suyu/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp

1352 lines
55 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <atomic>
#include <cstring>
#include <iterator>
#include <memory>
#include <unordered_set>
#include <utility>
#include <vector>
#include <boost/optional.hpp>
#include <boost/range/iterator_range.hpp>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/bit_field.h"
#include "common/color.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/vector_math.h"
#include "core/frontend/emu_window.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"
using SurfaceType = SurfaceParams::SurfaceType;
using PixelFormat = SurfaceParams::PixelFormat;
struct FormatTuple {
GLint internal_format;
GLenum format;
GLenum type;
};
static constexpr std::array<FormatTuple, 5> fb_format_tuples = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8}, // RGBA8
{GL_RGB8, GL_BGR, GL_UNSIGNED_BYTE}, // RGB8
{GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1}, // RGB5A1
{GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, // RGB565
{GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4}, // RGBA4
}};
static constexpr std::array<FormatTuple, 4> depth_format_tuples = {{
{GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT}, // D16
{},
{GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT}, // D24
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8}, // D24S8
}};
static constexpr FormatTuple tex_tuple = {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE};
static const FormatTuple& GetFormatTuple(PixelFormat pixel_format) {
const SurfaceType type = SurfaceParams::GetFormatType(pixel_format);
if (type == SurfaceType::Color) {
ASSERT(static_cast<size_t>(pixel_format) < fb_format_tuples.size());
return fb_format_tuples[static_cast<unsigned int>(pixel_format)];
} else if (type == SurfaceType::Depth || type == SurfaceType::DepthStencil) {
size_t tuple_idx = static_cast<size_t>(pixel_format) - 14;
ASSERT(tuple_idx < depth_format_tuples.size());
return depth_format_tuples[tuple_idx];
}
return tex_tuple;
}
template <typename Map, typename Interval>
constexpr auto RangeFromInterval(Map& map, const Interval& interval) {
return boost::make_iterator_range(map.equal_range(interval));
}
static u16 GetResolutionScaleFactor() {
return static_cast<u16>(!Settings::values.resolution_factor
? VideoCore::g_emu_window->GetFramebufferLayout().GetScalingRatio()
: Settings::values.resolution_factor);
}
template <bool morton_to_gl, PixelFormat format>
static void MortonCopyTile(u32 stride, u8* tile_buffer, u8* gl_buffer) {
constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8;
constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
for (u32 y = 0; y < 8; ++y) {
for (u32 x = 0; x < 8; ++x) {
u8* tile_ptr = tile_buffer + VideoCore::MortonInterleave(x, y) * bytes_per_pixel;
u8* gl_ptr = gl_buffer + ((7 - y) * stride + x) * gl_bytes_per_pixel;
if (morton_to_gl) {
if (format == PixelFormat::D24S8) {
gl_ptr[0] = tile_ptr[3];
std::memcpy(gl_ptr + 1, tile_ptr, 3);
} else {
std::memcpy(gl_ptr, tile_ptr, bytes_per_pixel);
}
} else {
if (format == PixelFormat::D24S8) {
std::memcpy(tile_ptr, gl_ptr + 1, 3);
tile_ptr[3] = gl_ptr[0];
} else {
std::memcpy(tile_ptr, gl_ptr, bytes_per_pixel);
}
}
}
}
}
template <bool morton_to_gl, PixelFormat format>
static void MortonCopy(u32 stride, u32 height, u8* gl_buffer, VAddr base, VAddr start, VAddr end) {
constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8;
constexpr u32 tile_size = bytes_per_pixel * 64;
constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
static_assert(gl_bytes_per_pixel >= bytes_per_pixel, "");
gl_buffer += gl_bytes_per_pixel - bytes_per_pixel;
const VAddr aligned_down_start = base + Common::AlignDown(start - base, tile_size);
const VAddr aligned_start = base + Common::AlignUp(start - base, tile_size);
const VAddr aligned_end = base + Common::AlignDown(end - base, tile_size);
ASSERT(!morton_to_gl || (aligned_start == start && aligned_end == end));
const u64 begin_pixel_index = (aligned_down_start - base) / bytes_per_pixel;
u32 x = static_cast<u32>((begin_pixel_index % (stride * 8)) / 8);
u32 y = static_cast<u32>((begin_pixel_index / (stride * 8)) * 8);
gl_buffer += ((height - 8 - y) * stride + x) * gl_bytes_per_pixel;
auto glbuf_next_tile = [&] {
x = (x + 8) % stride;
gl_buffer += 8 * gl_bytes_per_pixel;
if (!x) {
y += 8;
gl_buffer -= stride * 9 * gl_bytes_per_pixel;
}
};
u8* tile_buffer = Memory::GetPointer(start);
if (start < aligned_start && !morton_to_gl) {
std::array<u8, tile_size> tmp_buf;
MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
std::memcpy(tile_buffer, &tmp_buf[start - aligned_down_start],
