit(OpBitcast(t_float, value));
case Type::Int:
return Emit(OpBitcast(t_int, value));
case Type::Uint:
return Emit(OpBitcast(t_uint, value));
case Type::HalfFloat:
UNIMPLEMENTED();
}
UNREACHABLE();
return value;
}
Id GetTypeDefinition(Type type) {
switch (type) {
case Type::Bool:
return t_bool;
case Type::Bool2:
return t_bool2;
case Type::Float:
return t_float;
case Type::Int:
return t_int;
case Type::Uint:
return t_uint;
case Type::HalfFloat:
UNIMPLEMENTED();
}
UNREACHABLE();
return {};
}
static constexpr OperationDecompilersArray operation_decompilers = {
&SPIRVDecompiler::Assign,
&SPIRVDecompiler::Ternary<&Module::OpSelect, Type::Float, Type::Bool, Type::Float,
Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFAdd, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFMul, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFDiv, Type::Float>,
&SPIRVDecompiler::Ternary<&Module::OpFma, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpFNegate, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpFAbs, Type::Float>,
&SPIRVDecompiler::Ternary<&Module::OpFClamp, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFMin, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFMax, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpCos, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpSin, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpExp2, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpLog2, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpInverseSqrt, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpSqrt, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpRoundEven, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpFloor, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpCeil, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpTrunc, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpConvertSToF, Type::Float, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpConvertUToF, Type::Float, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpIAdd, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpIMul, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSDiv, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpSNegate, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpSAbs, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSMin, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSMax, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpConvertFToS, Type::Int, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpBitcast, Type::Int, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpShiftLeftLogical, Type::Int, Type::Int, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpShiftRightLogical, Type::Int, Type::Int, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpShiftRightArithmetic, Type::Int, Type::Int, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseAnd, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseOr, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseXor, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpNot, Type::Int>,
&SPIRVDecompiler::Quaternary<&Module::OpBitFieldInsert, Type::Int>,
&SPIRVDecompiler::Ternary<&Module::OpBitFieldSExtract, Type::Int>,
&SPIRVDecompiler::Unary<&Module::OpBitCount, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpIAdd, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpIMul, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpUDiv, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpUMin, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpUMax, Type::Uint>,
&SPIRVDecompiler::Unary<&Module::OpConvertFToU, Type::Uint, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpBitcast, Type::Uint, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpShiftLeftLogical, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpShiftRightLogical, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpShiftRightArithmetic, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseAnd, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseOr, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpBitwiseXor, Type::Uint>,
&SPIRVDecompiler::Unary<&Module::OpNot, Type::Uint>,
&SPIRVDecompiler::Quaternary<&Module::OpBitFieldInsert, Type::Uint>,
&SPIRVDecompiler::Ternary<&Module::OpBitFieldUExtract, Type::Uint>,
&SPIRVDecompiler::Unary<&Module::OpBitCount, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpFAdd, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFMul, Type::HalfFloat>,
&SPIRVDecompiler::Ternary<&Module::OpFma, Type::HalfFloat>,
&SPIRVDecompiler::Unary<&Module::OpFAbs, Type::HalfFloat>,
&SPIRVDecompiler::HNegate,
&SPIRVDecompiler::HMergeF32,
&SPIRVDecompiler::HMergeH0,
&SPIRVDecompiler::HMergeH1,
&SPIRVDecompiler::HPack2,
&SPIRVDecompiler::LogicalAssign,
&SPIRVDecompiler::Binary<&Module::OpLogicalAnd, Type::Bool>,
&SPIRVDecompiler::Binary<&Module::OpLogicalOr, Type::Bool>,
&SPIRVDecompiler::Binary<&Module::OpLogicalNotEqual, Type::Bool>,
&SPIRVDecompiler::Unary<&Module::OpLogicalNot, Type::Bool>,
&SPIRVDecompiler::LogicalPick2,
&SPIRVDecompiler::LogicalAll2,
&SPIRVDecompiler::LogicalAny2,
&SPIRVDecompiler::Binary<&Module::OpFOrdLessThan, Type::Bool, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFOrdEqual, Type::Bool, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFOrdLessThanEqual, Type::Bool, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFOrdGreaterThan, Type::Bool, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFOrdNotEqual, Type::Bool, Type::Float>,
&SPIRVDecompiler::Binary<&Module::OpFOrdGreaterThanEqual, Type::Bool, Type::Float>,
