suyu/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp

1186 lines
53 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/textures/astc.h"
#include "video_core/textures/decoders.h"
#include "video_core/utils.h"
namespace OpenGL {
using SurfaceType = SurfaceParams::SurfaceType;
using PixelFormat = SurfaceParams::PixelFormat;
using ComponentType = SurfaceParams::ComponentType;
struct FormatTuple {
GLint internal_format;
GLenum format;
GLenum type;
ComponentType component_type;
bool compressed;
};
static VAddr TryGetCpuAddr(Tegra::GPUVAddr gpu_addr) {
auto& gpu{Core::System::GetInstance().GPU()};
const auto cpu_addr{gpu.MemoryManager().GpuToCpuAddress(gpu_addr)};
return cpu_addr ? *cpu_addr : 0;
}
/*static*/ SurfaceParams SurfaceParams::CreateForTexture(
const Tegra::Texture::FullTextureInfo& config, const GLShader::SamplerEntry& entry) {
SurfaceParams params{};
params.addr = TryGetCpuAddr(config.tic.Address());
params.is_tiled = config.tic.IsTiled();
params.block_height = params.is_tiled ? config.tic.BlockHeight() : 0,
params.pixel_format =
PixelFormatFromTextureFormat(config.tic.format, config.tic.r_type.Value());
params.component_type = ComponentTypeFromTexture(config.tic.r_type.Value());
params.type = GetFormatType(params.pixel_format);
params.width = Common::AlignUp(config.tic.Width(), GetCompressionFactor(params.pixel_format));
params.height = Common::AlignUp(config.tic.Height(), GetCompressionFactor(params.pixel_format));
params.unaligned_height = config.tic.Height();
params.target = SurfaceTargetFromTextureType(config.tic.texture_type);
switch (params.target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture2D:
params.depth = 1;
break;
case SurfaceTarget::TextureCubemap:
params.depth = config.tic.Depth() * 6;
break;
case SurfaceTarget::Texture3D:
params.depth = config.tic.Depth();
break;
case SurfaceTarget::Texture2DArray:
params.depth = config.tic.Depth();
if (!entry.IsArray()) {
// TODO(bunnei): We have seen games re-use a Texture2D as Texture2DArray with depth of
// one, but sample the texture in the shader as if it were not an array texture. This
// probably is valid on hardware, but we still need to write a test to confirm this. In
// emulation, the workaround here is to continue to treat this as a Texture2D. An
// example game that does this is Super Mario Odyssey (in Cloud Kingdom).
ASSERT(params.depth == 1);
params.target = SurfaceTarget::Texture2D;
}
break;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth for target={}", static_cast<u32>(params.target));
UNREACHABLE();
params.depth = 1;
break;
}
params.size_in_bytes_total = params.SizeInBytesTotal();
params.size_in_bytes_2d = params.SizeInBytes2D();
params.max_mip_level = config.tic.max_mip_level + 1;
params.rt = {};
return params;
}
/*static*/ SurfaceParams SurfaceParams::CreateForFramebuffer(std::size_t index) {
const auto& config{Core::System::GetInstance().GPU().Maxwell3D().regs.rt[index]};
SurfaceParams params{};
params.addr = TryGetCpuAddr(config.Address());
params.is_tiled = true;
params.block_height = Tegra::Texture::TICEntry::DefaultBlockHeight;
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
params.width = config.width;
params.height = config.height;
params.unaligned_height = config.height;
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.size_in_bytes_total = params.SizeInBytesTotal();
params.size_in_bytes_2d = params.SizeInBytes2D();
params.max_mip_level = 0;
// Render target specific parameters, not used for caching
params.rt.index = static_cast<u32>(index);
params.rt.array_mode = config.array_mode;
params.rt.layer_stride = config.layer_stride;
params.rt.base_layer = config.base_layer;
return params;
}
/*static*/ SurfaceParams SurfaceParams::CreateForDepthBuffer(u32 zeta_width, u32 zeta_height,
Tegra::GPUVAddr zeta_address,
Tegra::DepthFormat format) {
SurfaceParams params{};
params.addr = TryGetCpuAddr(zeta_address);
params.is_tiled = true;
params.block_height = Tegra::Texture::TICEntry::DefaultBlockHeight;
params.pixel_format = PixelFormatFromDepthFormat(format);
params.component_type = ComponentTypeFromDepthFormat(format);
params.type = GetFormatType(params.pixel_format);
params.width = zeta_width;
params.height = zeta_height;
params.unaligned_height = zeta_height;
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.size_in_bytes_total = params.SizeInBytesTotal();
params.size_in_bytes_2d = params.SizeInBytes2D();
params.max_mip_level = 0;
params.rt = {};
return params;
}
/*static*/ SurfaceParams SurfaceParams::CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
SurfaceParams params{};
params.addr = TryGetCpuAddr(config.Address());
params.is_tiled = !config.linear;
params.block_height = params.is_tiled ? config.BlockHeight() : 0,
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
params.width = config.width;
params.height = config.height;
params.unaligned_height = config.height;
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.size_in_bytes_total = params.SizeInBytesTotal();
params.size_in_bytes_2d = params.SizeInBytes2D();
params.max_mip_level = 0;
params.rt = {};
return params;
}
2018-04-19 01:11:14 +02:00
static constexpr std::array<FormatTuple, SurfaceParams::MaxPixelFormat> tex_format_tuples = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm, false}, // ABGR8U
{GL_RGBA8, GL_RGBA, GL_BYTE, ComponentType::SNorm, false}, // ABGR8S
2018-08-20 14:26:54 +02:00
{GL_RGBA8UI, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // ABGR8UI
{GL_RGB8, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, ComponentType::UNorm, false}, // B5G6R5U
{GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, ComponentType::UNorm,
false}, // A2B10G10R10U
{GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV, ComponentType::UNorm, false}, // A1B5G5R5U
{GL_R8, GL_RED, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // R8U
{GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // R8UI
{GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, ComponentType::Float, false}, // RGBA16F
{GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RGBA16U
{GL_RGBA16UI, GL_RGBA, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RGBA16UI
{GL_R11F_G11F_B10F, GL_RGB, GL_UNSIGNED_INT_10F_11F_11F_REV, ComponentType::Float,
false}, // R11FG11FB10F
{GL_RGBA32UI, GL_RGBA_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RGBA32UI
{GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT1
{GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT23
{GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT45
{GL_COMPRESSED_RED_RGTC1, GL_RED, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXN1
{GL_COMPRESSED_RG_RGTC2, GL_RG, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXN2UNORM
{GL_COMPRESSED_SIGNED_RG_RGTC2, GL_RG, GL_INT, ComponentType::SNorm, true}, // DXN2SNORM
2018-08-13 05:07:57 +02:00
{GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // BC7U
{GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB, GL_RGB, GL_UNSIGNED_INT_8_8_8_8,
2018-09-23 19:10:19 +02:00
ComponentType::Float, true}, // BC6H_UF16
{GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::Float,
true}, // BC6H_SF16
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_4X4
{GL_RG8, GL_RG, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // G8R8U
{GL_RG8, GL_RG, GL_BYTE, ComponentType::SNorm, false}, // G8R8S
{GL_RGBA8, GL_BGRA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // BGRA8
{GL_RGBA32F, GL_RGBA, GL_FLOAT, ComponentType::Float, false}, // RGBA32F
{GL_RG32F, GL_RG, GL_FLOAT, ComponentType::Float, false}, // RG32F
{GL_R32F, GL_RED, GL_FLOAT, ComponentType::Float, false}, // R32F
{GL_R16F, GL_RED, GL_HALF_FLOAT, ComponentType::Float, false}, // R16F
{GL_R16, GL_RED, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // R16U
{GL_R16_SNORM, GL_RED, GL_SHORT, ComponentType::SNorm, false}, // R16S
{GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // R16UI
{GL_R16I, GL_RED_INTEGER, GL_SHORT, ComponentType::SInt, false}, // R16I
{GL_RG16, GL_RG, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RG16
{GL_RG16F, GL_RG, GL_HALF_FLOAT, ComponentType::Float, false}, // RG16F
{GL_RG16UI, GL_RG_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RG16UI
{GL_RG16I, GL_RG_INTEGER, GL_SHORT, ComponentType::SInt, false}, // RG16I
{GL_RG16_SNORM, GL_RG, GL_SHORT, ComponentType::SNorm, false}, // RG16S
{GL_RGB32F, GL_RGB, GL_FLOAT, ComponentType::Float, false}, // RGB32F
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm, false}, // SRGBA8
{GL_RG8, GL_RG, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // RG8U
{GL_RG8, GL_RG, GL_BYTE, ComponentType::SNorm, false}, // RG8S
{GL_RG32UI, GL_RG_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RG32UI
{GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // R32UI
2018-09-16 16:47:02 +02:00
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X8
// Depth formats
{GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, ComponentType::Float, false}, // Z32F
{GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, ComponentType::UNorm,
false}, // Z16
// DepthStencil formats
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm,
false}, // Z24S8
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm,
false}, // S8Z24
{GL_DEPTH32F_STENCIL8, GL_DEPTH_STENCIL, GL_FLOAT_32_UNSIGNED_INT_24_8_REV,
ComponentType::Float, false}, // Z32FS8
}};
static GLenum SurfaceTargetToGL(SurfaceParams::SurfaceTarget target) {
switch (target) {
case SurfaceParams::SurfaceTarget::Texture1D:
return GL_TEXTURE_1D;
case SurfaceParams::SurfaceTarget::Texture2D:
return GL_TEXTURE_2D;
case SurfaceParams::SurfaceTarget::Texture3D:
return GL_TEXTURE_3D;
case SurfaceParams::SurfaceTarget::Texture1DArray:
return GL_TEXTURE_1D_ARRAY;
case SurfaceParams::SurfaceTarget::Texture2DArray:
return GL_TEXTURE_2D_ARRAY;
case SurfaceParams::SurfaceTarget::TextureCubemap:
return GL_TEXTURE_CUBE_MAP;
}
LOG_CRITICAL(Render_OpenGL, "Unimplemented texture target={}", static_cast<u32>(target));
UNREACHABLE();
return {};
}
static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) {
ASSERT(static_cast<std::size_t>(pixel_format) < tex_format_tuples.size());
auto& format = tex_format_tuples[static_cast<unsigned int>(pixel_format)];
ASSERT(component_type == format.component_type);
return format;
}
static bool IsPixelFormatASTC(PixelFormat format) {
switch (format) {
case PixelFormat::ASTC_2D_4X4:
2018-09-16 16:47:02 +02:00
case PixelFormat::ASTC_2D_8X8:
return true;
default:
return false;
}
}
static std::pair<u32, u32> GetASTCBlockSize(PixelFormat format) {
switch (format) {
case PixelFormat::ASTC_2D_4X4:
return {4, 4};
2018-09-16 16:47:02 +02:00
case PixelFormat::ASTC_2D_8X8:
return {8, 8};
default:
2018-07-02 18:13:26 +02:00
LOG_CRITICAL(HW_GPU, "Unhandled format: {}", static_cast<u32>(format));
UNREACHABLE();
}
}
MathUtil::Rectangle<u32> SurfaceParams::GetRect() const {
u32 actual_height{unaligned_height};
if (IsPixelFormatASTC(pixel_format)) {
// ASTC formats must stop at the ATSC block size boundary
actual_height = Common::AlignDown(actual_height, GetASTCBlockSize(pixel_format).second);
}
return {0, actual_height, width, 0};
}
/// Returns true if the specified PixelFormat is a BCn format, e.g. DXT or DXN
static bool IsFormatBCn(PixelFormat format) {
switch (format) {
case PixelFormat::DXT1:
case PixelFormat::DXT23:
case PixelFormat::DXT45:
case PixelFormat::DXN1:
case PixelFormat::DXN2SNORM:
case PixelFormat::DXN2UNORM:
case PixelFormat::BC7U:
case PixelFormat::BC6H_UF16:
case PixelFormat::BC6H_SF16:
return true;
}
return false;
}
template <bool morton_to_gl, PixelFormat format>
void MortonCopy(u32 stride, u32 block_height, u32 height, u8* gl_buffer, std::size_t gl_buffer_size,
VAddr addr) {
constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / CHAR_BIT;
constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
if (morton_to_gl) {
// With the BCn formats (DXT and DXN), each 4x4 tile is swizzled instead of just individual
// pixel values.