std::min(aligned_start, end) - start);
tile_buffer += aligned_start - start;
glbuf_next_tile();
}
const u8* const buffer_end = tile_buffer + aligned_end - aligned_start;
while (tile_buffer < buffer_end) {
MortonCopyTile<morton_to_gl, format>(stride, tile_buffer, gl_buffer);
tile_buffer += tile_size;
glbuf_next_tile();
}
if (end > std::max(aligned_start, aligned_end) && !morton_to_gl) {
std::array<u8, tile_size> tmp_buf;
MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
std::memcpy(tile_buffer, &tmp_buf[0], end - aligned_end);
}
}
static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> morton_to_gl_fns = {
MortonCopy<true, PixelFormat::RGBA8>, // 0
MortonCopy<true, PixelFormat::RGB8>, // 1
MortonCopy<true, PixelFormat::RGB5A1>, // 2
MortonCopy<true, PixelFormat::RGB565>, // 3
MortonCopy<true, PixelFormat::RGBA4>, // 4
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr, // 5 - 13
MortonCopy<true, PixelFormat::D16>, // 14
nullptr, // 15
MortonCopy<true, PixelFormat::D24>, // 16
MortonCopy<true, PixelFormat::D24S8> // 17
};
static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> gl_to_morton_fns = {
MortonCopy<false, PixelFormat::RGBA8>, // 0
MortonCopy<false, PixelFormat::RGB8>, // 1
MortonCopy<false, PixelFormat::RGB5A1>, // 2
MortonCopy<false, PixelFormat::RGB565>, // 3
MortonCopy<false, PixelFormat::RGBA4>, // 4
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr, // 5 - 13
MortonCopy<false, PixelFormat::D16>, // 14
nullptr, // 15
MortonCopy<false, PixelFormat::D24>, // 16
MortonCopy<false, PixelFormat::D24S8> // 17
};
// Allocate an uninitialized texture of appropriate size and format for the surface
static void AllocateSurfaceTexture(GLuint texture, const FormatTuple& format_tuple, u32 width,
u32 height) {
OpenGLState cur_state = OpenGLState::GetCurState();
// Keep track of previous texture bindings
GLuint old_tex = cur_state.texture_units[0].texture_2d;
cur_state.texture_units[0].texture_2d = texture;
cur_state.Apply();
glActiveTexture(GL_TEXTURE0);
glTexImage2D(GL_TEXTURE_2D, 0, format_tuple.internal_format, width, height, 0,
format_tuple.format, format_tuple.type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Restore previous texture bindings
cur_state.texture_units[0].texture_2d = old_tex;
cur_state.Apply();
}
static bool BlitTextures(GLuint src_tex, const MathUtil::Rectangle<u32>& src_rect, GLuint dst_tex,
const MathUtil::Rectangle<u32>& dst_rect, SurfaceType type,
GLuint read_fb_handle, GLuint draw_fb_handle) {
OpenGLState state = OpenGLState::GetCurState();
OpenGLState prev_state = state;
SCOPE_EXIT({ prev_state.Apply(); });
// Make sure textures aren't bound to texture units, since going to bind them to framebuffer
// components
state.ResetTexture(src_tex);
state.ResetTexture(dst_tex);
state.draw.read_framebuffer = read_fb_handle;
state.draw.draw_framebuffer = draw_fb_handle;
state.Apply();
u32 buffers = 0;
if (type == SurfaceType::Color || type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, src_tex,
0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, dst_tex,
0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
buffers = GL_COLOR_BUFFER_BIT;
} else if (type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, src_tex, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, dst_tex, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
buffers = GL_DEPTH_BUFFER_BIT;
} else if (type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
src_tex, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
dst_tex, 0);
buffers = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
}
glBlitFramebuffer(src_rect.left, src_rect.bottom, src_rect.right, src_rect.top, dst_rect.left,
dst_rect.bottom, dst_rect.right, dst_rect.top, buffers,
buffers == GL_COLOR_BUFFER_BIT ? GL_LINEAR : GL_NEAREST);
return true;
}
static bool FillSurface(const Surface& surface, const u8* fill_data,
const MathUtil::Rectangle<u32>& fill_rect, GLuint draw_fb_handle) {
ASSERT_MSG(false, "Unimplemented");
return true;
}
SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const {
SurfaceParams params = *this;
const u32 tiled_size = is_tiled ? 8 : 1;
const u64 stride_tiled_bytes = BytesInPixels(stride * tiled_size);
VAddr aligned_start =
addr + Common::AlignDown(boost::icl::first(interval) - addr, stride_tiled_bytes);
VAddr aligned_end =
addr + Common::AlignUp(boost::icl::last_next(interval) - addr, stride_tiled_bytes);
if (aligned_end - aligned_start > stride_tiled_bytes) {
params.addr = aligned_start;
params.height = static_cast<u32>((aligned_end - aligned_start) / BytesInPixels(stride));
} else {
// 1 row
ASSERT(aligned_end - aligned_start == stride_tiled_bytes);