&SPIRVDecompiler::Unary<&Module::OpIsNan, Type::Bool>,
&SPIRVDecompiler::Binary<&Module::OpSLessThan, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpIEqual, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSLessThanEqual, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSGreaterThan, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpINotEqual, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpSGreaterThanEqual, Type::Bool, Type::Int>,
&SPIRVDecompiler::Binary<&Module::OpULessThan, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpIEqual, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpULessThanEqual, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpUGreaterThan, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpINotEqual, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpUGreaterThanEqual, Type::Bool, Type::Uint>,
&SPIRVDecompiler::Binary<&Module::OpFOrdLessThan, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFOrdEqual, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFOrdLessThanEqual, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFOrdGreaterThan, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFOrdNotEqual, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Binary<&Module::OpFOrdGreaterThanEqual, Type::Bool, Type::HalfFloat>,
&SPIRVDecompiler::Texture,
&SPIRVDecompiler::TextureLod,
&SPIRVDecompiler::TextureGather,
&SPIRVDecompiler::TextureQueryDimensions,
&SPIRVDecompiler::TextureQueryLod,
&SPIRVDecompiler::TexelFetch,
&SPIRVDecompiler::Branch,
&SPIRVDecompiler::PushFlowStack,
&SPIRVDecompiler::PopFlowStack,
&SPIRVDecompiler::Exit,
&SPIRVDecompiler::Discard,
&SPIRVDecompiler::EmitVertex,
&SPIRVDecompiler::EndPrimitive,
&SPIRVDecompiler::YNegate,
};
const ShaderIR& ir;
const ShaderStage stage;
const Tegra::Shader::Header header;
const Id t_void = Name(TypeVoid(), "void");
const Id t_bool = Name(TypeBool(), "bool");
const Id t_bool2 = Name(TypeVector(t_bool, 2), "bool2");
const Id t_int = Name(TypeInt(32, true), "int");
const Id t_int2 = Name(TypeVector(t_int, 2), "int2");
const Id t_int3 = Name(TypeVector(t_int, 3), "int3");
const Id t_int4 = Name(TypeVector(t_int, 4), "int4");
const Id t_uint = Name(TypeInt(32, false), "uint");
const Id t_uint2 = Name(TypeVector(t_uint, 2), "uint2");
const Id t_uint3 = Name(TypeVector(t_uint, 3), "uint3");
const Id t_uint4 = Name(TypeVector(t_uint, 4), "uint4");
const Id t_float = Name(TypeFloat(32), "float");
const Id t_float2 = Name(TypeVector(t_float, 2), "float2");
const Id t_float3 = Name(TypeVector(t_float, 3), "float3");
const Id t_float4 = Name(TypeVector(t_float, 4), "float4");
const Id t_prv_bool = Name(TypePointer(spv::StorageClass::Private, t_bool), "prv_bool");
const Id t_prv_float = Name(TypePointer(spv::StorageClass::Private, t_float), "prv_float");
const Id t_func_uint = Name(TypePointer(spv::StorageClass::Function, t_uint), "func_uint");
const Id t_in_bool = Name(TypePointer(spv::StorageClass::Input, t_bool), "in_bool");
const Id t_in_uint = Name(TypePointer(spv::StorageClass::Input, t_uint), "in_uint");
const Id t_in_float = Name(TypePointer(spv::StorageClass::Input, t_float), "in_float");
const Id t_in_float4 = Name(TypePointer(spv::StorageClass::Input, t_float4), "in_float4");
const Id t_out_float = Name(TypePointer(spv::StorageClass::Output, t_float), "out_float");
const Id t_out_float4 = Name(TypePointer(spv::StorageClass::Output, t_float4), "out_float4");
const Id t_cbuf_float = TypePointer(spv::StorageClass::Uniform, t_float);
const Id t_cbuf_array =
Decorate(Name(TypeArray(t_float4, Constant(t_uint, MAX_CONSTBUFFER_ELEMENTS)), "CbufArray"),
spv::Decoration::ArrayStride, CBUF_STRIDE);
const Id t_cbuf_struct = MemberDecorate(
Decorate(TypeStruct(t_cbuf_array), spv::Decoration::Block), 0, spv::Decoration::Offset, 0);
const Id t_cbuf_ubo = TypePointer(spv::StorageClass::Uniform, t_cbuf_struct);
const Id t_gmem_float = TypePointer(spv::StorageClass::StorageBuffer, t_float);
const Id t_gmem_array =
Name(Decorate(TypeRuntimeArray(t_float), spv::Decoration::ArrayStride, 4u), "GmemArray");
const Id t_gmem_struct = MemberDecorate(
Decorate(TypeStruct(t_gmem_array), spv::Decoration::Block), 0, spv::Decoration::Offset, 0);
const Id t_gmem_ssbo = TypePointer(spv::StorageClass::StorageBuffer, t_gmem_struct);
const Id v_float_zero = Constant(t_float, 0.0f);
const Id v_true = ConstantTrue(t_bool);
const Id v_false = ConstantFalse(t_bool);
Id per_vertex{};
std::map<u32, Id> registers;
std::map<Tegra::Shader::Pred, Id> predicates;
Id local_memory{};
std::array<Id, INTERNAL_FLAGS_COUNT> internal_flags{};
std::map<Attribute::Index, Id> input_attributes;
std::map<Attribute::Index, Id> output_attributes;
std::map<u32, Id> constant_buffers;
std::map<GlobalMemoryBase, Id> global_buffers;
std::map<u32, SamplerImage> sampler_images;
Id instance_index{};
Id vertex_index{};
std::array<Id, Maxwell::NumRenderTargets> frag_colors{};
Id frag_depth{};
Id frag_coord{};
Id front_facing{};
u32 position_index{};
u32 point_size_index{};
u32 clip_distances_index{};
std::vector<Id> interfaces;
u32 const_buffers_base_binding{};
u32 global_buffers_base_binding{};
u32 samplers_base_binding{};
Id execute_function{};
Id jmp_to{};
Id flow_stack_top{};
Id flow_stack{};
Id continue_label{};
std::map<u32, Id> labels;
};
DecompilerResult Decompile(const VideoCommon::Shader::ShaderIR& ir, Maxwell::ShaderStage stage) {
auto decompiler = std::make_unique<SPIRVDecompiler>(ir, stage);
decompiler->Decompile();
return {std::move(decompiler), decompiler->GetShaderEntries()};
}
} // namespace Vulkan::VKShader