const u32 tile_size{IsFormatBCn(format) ? 4U : 1U};
const std::vector<u8> data = Tegra::Texture::UnswizzleTexture(
addr, tile_size, bytes_per_pixel, stride, height, block_height);
const std::size_t size_to_copy{std::min(gl_buffer_size, data.size())};
memcpy(gl_buffer, data.data(), size_to_copy);
} else {
// TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should
// check the configuration for this and perform more generic un/swizzle
2018-07-02 18:13:26 +02:00
LOG_WARNING(Render_OpenGL, "need to use correct swizzle/GOB parameters!");
VideoCore::MortonCopyPixels128(stride, height, bytes_per_pixel, gl_bytes_per_pixel,
Memory::GetPointer(addr), gl_buffer, morton_to_gl);
}
}
static constexpr std::array<void (*)(u32, u32, u32, u8*, std::size_t, VAddr),
2018-04-19 01:11:14 +02:00
SurfaceParams::MaxPixelFormat>
morton_to_gl_fns = {
// clang-format off
MortonCopy<true, PixelFormat::ABGR8U>,
MortonCopy<true, PixelFormat::ABGR8S>,
2018-08-20 14:26:54 +02:00
MortonCopy<true, PixelFormat::ABGR8UI>,
MortonCopy<true, PixelFormat::B5G6R5U>,
MortonCopy<true, PixelFormat::A2B10G10R10U>,
MortonCopy<true, PixelFormat::A1B5G5R5U>,
MortonCopy<true, PixelFormat::R8U>,
MortonCopy<true, PixelFormat::R8UI>,
MortonCopy<true, PixelFormat::RGBA16F>,
MortonCopy<true, PixelFormat::RGBA16U>,
MortonCopy<true, PixelFormat::RGBA16UI>,
MortonCopy<true, PixelFormat::R11FG11FB10F>,
MortonCopy<true, PixelFormat::RGBA32UI>,
MortonCopy<true, PixelFormat::DXT1>,
MortonCopy<true, PixelFormat::DXT23>,
MortonCopy<true, PixelFormat::DXT45>,
MortonCopy<true, PixelFormat::DXN1>,
MortonCopy<true, PixelFormat::DXN2UNORM>,
MortonCopy<true, PixelFormat::DXN2SNORM>,
MortonCopy<true, PixelFormat::BC7U>,
MortonCopy<true, PixelFormat::BC6H_UF16>,
MortonCopy<true, PixelFormat::BC6H_SF16>,
MortonCopy<true, PixelFormat::ASTC_2D_4X4>,
MortonCopy<true, PixelFormat::G8R8U>,
MortonCopy<true, PixelFormat::G8R8S>,
MortonCopy<true, PixelFormat::BGRA8>,
MortonCopy<true, PixelFormat::RGBA32F>,
MortonCopy<true, PixelFormat::RG32F>,
MortonCopy<true, PixelFormat::R32F>,
MortonCopy<true, PixelFormat::R16F>,
MortonCopy<true, PixelFormat::R16U>,
MortonCopy<true, PixelFormat::R16S>,
MortonCopy<true, PixelFormat::R16UI>,
MortonCopy<true, PixelFormat::R16I>,
MortonCopy<true, PixelFormat::RG16>,
MortonCopy<true, PixelFormat::RG16F>,
MortonCopy<true, PixelFormat::RG16UI>,
MortonCopy<true, PixelFormat::RG16I>,
MortonCopy<true, PixelFormat::RG16S>,
MortonCopy<true, PixelFormat::RGB32F>,
MortonCopy<true, PixelFormat::SRGBA8>,
MortonCopy<true, PixelFormat::RG8U>,
MortonCopy<true, PixelFormat::RG8S>,
MortonCopy<true, PixelFormat::RG32UI>,
MortonCopy<true, PixelFormat::R32UI>,
2018-09-16 16:47:02 +02:00
MortonCopy<true, PixelFormat::ASTC_2D_8X8>,
MortonCopy<true, PixelFormat::Z32F>,
MortonCopy<true, PixelFormat::Z16>,
MortonCopy<true, PixelFormat::Z24S8>,
MortonCopy<true, PixelFormat::S8Z24>,
MortonCopy<true, PixelFormat::Z32FS8>,
// clang-format on
};
static constexpr std::array<void (*)(u32, u32, u32, u8*, std::size_t, VAddr),
2018-04-19 01:11:14 +02:00
SurfaceParams::MaxPixelFormat>
gl_to_morton_fns = {
// clang-format off
MortonCopy<false, PixelFormat::ABGR8U>,
MortonCopy<false, PixelFormat::ABGR8S>,
2018-08-20 14:26:54 +02:00
MortonCopy<false, PixelFormat::ABGR8UI>,
MortonCopy<false, PixelFormat::B5G6R5U>,
MortonCopy<false, PixelFormat::A2B10G10R10U>,
MortonCopy<false, PixelFormat::A1B5G5R5U>,
MortonCopy<false, PixelFormat::R8U>,
MortonCopy<false, PixelFormat::R8UI>,
MortonCopy<false, PixelFormat::RGBA16F>,
MortonCopy<false, PixelFormat::RGBA16U>,
MortonCopy<false, PixelFormat::RGBA16UI>,
MortonCopy<false, PixelFormat::R11FG11FB10F>,
MortonCopy<false, PixelFormat::RGBA32UI>,
// TODO(Subv): Swizzling DXT1/DXT23/DXT45/DXN1/DXN2/BC7U/BC6H_UF16/BC6H_SF16/ASTC_2D_4X4
// formats are not supported
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
MortonCopy<false, PixelFormat::G8R8U>,
MortonCopy<false, PixelFormat::G8R8S>,
MortonCopy<false, PixelFormat::BGRA8>,
MortonCopy<false, PixelFormat::RGBA32F>,
MortonCopy<false, PixelFormat::RG32F>,
2018-07-24 05:21:31 +02:00
MortonCopy<false, PixelFormat::R32F>,
MortonCopy<false, PixelFormat::R16F>,
MortonCopy<false, PixelFormat::R16U>,
MortonCopy<false, PixelFormat::R16S>,
MortonCopy<false, PixelFormat::R16UI>,
MortonCopy<false, PixelFormat::R16I>,
MortonCopy<false, PixelFormat::RG16>,
MortonCopy<false, PixelFormat::RG16F>,
MortonCopy<false, PixelFormat::RG16UI>,
MortonCopy<false, PixelFormat::RG16I>,
MortonCopy<false, PixelFormat::RG16S>,
MortonCopy<false, PixelFormat::RGB32F>,
MortonCopy<false, PixelFormat::SRGBA8>,
MortonCopy<false, PixelFormat::RG8U>,
MortonCopy<false, PixelFormat::RG8S>,
MortonCopy<false, PixelFormat::RG32UI>,
MortonCopy<false, PixelFormat::R32UI>,
2018-09-16 16:47:02 +02:00
nullptr,
MortonCopy<false, PixelFormat::Z32F>,
MortonCopy<false, PixelFormat::Z16>,
MortonCopy<false, PixelFormat::Z24S8>,
MortonCopy<false, PixelFormat::S8Z24>,
MortonCopy<false, PixelFormat::Z32FS8>,
// clang-format on
};
static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface,
GLuint read_fb_handle, GLuint draw_fb_handle, GLenum src_attachment = 0,
GLenum dst_attachment = 0, std::size_t cubemap_face = 0) {
const auto& src_params{src_surface->GetSurfaceParams()};