const u64 tiled_alignment = BytesInPixels(is_tiled ? 8 * 8 : 1);
aligned_start =
addr + Common::AlignDown(boost::icl::first(interval) - addr, tiled_alignment);
aligned_end =
addr + Common::AlignUp(boost::icl::last_next(interval) - addr, tiled_alignment);
params.addr = aligned_start;
params.width = static_cast<u32>(PixelsInBytes(aligned_end - aligned_start) / tiled_size);
params.stride = params.width;
params.height = tiled_size;
}
params.UpdateParams();
return params;
}
SurfaceInterval SurfaceParams::GetSubRectInterval(MathUtil::Rectangle<u32> unscaled_rect) const {
if (unscaled_rect.GetHeight() == 0 || unscaled_rect.GetWidth() == 0) {
return {};
}
if (is_tiled) {
unscaled_rect.left = Common::AlignDown(unscaled_rect.left, 8) * 8;
unscaled_rect.bottom = Common::AlignDown(unscaled_rect.bottom, 8) / 8;
unscaled_rect.right = Common::AlignUp(unscaled_rect.right, 8) * 8;
unscaled_rect.top = Common::AlignUp(unscaled_rect.top, 8) / 8;
}
const u32 stride_tiled = !is_tiled ? stride : stride * 8;
const u32 pixel_offset =
stride_tiled * (!is_tiled ? unscaled_rect.bottom : (height / 8) - unscaled_rect.top) +
unscaled_rect.left;
const u32 pixels = (unscaled_rect.GetHeight() - 1) * stride_tiled + unscaled_rect.GetWidth();
return {addr + BytesInPixels(pixel_offset), addr + BytesInPixels(pixel_offset + pixels)};
}
MathUtil::Rectangle<u32> SurfaceParams::GetSubRect(const SurfaceParams& sub_surface) const {
const u32 begin_pixel_index = static_cast<u32>(PixelsInBytes(sub_surface.addr - addr));
if (is_tiled) {
const int x0 = (begin_pixel_index % (stride * 8)) / 8;
const int y0 = (begin_pixel_index / (stride * 8)) * 8;
// Top to bottom
return MathUtil::Rectangle<u32>(x0, height - y0, x0 + sub_surface.width,
height - (y0 + sub_surface.height));
}
const int x0 = begin_pixel_index % stride;
const int y0 = begin_pixel_index / stride;
// Bottom to top
return MathUtil::Rectangle<u32>(x0, y0 + sub_surface.height, x0 + sub_surface.width, y0);
}
MathUtil::Rectangle<u32> SurfaceParams::GetScaledSubRect(const SurfaceParams& sub_surface) const {
auto rect = GetSubRect(sub_surface);
rect.left = rect.left * res_scale;
rect.right = rect.right * res_scale;
rect.top = rect.top * res_scale;
rect.bottom = rect.bottom * res_scale;
return rect;
}
bool SurfaceParams::ExactMatch(const SurfaceParams& other_surface) const {
return std::tie(other_surface.addr, other_surface.width, other_surface.height,
other_surface.stride, other_surface.pixel_format, other_surface.is_tiled) ==
std::tie(addr, width, height, stride, pixel_format, is_tiled) &&
pixel_format != PixelFormat::Invalid;
}
bool SurfaceParams::CanSubRect(const SurfaceParams& sub_surface) const {
return sub_surface.addr >= addr && sub_surface.end <= end &&
sub_surface.pixel_format == pixel_format && pixel_format != PixelFormat::Invalid &&
sub_surface.is_tiled == is_tiled &&
(sub_surface.addr - addr) % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
(sub_surface.stride == stride || sub_surface.height <= (is_tiled ? 8u : 1u)) &&
GetSubRect(sub_surface).left + sub_surface.width <= stride;
}
bool SurfaceParams::CanExpand(const SurfaceParams& expanded_surface) const {
return pixel_format != PixelFormat::Invalid && pixel_format == expanded_surface.pixel_format &&
addr <= expanded_surface.end && expanded_surface.addr <= end &&
is_tiled == expanded_surface.is_tiled && stride == expanded_surface.stride &&
(std::max(expanded_surface.addr, addr) - std::min(expanded_surface.addr, addr)) %
BytesInPixels(stride * (is_tiled ? 8 : 1)) ==
0;
}
bool SurfaceParams::CanTexCopy(const SurfaceParams& texcopy_params) const {
if (pixel_format == PixelFormat::Invalid || addr > texcopy_params.addr ||
end < texcopy_params.end) {
return false;
}
if (texcopy_params.width != texcopy_params.stride) {
const u32 tile_stride = static_cast<u32>(BytesInPixels(stride * (is_tiled ? 8 : 1)));
return (texcopy_params.addr - addr) % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
texcopy_params.width % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
(texcopy_params.height == 1 || texcopy_params.stride == tile_stride) &&
((texcopy_params.addr - addr) % tile_stride) + texcopy_params.width <= tile_stride;
}
return FromInterval(texcopy_params.GetInterval()).GetInterval() == texcopy_params.GetInterval();
}
bool CachedSurface::CanFill(const SurfaceParams& dest_surface,
SurfaceInterval fill_interval) const {
if (type == SurfaceType::Fill && IsRegionValid(fill_interval) &&
boost::icl::first(fill_interval) >= addr &&
boost::icl::last_next(fill_interval) <= end && // dest_surface is within our fill range
dest_surface.FromInterval(fill_interval).GetInterval() ==
fill_interval) { // make sure interval is a rectangle in dest surface