const auto& dst_params{dst_surface->GetSurfaceParams()};
OpenGLState prev_state{OpenGLState::GetCurState()};
SCOPE_EXIT({ prev_state.Apply(); });
OpenGLState state;
state.draw.read_framebuffer = read_fb_handle;
state.draw.draw_framebuffer = draw_fb_handle;
state.Apply();
u32 buffers{};
if (src_params.type == SurfaceType::ColorTexture) {
switch (src_params.target) {
case SurfaceParams::SurfaceTarget::Texture2D:
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
GL_TEXTURE_2D, src_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
break;
case SurfaceParams::SurfaceTarget::TextureCubemap:
glFramebufferTexture2D(
GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face),
src_surface->Texture().handle, 0);
glFramebufferTexture2D(
GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), 0, 0);
break;
case SurfaceParams::SurfaceTarget::Texture2DArray:
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
src_surface->Texture().handle, 0, 0);
glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, 0, 0, 0);
break;
case SurfaceParams::SurfaceTarget::Texture3D:
glFramebufferTexture3D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
SurfaceTargetToGL(src_params.target),
src_surface->Texture().handle, 0, 0);
glFramebufferTexture3D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
SurfaceTargetToGL(src_params.target), 0, 0, 0);
break;
default:
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
GL_TEXTURE_2D, src_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
break;
}
switch (dst_params.target) {
case SurfaceParams::SurfaceTarget::Texture2D:
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
GL_TEXTURE_2D, dst_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
break;
case SurfaceParams::SurfaceTarget::TextureCubemap:
glFramebufferTexture2D(
GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face),
dst_surface->Texture().handle, 0);
glFramebufferTexture2D(
GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), 0, 0);
break;
case SurfaceParams::SurfaceTarget::Texture2DArray:
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
dst_surface->Texture().handle, 0, 0);
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, 0, 0, 0);
break;
case SurfaceParams::SurfaceTarget::Texture3D:
glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
SurfaceTargetToGL(dst_params.target),
dst_surface->Texture().handle, 0, 0);
glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
SurfaceTargetToGL(dst_params.target), 0, 0, 0);
break;
default:
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
GL_TEXTURE_2D, dst_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
break;
}
buffers = GL_COLOR_BUFFER_BIT;
} else if (src_params.type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
src_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
buffers = GL_DEPTH_BUFFER_BIT;
} else if (src_params.type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment,
GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
src_surface->Texture().handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment,
GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->Texture().handle, 0);
buffers = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
}
const auto& rect{src_params.GetRect()};
glBlitFramebuffer(rect.left, rect.bottom, rect.right, rect.top, rect.left, rect.bottom,
rect.right, rect.top, buffers,
buffers == GL_COLOR_BUFFER_BIT ? GL_LINEAR : GL_NEAREST);
return true;
}
static void FastCopySurface(const Surface& src_surface, const Surface& dst_surface) {
const auto& src_params{src_surface->GetSurfaceParams()};
const auto& dst_params{dst_surface->GetSurfaceParams()};
const u32 width{std::min(src_params.width, dst_params.width)};
const u32 height{std::min(src_params.height, dst_params.height)};
glCopyImageSubData(src_surface->Texture().handle, SurfaceTargetToGL(src_params.target), 0, 0, 0,
0, dst_surface->Texture().handle, SurfaceTargetToGL(dst_params.target), 0, 0,
0, 0, width, height, 1);
}
static void CopySurface(const Surface& src_surface, const Surface& dst_surface,
GLuint copy_pbo_handle, GLenum src_attachment = 0,
GLenum dst_attachment = 0, std::size_t cubemap_face = 0) {
ASSERT_MSG(dst_attachment == 0, "Unimplemented");
const auto& src_params{src_surface->GetSurfaceParams()};
const auto& dst_params{dst_surface->GetSurfaceParams()};
auto source_format = GetFormatTuple(src_params.pixel_format, src_params.component_type);
auto dest_format = GetFormatTuple(dst_params.pixel_format, dst_params.component_type);
std::size_t buffer_size =
std::max(src_params.size_in_bytes_total, dst_params.size_in_bytes_total);
glBindBuffer(GL_PIXEL_PACK_BUFFER, copy_pbo_handle);
glBufferData(GL_PIXEL_PACK_BUFFER, buffer_size, nullptr, GL_STREAM_DRAW_ARB);
if (source_format.compressed) {
glGetCompressedTextureImage(src_surface->Texture().handle, src_attachment,
static_cast<GLsizei>(src_params.size_in_bytes_total), nullptr);
} else {
glGetTextureImage(src_surface->Texture().handle, src_attachment, source_format.format,
source_format.type, static_cast<GLsizei>(src_params.size_in_bytes_total),
nullptr);
}
// If the new texture is bigger than the previous one, we need to fill in the rest with data
// from the CPU.
if (src_params.size_in_bytes_total < dst_params.size_in_bytes_total) {
// Upload the rest of the memory.
if (dst_params.is_tiled) {
// TODO(Subv): We might have to de-tile the subtexture and re-tile it with the rest
// of the data in this case. Games like Super Mario Odyssey seem to hit this case
// when drawing, it re-uses the memory of a previous texture as a bigger framebuffer
// but it doesn't clear it beforehand, the texture is already full of zeros.
LOG_DEBUG(HW_GPU, "Trying to upload extra texture data from the CPU during "
"reinterpretation but the texture is tiled.");
}
std::size_t remaining_size =
dst_params.size_in_bytes_total - src_params.size_in_bytes_total;
std::vector<u8> data(remaining_size);
Memory::ReadBlock(dst_params.addr + src_params.size_in_bytes_total, data.data(),
data.size());
glBufferSubData(GL_PIXEL_PACK_BUFFER, src_params.size_in_bytes_total, remaining_size,
data.data());
}
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
const GLsizei width{static_cast<GLsizei>(
std::min(src_params.GetRect().GetWidth(), dst_params.GetRect().GetWidth()))};
const GLsizei height{static_cast<GLsizei>(
std::min(src_params.GetRect().GetHeight(), dst_params.GetRect().GetHeight()))};
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, copy_pbo_handle);
if (dest_format.compressed) {
LOG_CRITICAL(HW_GPU, "Compressed copy is unimplemented!");
UNREACHABLE();
} else {
switch (dst_params.target) {
case SurfaceParams::SurfaceTarget::Texture1D:
glTextureSubImage1D(dst_surface->Texture().handle, 0, 0, width, dest_format.format,
dest_format.type, nullptr);
break;
case SurfaceParams::SurfaceTarget::Texture2D:
glTextureSubImage2D(dst_surface->Texture().handle, 0, 0, 0, width, height,
dest_format.format, dest_format.type, nullptr);
break;
case SurfaceParams::SurfaceTarget::Texture3D:
case SurfaceParams::SurfaceTarget::Texture2DArray:
glTextureSubImage3D(dst_surface->Texture().handle, 0, 0, 0, 0, width, height,
static_cast<GLsizei>(dst_params.depth), dest_format.format,
dest_format.type, nullptr);
break;
case SurfaceParams::SurfaceTarget::TextureCubemap:
glTextureSubImage3D(dst_surface->Texture().handle, 0, 0, 0,
static_cast<GLint>(cubemap_face), width, height, 1,
dest_format.format, dest_format.type, nullptr);
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(dst_params.target));
UNREACHABLE();
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
}
CachedSurface::CachedSurface(const SurfaceParams& params)
: params(params), gl_target(SurfaceTargetToGL(params.target)) {
texture.Create();
const auto& rect{params.GetRect()};
// Keep track of previous texture bindings
OpenGLState cur_state = OpenGLState::GetCurState();
const auto& old_tex = cur_state.texture_units[0];
SCOPE_EXIT({
cur_state.texture_units[0] = old_tex;
cur_state.Apply();
});
cur_state.texture_units[0].texture = texture.handle;
cur_state.texture_units[0].target = SurfaceTargetToGL(params.target);
cur_state.Apply();
glActiveTexture(GL_TEXTURE0);
const auto& format_tuple = GetFormatTuple(params.pixel_format, params.component_type);
if (!format_tuple.compressed) {
// Only pre-create the texture for non-compressed textures.