if (fill_size * 8 != dest_surface.GetFormatBpp()) {
// Check if bits repeat for our fill_size
const u32 dest_bytes_per_pixel = std::max(dest_surface.GetFormatBpp() / 8, 1u);
std::vector<u8> fill_test(fill_size * dest_bytes_per_pixel);
for (u32 i = 0; i < dest_bytes_per_pixel; ++i)
std::memcpy(&fill_test[i * fill_size], &fill_data[0], fill_size);
for (u32 i = 0; i < fill_size; ++i)
if (std::memcmp(&fill_test[dest_bytes_per_pixel * i], &fill_test[0],
dest_bytes_per_pixel) != 0)
return false;
if (dest_surface.GetFormatBpp() == 4 && (fill_test[0] & 0xF) != (fill_test[0] >> 4))
return false;
}
return true;
}
return false;
}
bool CachedSurface::CanCopy(const SurfaceParams& dest_surface,
SurfaceInterval copy_interval) const {
SurfaceParams subrect_params = dest_surface.FromInterval(copy_interval);
ASSERT(subrect_params.GetInterval() == copy_interval);
if (CanSubRect(subrect_params))
return true;
if (CanFill(dest_surface, copy_interval))
return true;
return false;
}
SurfaceInterval SurfaceParams::GetCopyableInterval(const Surface& src_surface) const {
SurfaceInterval result{};
const auto valid_regions =
SurfaceRegions(GetInterval() & src_surface->GetInterval()) - src_surface->invalid_regions;
for (auto& valid_interval : valid_regions) {
const SurfaceInterval aligned_interval{
addr + Common::AlignUp(boost::icl::first(valid_interval) - addr,
BytesInPixels(is_tiled ? 8 * 8 : 1)),
addr + Common::AlignDown(boost::icl::last_next(valid_interval) - addr,
BytesInPixels(is_tiled ? 8 * 8 : 1))};
if (BytesInPixels(is_tiled ? 8 * 8 : 1) > boost::icl::length(valid_interval) ||
boost::icl::length(aligned_interval) == 0) {
continue;
}
// Get the rectangle within aligned_interval
const u32 stride_bytes = static_cast<u32>(BytesInPixels(stride)) * (is_tiled ? 8 : 1);
SurfaceInterval rect_interval{
addr + Common::AlignUp(boost::icl::first(aligned_interval) - addr, stride_bytes),
addr + Common::AlignDown(boost::icl::last_next(aligned_interval) - addr, stride_bytes),
};
if (boost::icl::first(rect_interval) > boost::icl::last_next(rect_interval)) {
// 1 row
rect_interval = aligned_interval;
} else if (boost::icl::length(rect_interval) == 0) {
// 2 rows that do not make a rectangle, return the larger one
const SurfaceInterval row1{boost::icl::first(aligned_interval),
boost::icl::first(rect_interval)};
const SurfaceInterval row2{boost::icl::first(rect_interval),
boost::icl::last_next(aligned_interval)};
rect_interval = (boost::icl::length(row1) > boost::icl::length(row2)) ? row1 : row2;
}
if (boost::icl::length(rect_interval) > boost::icl::length(result)) {
result = rect_interval;
}
}
return result;
}
void RasterizerCacheOpenGL::CopySurface(const Surface& src_surface, const Surface& dst_surface,
SurfaceInterval copy_interval) {
SurfaceParams subrect_params = dst_surface->FromInterval(copy_interval);
ASSERT(subrect_params.GetInterval() == copy_interval);
ASSERT(src_surface != dst_surface);
// This is only called when CanCopy is true, no need to run checks here
if (src_surface->type == SurfaceType::Fill) {
// FillSurface needs a 4 bytes buffer
const u64 fill_offset =
(boost::icl::first(copy_interval) - src_surface->addr) % src_surface->fill_size;
std::array<u8, 4> fill_buffer;
u64 fill_buff_pos = fill_offset;
for (int i : {0, 1, 2, 3})
fill_buffer[i] = src_surface->fill_data[fill_buff_pos++ % src_surface->fill_size];
FillSurface(dst_surface, &fill_buffer[0], dst_surface->GetScaledSubRect(subrect_params),
draw_framebuffer.handle);
return;
}
if (src_surface->CanSubRect(subrect_params)) {
BlitTextures(src_surface->texture.handle, src_surface->GetScaledSubRect(subrect_params),
dst_surface->texture.handle, dst_surface->GetScaledSubRect(subrect_params),
src_surface->type, read_framebuffer.handle, draw_framebuffer.handle);
return;
}
UNREACHABLE();
}
MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192));
void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) {
ASSERT(type != SurfaceType::Fill);
u8* texture_src_data = Memory::GetPointer(addr);
if (texture_src_data == nullptr)
return;
if (gl_buffer == nullptr) {
gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
gl_buffer.reset(new u8[gl_buffer_size]);
}
MICROPROFILE_SCOPE(OpenGL_SurfaceLoad);
ASSERT(load_start >= addr && load_end <= end);
const u64 start_offset = load_start - addr;
if (!is_tiled) {
ASSERT(type == SurfaceType::Color);
const u32 bytes_per_pixel{GetFormatBpp() >> 3};
VideoCore::MortonCopyPixels128(width, height, bytes_per_pixel, 4,
texture_src_data + start_offset, &gl_buffer[start_offset],
true);
} else {
ASSERT_MSG(false, "Unimplemented");
}
}
MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void CachedSurface::FlushGLBuffer(VAddr flush_start, VAddr flush_end) {