switch (params.target) {
case SurfaceParams::SurfaceTarget::Texture1D:
glTexStorage1D(SurfaceTargetToGL(params.target), 1, format_tuple.internal_format,
rect.GetWidth());
break;
case SurfaceParams::SurfaceTarget::Texture2D:
case SurfaceParams::SurfaceTarget::TextureCubemap:
glTexStorage2D(SurfaceTargetToGL(params.target), 1, format_tuple.internal_format,
rect.GetWidth(), rect.GetHeight());
break;
case SurfaceParams::SurfaceTarget::Texture3D:
case SurfaceParams::SurfaceTarget::Texture2DArray:
glTexStorage3D(SurfaceTargetToGL(params.target), 1, format_tuple.internal_format,
rect.GetWidth(), rect.GetHeight(), params.depth);
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(params.target));
UNREACHABLE();
glTexStorage2D(GL_TEXTURE_2D, 1, format_tuple.internal_format, rect.GetWidth(),
rect.GetHeight());
}
}
glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
VideoCore::LabelGLObject(GL_TEXTURE, texture.handle, params.addr,
SurfaceParams::SurfaceTargetName(params.target));
}
static void ConvertS8Z24ToZ24S8(std::vector<u8>& data, u32 width, u32 height) {
union S8Z24 {
BitField<0, 24, u32> z24;
BitField<24, 8, u32> s8;
};
static_assert(sizeof(S8Z24) == 4, "S8Z24 is incorrect size");
union Z24S8 {
BitField<0, 8, u32> s8;
BitField<8, 24, u32> z24;
};
static_assert(sizeof(Z24S8) == 4, "Z24S8 is incorrect size");
S8Z24 input_pixel{};
Z24S8 output_pixel{};
constexpr auto bpp{CachedSurface::GetGLBytesPerPixel(PixelFormat::S8Z24)};
for (std::size_t y = 0; y < height; ++y) {
for (std::size_t x = 0; x < width; ++x) {
const std::size_t offset{bpp * (y * width + x)};
std::memcpy(&input_pixel, &data[offset], sizeof(S8Z24));
output_pixel.s8.Assign(input_pixel.s8);
output_pixel.z24.Assign(input_pixel.z24);
std::memcpy(&data[offset], &output_pixel, sizeof(Z24S8));
}
}
}
static void ConvertG8R8ToR8G8(std::vector<u8>& data, u32 width, u32 height) {
constexpr auto bpp{CachedSurface::GetGLBytesPerPixel(PixelFormat::G8R8U)};
for (std::size_t y = 0; y < height; ++y) {
for (std::size_t x = 0; x < width; ++x) {
const std::size_t offset{bpp * (y * width + x)};
const u8 temp{data[offset]};
data[offset] = data[offset + 1];
data[offset + 1] = temp;
}
}
}
/**
* Helper function to perform software conversion (as needed) when loading a buffer from Switch
* memory. This is for Maxwell pixel formats that cannot be represented as-is in OpenGL or with
* typical desktop GPUs.
*/
static void ConvertFormatAsNeeded_LoadGLBuffer(std::vector<u8>& data, PixelFormat pixel_format,
u32 width, u32 height) {
switch (pixel_format) {
2018-09-16 16:47:02 +02:00
case PixelFormat::ASTC_2D_4X4:
case PixelFormat::ASTC_2D_8X8: {
// Convert ASTC pixel formats to RGBA8, as most desktop GPUs do not support ASTC.
u32 block_width{};
u32 block_height{};
std::tie(block_width, block_height) = GetASTCBlockSize(pixel_format);
data = Tegra::Texture::ASTC::Decompress(data, width, height, block_width, block_height);
break;
}
case PixelFormat::S8Z24:
// Convert the S8Z24 depth format to Z24S8, as OpenGL does not support S8Z24.
ConvertS8Z24ToZ24S8(data, width, height);
break;
case PixelFormat::G8R8U:
case PixelFormat::G8R8S:
// Convert the G8R8 color format to R8G8, as OpenGL does not support G8R8.
ConvertG8R8ToR8G8(data, width, height);
break;
}
}
MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192));
void CachedSurface::LoadGLBuffer() {
ASSERT(params.type != SurfaceType::Fill);
const u8* const texture_src_data = Memory::GetPointer(params.addr);
ASSERT(texture_src_data);
const u32 bytes_per_pixel = GetGLBytesPerPixel(params.pixel_format);
const u32 copy_size = params.width * params.height * bytes_per_pixel;
const std::size_t total_size = copy_size * params.depth;
MICROPROFILE_SCOPE(OpenGL_SurfaceLoad);
if (params.is_tiled) {
gl_buffer.resize(total_size);
// TODO(bunnei): This only unswizzles and copies a 2D texture - we do not yet know how to do
// this for 3D textures, etc.
switch (params.target) {
case SurfaceParams::SurfaceTarget::Texture2D:
// Pass impl. to the fallback code below
break;
case SurfaceParams::SurfaceTarget::Texture2DArray:
case SurfaceParams::SurfaceTarget::TextureCubemap:
for (std::size_t index = 0; index < params.depth; ++index) {
const std::size_t offset{index * copy_size};
morton_to_gl_fns[static_cast<std::size_t>(params.pixel_format)](
params.width, params.block_height, params.height, gl_buffer.data() + offset,
copy_size, params.addr + offset);
}
break;
default:
LOG_CRITICAL(HW_GPU, "Unimplemented tiled load for target={}",
static_cast<u32>(params.target));
UNREACHABLE();
}
morton_to_gl_fns[static_cast<std::size_t>(params.pixel_format)](
params.width, params.block_height, params.height, gl_buffer.data(), copy_size,
params.addr);
} else {
const u8* const texture_src_data_end{texture_src_data + total_size};
gl_buffer.assign(texture_src_data, texture_src_data_end);
}
ConvertFormatAsNeeded_LoadGLBuffer(gl_buffer, params.pixel_format, params.width, params.height);
}
MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void CachedSurface::FlushGLBuffer() {
ASSERT_MSG(false, "Unimplemented");
}
MICROPROFILE_DEFINE(OpenGL_TextureUL, "OpenGL", "Texture Upload", MP_RGB(128, 64, 192));
void CachedSurface::UploadGLTexture(GLuint read_fb_handle, GLuint draw_fb_handle) {
if (params.type == SurfaceType::Fill)
return;
MICROPROFILE_SCOPE(OpenGL_TextureUL);
ASSERT(gl_buffer.size() == static_cast<std::size_t>(params.width) * params.height *
GetGLBytesPerPixel(params.pixel_format) * params.depth);
const auto& rect{params.GetRect()};
// Load data from memory to the surface
const GLint x0 = static_cast<GLint>(rect.left);
const GLint y0 = static_cast<GLint>(rect.bottom);
std::size_t buffer_offset =
static_cast<std::size_t>(static_cast<std::size_t>(y0) * params.width +
static_cast<std::size_t>(x0)) *
GetGLBytesPerPixel(params.pixel_format);
const FormatTuple& tuple = GetFormatTuple(params.pixel_format, params.component_type);
const GLuint target_tex = texture.handle;
OpenGLState cur_state = OpenGLState::GetCurState();
const auto& old_tex = cur_state.texture_units[0];
SCOPE_EXIT({
cur_state.texture_units[0] = old_tex;
cur_state.Apply();
});
cur_state.texture_units[0].texture = target_tex;
cur_state.texture_units[0].target = SurfaceTargetToGL(params.target);
cur_state.Apply();
// Ensure no bad interactions with GL_UNPACK_ALIGNMENT
ASSERT(params.width * GetGLBytesPerPixel(params.pixel_format) % 4 == 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast<GLint>(params.width));
glActiveTexture(GL_TEXTURE0);
if (tuple.compressed) {
switch (params.target) {
case SurfaceParams::SurfaceTarget::Texture2D:
glCompressedTexImage2D(
SurfaceTargetToGL(params.target), 0, tuple.internal_format,
static_cast<GLsizei>(params.width), static_cast<GLsizei>(params.height), 0,
static_cast<GLsizei>(params.size_in_bytes_2d), &gl_buffer[buffer_offset]);
break;
case SurfaceParams::SurfaceTarget::Texture3D:
case SurfaceParams::SurfaceTarget::Texture2DArray:
glCompressedTexImage3D(
SurfaceTargetToGL(params.target), 0, tuple.internal_format,
static_cast<GLsizei>(params.width), static_cast<GLsizei>(params.height),
static_cast<GLsizei>(params.depth), 0,
static_cast<GLsizei>(params.size_in_bytes_total), &gl_buffer[buffer_offset]);
break;
case SurfaceParams::SurfaceTarget::TextureCubemap:
for (std::size_t face = 0; face < params.depth; ++face) {
glCompressedTexImage2D(static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face),
0, tuple.internal_format, static_cast<GLsizei>(params.width),
static_cast<GLsizei>(params.height), 0,
static_cast<GLsizei>(params.size_in_bytes_2d),
&gl_buffer[buffer_offset]);
buffer_offset += params.size_in_bytes_2d;
}
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(params.target));
UNREACHABLE();
glCompressedTexImage2D(
GL_TEXTURE_2D, 0, tuple.internal_format, static_cast<GLsizei>(params.width),
static_cast<GLsizei>(params.height), 0,
static_cast<GLsizei>(params.size_in_bytes_2d), &gl_buffer[buffer_offset]);
}
} else {
switch (params.target) {
case SurfaceParams::SurfaceTarget::Texture1D:
glTexSubImage1D(SurfaceTargetToGL(params.target), 0, x0,
static_cast<GLsizei>(rect.GetWidth()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
break;
case SurfaceParams::SurfaceTarget::Texture2D:
glTexSubImage2D(SurfaceTargetToGL(params.target), 0, x0, y0,
static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
break;
case SurfaceParams::SurfaceTarget::Texture3D:
case SurfaceParams::SurfaceTarget::Texture2DArray:
glTexSubImage3D(SurfaceTargetToGL(params.target), 0, x0, y0, 0,
static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), params.depth, tuple.format,
tuple.type, &gl_buffer[buffer_offset]);
break;
case SurfaceParams::SurfaceTarget::TextureCubemap:
for (std::size_t face = 0; face < params.depth; ++face) {
glTexSubImage2D(static_cast<GLenum>(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face), 0, x0,
y0, static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
buffer_offset += params.size_in_bytes_2d;
}
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(params.target));
UNREACHABLE();
glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
}
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
}
RasterizerCacheOpenGL::RasterizerCacheOpenGL() {
read_framebuffer.Create();
draw_framebuffer.Create();
copy_pbo.Create();
}
Surface RasterizerCacheOpenGL::GetTextureSurface(const Tegra::Texture::FullTextureInfo& config,
const GLShader::SamplerEntry& entry) {
return GetSurface(SurfaceParams::CreateForTexture(config, entry));
}
Surface RasterizerCacheOpenGL::GetDepthBufferSurface(bool preserve_contents) {
const auto& regs{Core::System::GetInstance().GPU().Maxwell3D().regs};
if (!regs.zeta.Address() || !regs.zeta_enable) {
return {};
}
SurfaceParams depth_params{SurfaceParams::CreateForDepthBuffer(
regs.zeta_width, regs.zeta_height, regs.zeta.Address(), regs.zeta.format)};
return GetSurface(depth_params, preserve_contents);
}
Surface RasterizerCacheOpenGL::GetColorBufferSurface(std::size_t index, bool preserve_contents) {
const auto& regs{Core::System::GetInstance().GPU().Maxwell3D().regs};
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
if (index >= regs.rt_control.count) {
return {};
}
if (regs.rt[index].Address() == 0 || regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
return {};
}
const SurfaceParams color_params{SurfaceParams::CreateForFramebuffer(index)};
return GetSurface(color_params, preserve_contents);
}
void RasterizerCacheOpenGL::LoadSurface(const Surface& surface) {
surface->LoadGLBuffer();
surface->UploadGLTexture(read_framebuffer.handle, draw_framebuffer.handle);
}
void RasterizerCacheOpenGL::FlushSurface(const Surface& surface) {
surface->FlushGLBuffer();
}
Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool preserve_contents) {
if (params.addr == 0 || params.height * params.width == 0) {
return {};
}
// Look up surface in the cache based on address
Surface surface{TryGet(params.addr)};
if (surface) {
if (surface->GetSurfaceParams().IsCompatibleSurface(params)) {
// Use the cached surface as-is
return surface;
} else if (preserve_contents) {
// If surface parameters changed and we care about keeping the previous data, recreate
// the surface from the old one
Unregister(surface);
Surface new_surface{RecreateSurface(surface, params)};
Register(new_surface);
return new_surface;
} else {
// Delete the old surface before creating a new one to prevent collisions.