u8* const dst_buffer = Memory::GetPointer(addr);
if (dst_buffer == nullptr)
return;
ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));
// TODO: Should probably be done in ::Memory:: and check for other regions too
// same as loadglbuffer()
if (flush_start < Memory::VRAM_VADDR_END && flush_end > Memory::VRAM_VADDR_END)
flush_end = Memory::VRAM_VADDR_END;
if (flush_start < Memory::VRAM_VADDR && flush_end > Memory::VRAM_VADDR)
flush_start = Memory::VRAM_VADDR;
MICROPROFILE_SCOPE(OpenGL_SurfaceFlush);
ASSERT(flush_start >= addr && flush_end <= end);
const u64 start_offset = flush_start - addr;
const u64 end_offset = flush_end - addr;
if (type == SurfaceType::Fill) {
const u64 coarse_start_offset = start_offset - (start_offset % fill_size);
const u64 backup_bytes = start_offset % fill_size;
std::array<u8, 4> backup_data;
if (backup_bytes)
std::memcpy(&backup_data[0], &dst_buffer[coarse_start_offset], backup_bytes);
for (u64 offset = coarse_start_offset; offset < end_offset; offset += fill_size) {
std::memcpy(&dst_buffer[offset], &fill_data[0],
std::min(fill_size, end_offset - offset));
}
if (backup_bytes)
std::memcpy(&dst_buffer[coarse_start_offset], &backup_data[0], backup_bytes);
} else if (!is_tiled) {
ASSERT(type == SurfaceType::Color);
std::memcpy(dst_buffer + start_offset, &gl_buffer[start_offset], flush_end - flush_start);
} else {
gl_to_morton_fns[static_cast<size_t>(pixel_format)](stride, height, &gl_buffer[0], addr,
flush_start, flush_end);
}
}
MICROPROFILE_DEFINE(OpenGL_TextureUL, "OpenGL", "Texture Upload", MP_RGB(128, 64, 192));
void CachedSurface::UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
GLuint draw_fb_handle) {
if (type == SurfaceType::Fill)
return;
MICROPROFILE_SCOPE(OpenGL_TextureUL);
ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));
// Load data from memory to the surface
GLint x0 = static_cast<GLint>(rect.left);
GLint y0 = static_cast<GLint>(rect.bottom);
size_t buffer_offset = (y0 * stride + x0) * GetGLBytesPerPixel(pixel_format);
const FormatTuple& tuple = GetFormatTuple(pixel_format);
GLuint target_tex = texture.handle;
// If not 1x scale, create 1x texture that we will blit from to replace texture subrect in
// surface
OGLTexture unscaled_tex;
if (res_scale != 1) {
x0 = 0;
y0 = 0;
unscaled_tex.Create();
AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
target_tex = unscaled_tex.handle;
}
OpenGLState cur_state = OpenGLState::GetCurState();
GLuint old_tex = cur_state.texture_units[0].texture_2d;
cur_state.texture_units[0].texture_2d = target_tex;
cur_state.Apply();
// Ensure no bad interactions with GL_UNPACK_ALIGNMENT
ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast<GLint>(stride));
glActiveTexture(GL_TEXTURE0);
glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
cur_state.texture_units[0].texture_2d = old_tex;
cur_state.Apply();
if (res_scale != 1) {
auto scaled_rect = rect;
scaled_rect.left *= res_scale;
scaled_rect.top *= res_scale;
scaled_rect.right *= res_scale;
scaled_rect.bottom *= res_scale;
BlitTextures(unscaled_tex.handle, {0, rect.GetHeight(), rect.GetWidth(), 0}, texture.handle,
scaled_rect, type, read_fb_handle, draw_fb_handle);
}
}
MICROPROFILE_DEFINE(OpenGL_TextureDL, "OpenGL", "Texture Download", MP_RGB(128, 192, 64));
void CachedSurface::DownloadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
GLuint draw_fb_handle) {
if (type == SurfaceType::Fill)
return;
MICROPROFILE_SCOPE(OpenGL_TextureDL);
if (gl_buffer == nullptr) {
gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
gl_buffer.reset(new u8[gl_buffer_size]);
}
OpenGLState state = OpenGLState::GetCurState();
OpenGLState prev_state = state;
SCOPE_EXIT({ prev_state.Apply(); });
const FormatTuple& tuple = GetFormatTuple(pixel_format);
// Ensure no bad interactions with GL_PACK_ALIGNMENT
ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
glPixelStorei(GL_PACK_ROW_LENGTH, static_cast<GLint>(stride));
size_t buffer_offset = (rect.bottom * stride + rect.left) * GetGLBytesPerPixel(pixel_format);
// If not 1x scale, blit scaled texture to a new 1x texture and use that to flush
if (res_scale != 1) {
auto scaled_rect = rect;
scaled_rect.left *= res_scale;
scaled_rect.top *= res_scale;
scaled_rect.right *= res_scale;
scaled_rect.bottom *= res_scale;
OGLTexture unscaled_tex;
unscaled_tex.Create();
MathUtil::Rectangle<u32> unscaled_tex_rect{0, rect.GetHeight(), rect.GetWidth(), 0};
AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
BlitTextures(texture.handle, scaled_rect, unscaled_tex.handle, unscaled_tex_rect, type,
read_fb_handle, draw_fb_handle);
state.texture_units[0].texture_2d = unscaled_tex.handle;
state.Apply();