Unregister(surface);
}
}
// No cached surface found - get a new one
surface = GetUncachedSurface(params);
Register(surface);
// Only load surface from memory if we care about the contents
if (preserve_contents) {
LoadSurface(surface);
}
return surface;
}
Surface RasterizerCacheOpenGL::GetUncachedSurface(const SurfaceParams& params) {
Surface surface{TryGetReservedSurface(params)};
if (!surface) {
// No reserved surface available, create a new one and reserve it
surface = std::make_shared<CachedSurface>(params);
ReserveSurface(surface);
}
return surface;
}
void RasterizerCacheOpenGL::FermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config) {
const auto& src_params = SurfaceParams::CreateForFermiCopySurface(src_config);
const auto& dst_params = SurfaceParams::CreateForFermiCopySurface(dst_config);
ASSERT(src_params.width == dst_params.width);
ASSERT(src_params.height == dst_params.height);
ASSERT(src_params.pixel_format == dst_params.pixel_format);
ASSERT(src_params.block_height == dst_params.block_height);
ASSERT(src_params.is_tiled == dst_params.is_tiled);
ASSERT(src_params.depth == dst_params.depth);
ASSERT(src_params.depth == 1); // Currently, FastCopySurface only works with 2D surfaces
ASSERT(src_params.target == dst_params.target);
ASSERT(src_params.rt.index == dst_params.rt.index);
FastCopySurface(GetSurface(src_params, true), GetSurface(dst_params, false));
}
Surface RasterizerCacheOpenGL::RecreateSurface(const Surface& old_surface,
const SurfaceParams& new_params) {
// Verify surface is compatible for blitting
auto old_params{old_surface->GetSurfaceParams()};
// Get a new surface with the new parameters, and blit the previous surface to it
Surface new_surface{GetUncachedSurface(new_params)};
// For compatible surfaces, we can just do fast glCopyImageSubData based copy
if (old_params.target == new_params.target && old_params.type == new_params.type &&
old_params.depth == new_params.depth && old_params.depth == 1 &&
SurfaceParams::GetFormatBpp(old_params.pixel_format) ==
SurfaceParams::GetFormatBpp(new_params.pixel_format)) {
FastCopySurface(old_surface, new_surface);
return new_surface;
}
// If the format is the same, just do a framebuffer blit. This is significantly faster than
// using PBOs. The is also likely less accurate, as textures will be converted rather than
// reinterpreted. When use_accurate_framebuffers setting is enabled, perform a more accurate
// surface copy, where pixels are reinterpreted as a new format (without conversion). This
// code path uses OpenGL PBOs and is quite slow.
const bool is_blit{old_params.pixel_format == new_params.pixel_format ||
!Settings::values.use_accurate_framebuffers};
switch (new_params.target) {
case SurfaceParams::SurfaceTarget::Texture2D:
if (is_blit) {
BlitSurface(old_surface, new_surface, read_framebuffer.handle, draw_framebuffer.handle);
} else {
CopySurface(old_surface, new_surface, copy_pbo.handle);
}
break;
case SurfaceParams::SurfaceTarget::TextureCubemap: {
if (old_params.rt.array_mode != 1) {
// TODO(bunnei): This is used by Breath of the Wild, I'm not sure how to implement this
// yet (array rendering used as a cubemap texture).
LOG_CRITICAL(HW_GPU, "Unhandled rendertarget array_mode {}", old_params.rt.array_mode);
UNREACHABLE();
return new_surface;
}
// This seems to be used for render-to-cubemap texture
ASSERT_MSG(old_params.target == SurfaceParams::SurfaceTarget::Texture2D, "Unexpected");
ASSERT_MSG(old_params.pixel_format == new_params.pixel_format, "Unexpected");
ASSERT_MSG(old_params.rt.base_layer == 0, "Unimplemented");
// TODO(bunnei): Verify the below - this stride seems to be in 32-bit words, not pixels.
// Tested with Splatoon 2, Super Mario Odyssey, and Breath of the Wild.
const std::size_t byte_stride{old_params.rt.layer_stride * sizeof(u32)};
for (std::size_t index = 0; index < new_params.depth; ++index) {
Surface face_surface{TryGetReservedSurface(old_params)};
ASSERT_MSG(face_surface, "Unexpected");
if (is_blit) {
BlitSurface(face_surface, new_surface, read_framebuffer.handle,
draw_framebuffer.handle, face_surface->GetSurfaceParams().rt.index,
new_params.rt.index, index);
} else {
CopySurface(face_surface, new_surface, copy_pbo.handle,
face_surface->GetSurfaceParams().rt.index, new_params.rt.index, index);
}
old_params.addr += byte_stride;
}
break;
}
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(new_params.target));
UNREACHABLE();
}
return new_surface;
}
Surface RasterizerCacheOpenGL::TryFindFramebufferSurface(VAddr addr) const {
return TryGet(addr);
}
void RasterizerCacheOpenGL::ReserveSurface(const Surface& surface) {
const auto& surface_reserve_key{SurfaceReserveKey::Create(surface->GetSurfaceParams())};
surface_reserve[surface_reserve_key] = surface;
}
Surface RasterizerCacheOpenGL::TryGetReservedSurface(const SurfaceParams& params) {
const auto& surface_reserve_key{SurfaceReserveKey::Create(params)};
auto search{surface_reserve.find(surface_reserve_key)};
if (search != surface_reserve.end()) {
return search->second;
}
return {};
}
} // namespace OpenGL