glActiveTexture(GL_TEXTURE0);
glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, &gl_buffer[buffer_offset]);
} else {
state.ResetTexture(texture.handle);
state.draw.read_framebuffer = read_fb_handle;
state.Apply();
if (type == SurfaceType::Color || type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
texture.handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
} else if (type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
texture.handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
} else {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
texture.handle, 0);
}
glReadPixels(static_cast<GLint>(rect.left), static_cast<GLint>(rect.bottom),
static_cast<GLsizei>(rect.GetWidth()), static_cast<GLsizei>(rect.GetHeight()),
tuple.format, tuple.type, &gl_buffer[buffer_offset]);
}
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
}
enum MatchFlags {
Invalid = 1, // Flag that can be applied to other match types, invalid matches require
// validation before they can be used
Exact = 1 << 1, // Surfaces perfectly match
SubRect = 1 << 2, // Surface encompasses params
Copy = 1 << 3, // Surface we can copy from
Expand = 1 << 4, // Surface that can expand params
TexCopy = 1 << 5 // Surface that will match a display transfer "texture copy" parameters
};
constexpr MatchFlags operator|(MatchFlags lhs, MatchFlags rhs) {
return static_cast<MatchFlags>(static_cast<int>(lhs) | static_cast<int>(rhs));
}
/// Get the best surface match (and its match type) for the given flags
template <MatchFlags find_flags>
Surface FindMatch(const SurfaceCache& surface_cache, const SurfaceParams& params,
ScaleMatch match_scale_type,
boost::optional<SurfaceInterval> validate_interval = boost::none) {
Surface match_surface = nullptr;
bool match_valid = false;
u32 match_scale = 0;
SurfaceInterval match_interval{};
for (auto& pair : RangeFromInterval(surface_cache, params.GetInterval())) {
for (auto& surface : pair.second) {
bool res_scale_matched = match_scale_type == ScaleMatch::Exact
? (params.res_scale == surface->res_scale)
: (params.res_scale <= surface->res_scale);
// validity will be checked in GetCopyableInterval
bool is_valid =
find_flags & MatchFlags::Copy
? true
: surface->IsRegionValid(validate_interval.value_or(params.GetInterval()));
if (!(find_flags & MatchFlags::Invalid) && !is_valid)
continue;
auto IsMatch_Helper = [&](auto check_type, auto match_fn) {
if (!(find_flags & check_type))
return;
bool matched;
SurfaceInterval surface_interval;
std::tie(matched, surface_interval) = match_fn();
if (!matched)
return;
if (!res_scale_matched && match_scale_type != ScaleMatch::Ignore &&
surface->type != SurfaceType::Fill)
return;
// Found a match, update only if this is better than the previous one
auto UpdateMatch = [&] {
match_surface = surface;
match_valid = is_valid;
match_scale = surface->res_scale;
match_interval = surface_interval;
};
if (surface->res_scale > match_scale) {
UpdateMatch();
return;
} else if (surface->res_scale < match_scale) {
return;
}
if (is_valid && !match_valid) {
UpdateMatch();
return;
} else if (is_valid != match_valid) {
return;
}
if (boost::icl::length(surface_interval) > boost::icl::length(match_interval)) {
UpdateMatch();
}
};
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Exact>{}, [&] {
return std::make_pair(surface->ExactMatch(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::SubRect>{}, [&] {
return std::make_pair(surface->CanSubRect(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Copy>{}, [&] {
auto copy_interval =
params.FromInterval(*validate_interval).GetCopyableInterval(surface);
bool matched = boost::icl::length(copy_interval & *validate_interval) != 0 &&
surface->CanCopy(params, copy_interval);
return std::make_pair(matched, copy_interval);
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Expand>{}, [&] {
return std::make_pair(surface->CanExpand(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::TexCopy>{}, [&] {
return std::make_pair(surface->CanTexCopy(params), surface->GetInterval());
});
}
}
return match_surface;
}
RasterizerCacheOpenGL::RasterizerCacheOpenGL() {
read_framebuffer.Create();
draw_framebuffer.Create();
attributeless_vao.Create();
d24s8_abgr_buffer.Create();
d24s8_abgr_buffer_size = 0;
const char* vs_source = R"(
#version 330 core
const vec2 vertices[4] = vec2[4](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
void main() {
gl_Position = vec4(vertices[gl_VertexID], 0.0, 1.0);
}
)";
const char* fs_source = R"(
#version 330 core
uniform samplerBuffer tbo;
uniform vec2 tbo_size;
uniform vec4 viewport;
out vec4 color;
void main() {
vec2 tbo_coord = (gl_FragCoord.xy - viewport.xy) * tbo_size / viewport.zw;
int tbo_offset = int(tbo_coord.y) * int(tbo_size.x) + int(tbo_coord.x);
color = texelFetch(tbo, tbo_offset).rabg;
}
)";
d24s8_abgr_shader.Create(vs_source, nullptr, fs_source);
OpenGLState state = OpenGLState::GetCurState();
GLuint old_program = state.draw.shader_program;
state.draw.shader_program = d24s8_abgr_shader.handle;
state.Apply();
GLint tbo_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "tbo");
ASSERT(tbo_u_id != -1);
glUniform1i(tbo_u_id, 0);
state.draw.shader_program = old_program;
state.Apply();
d24s8_abgr_tbo_size_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "tbo_size");
ASSERT(d24s8_abgr_tbo_size_u_id != -1);
d24s8_abgr_viewport_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "viewport");
ASSERT(d24s8_abgr_viewport_u_id != -1);
}
RasterizerCacheOpenGL::~RasterizerCacheOpenGL() {
FlushAll();
while (!surface_cache.empty())
UnregisterSurface(*surface_cache.begin()->second.begin());
}
bool RasterizerCacheOpenGL::BlitSurfaces(const Surface& src_surface,
const MathUtil::Rectangle<u32>& src_rect,
const Surface& dst_surface,
const MathUtil::Rectangle<u32>& dst_rect) {
if (!SurfaceParams::CheckFormatsBlittable(src_surface->pixel_format, dst_surface->pixel_format))
return false;
return BlitTextures(src_surface->texture.handle, src_rect, dst_surface->texture.handle,
dst_rect, src_surface->type, read_framebuffer.handle,
draw_framebuffer.handle);
}
void RasterizerCacheOpenGL::ConvertD24S8toABGR(GLuint src_tex,
const MathUtil::Rectangle<u32>& src_rect,
GLuint dst_tex,
const MathUtil::Rectangle<u32>& dst_rect) {
OpenGLState prev_state = OpenGLState::GetCurState();
SCOPE_EXIT({ prev_state.Apply(); });
OpenGLState state;
state.draw.read_framebuffer = read_framebuffer.handle;
state.draw.draw_framebuffer = draw_framebuffer.handle;
state.Apply();
glBindBuffer(GL_PIXEL_PACK_BUFFER, d24s8_abgr_buffer.handle);
GLsizeiptr target_pbo_size = src_rect.GetWidth() * src_rect.GetHeight() * 4;
if (target_pbo_size > d24s8_abgr_buffer_size) {
d24s8_abgr_buffer_size = target_pbo_size * 2;
glBufferData(GL_PIXEL_PACK_BUFFER, d24s8_abgr_buffer_size, nullptr, GL_STREAM_COPY);
}
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, src_tex,
0);
glReadPixels(static_cast<GLint>(src_rect.left), static_cast<GLint>(src_rect.bottom),
static_cast<GLsizei>(src_rect.GetWidth()),
static_cast<GLsizei>(src_rect.GetHeight()), GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8,
0);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
// PBO now contains src_tex in RABG format
state.draw.shader_program = d24s8_abgr_shader.handle;
state.draw.vertex_array = attributeless_vao.handle;
state.viewport.x = static_cast<GLint>(dst_rect.left);
state.viewport.y = static_cast<GLint>(dst_rect.bottom);
state.viewport.width = static_cast<GLsizei>(dst_rect.GetWidth());
state.viewport.height = static_cast<GLsizei>(dst_rect.GetHeight());
state.Apply();
OGLTexture tbo;
tbo.Create();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER, tbo.handle);
glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA8, d24s8_abgr_buffer.handle);
glUniform2f(d24s8_abgr_tbo_size_u_id, static_cast<GLfloat>(src_rect.GetWidth()),
static_cast<GLfloat>(src_rect.GetHeight()));
glUniform4f(d24s8_abgr_viewport_u_id, static_cast<GLfloat>(state.viewport.x),
static_cast<GLfloat>(state.viewport.y), static_cast<GLfloat>(state.viewport.width),
static_cast<GLfloat>(state.viewport.height));
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, dst_tex, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindTexture(GL_TEXTURE_BUFFER, 0);
}
Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, ScaleMatch match_res_scale,
bool load_if_create) {
if (params.addr == 0 || params.height * params.width == 0) {
return nullptr;
}
// Use GetSurfaceSubRect instead
ASSERT(params.width == params.stride);
ASSERT(!params.is_tiled || (params.width % 8 == 0 && params.height % 8 == 0));
// Check for an exact match in existing surfaces
Surface surface =
FindMatch<MatchFlags::Exact | MatchFlags::Invalid>(surface_cache, params, match_res_scale);
if (surface == nullptr) {
u16 target_res_scale = params.res_scale;
if (match_res_scale != ScaleMatch::Exact) {
// This surface may have a subrect of another surface with a higher res_scale, find it
// to adjust our params
SurfaceParams find_params = params;
Surface expandable = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(
surface_cache, find_params, match_res_scale);
if (expandable != nullptr && expandable->res_scale > target_res_scale) {
target_res_scale = expandable->res_scale;
}
// Keep res_scale when reinterpreting d24s8 -> rgba8
if (params.pixel_format == PixelFormat::RGBA8) {
find_params.pixel_format = PixelFormat::D24S8;
expandable = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(
surface_cache, find_params, match_res_scale);
if (expandable != nullptr && expandable->res_scale > target_res_scale) {
target_res_scale = expandable->res_scale;
}
}
}
SurfaceParams new_params = params;
new_params.res_scale = target_res_scale;
surface = CreateSurface(new_params);
RegisterSurface(surface);
}
if (load_if_create) {
ValidateSurface(surface, params.addr, params.size);
}
return surface;
}
SurfaceRect_Tuple RasterizerCacheOpenGL::GetSurfaceSubRect(const SurfaceParams& params,
ScaleMatch match_res_scale,
bool load_if_create) {
if (params.addr == 0 || params.height * params.width == 0) {
return std::make_tuple(nullptr, MathUtil::Rectangle<u32>{});
}
// Attempt to find encompassing surface
Surface surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(surface_cache, params,
match_res_scale);
// Check if FindMatch failed because of res scaling
// If that's the case create a new surface with
// the dimensions of the lower res_scale surface
// to suggest it should not be used again
if (surface == nullptr && match_res_scale != ScaleMatch::Ignore) {
surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(surface_cache, params,
ScaleMatch::Ignore);
if (surface != nullptr) {
ASSERT(surface->res_scale < params.res_scale);
SurfaceParams new_params = *surface;
new_params.res_scale = params.res_scale;
surface = CreateSurface(new_params);
RegisterSurface(surface);
}
}
SurfaceParams aligned_params = params;
if (params.is_tiled) {
aligned_params.height = Common::AlignUp(params.height, 8);
aligned_params.width = Common::AlignUp(params.width, 8);
aligned_params.stride = Common::AlignUp(params.stride, 8);
aligned_params.UpdateParams();
}
// Check for a surface we can expand before creating a new one
if (surface == nullptr) {
surface = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(surface_cache, aligned_params,
match_res_scale);
if (surface != nullptr) {
aligned_params.width = aligned_params.stride;
aligned_params.UpdateParams();
SurfaceParams new_params = *surface;
new_params.addr = std::min(aligned_params.addr, surface->addr);
new_params.end = std::max(aligned_params.end, surface->end);
new_params.size = new_params.end - new_params.addr;
new_params.height = static_cast<u32>(
new_params.size / aligned_params.BytesInPixels(aligned_params.stride));
ASSERT(new_params.size % aligned_params.BytesInPixels(aligned_params.stride) == 0);
Surface new_surface = CreateSurface(new_params);
DuplicateSurface(surface, new_surface);
// Delete the expanded surface, this can't be done safely yet
// because it may still be in use
remove_surfaces.emplace(surface);
surface = new_surface;
RegisterSurface(new_surface);
}
}
// No subrect found - create and return a new surface
if (surface == nullptr) {
SurfaceParams new_params = aligned_params;
// Can't have gaps in a surface
new_params.width = aligned_params.stride;
new_params.UpdateParams();
// GetSurface will create the new surface and possibly adjust res_scale if necessary
surface = GetSurface(new_params, match_res_scale, load_if_create);
} else if (load_if_create) {
ValidateSurface(surface, aligned_params.addr, aligned_params.size);
}
return std::make_tuple(surface, surface->GetScaledSubRect(params));
}
Surface RasterizerCacheOpenGL::GetTextureSurface(const void* config) {
ASSERT_MSG(false, "Unimplemented");
return {};
}
SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport_rect) {
UNIMPLEMENTED();
return {};
}
Surface RasterizerCacheOpenGL::GetFillSurface(const void* config) {
ASSERT_MSG(false, "Unimplemented");
return {};
}
SurfaceRect_Tuple RasterizerCacheOpenGL::GetTexCopySurface(const SurfaceParams& params) {
MathUtil::Rectangle<u32> rect{};
Surface match_surface = FindMatch<MatchFlags::TexCopy | MatchFlags::Invalid>(
surface_cache, params, ScaleMatch::Ignore);
if (match_surface != nullptr) {
ValidateSurface(match_surface, params.addr, params.size);
SurfaceParams match_subrect;
if (params.width != params.stride) {
const u32 tiled_size = match_surface->is_tiled ? 8 : 1;
match_subrect = params;
match_subrect.width =
static_cast<u32>(match_surface->PixelsInBytes(params.width) / tiled_size);
match_subrect.stride =
static_cast<u32>(match_surface->PixelsInBytes(params.stride) / tiled_size);
match_subrect.height *= tiled_size;
} else {
match_subrect = match_surface->FromInterval(params.GetInterval());
ASSERT(match_subrect.GetInterval() == params.GetInterval());
}
rect = match_surface->GetScaledSubRect(match_subrect);
}
return std::make_tuple(match_surface, rect);
}
void RasterizerCacheOpenGL::DuplicateSurface(const Surface& src_surface,
const Surface& dest_surface) {
ASSERT(dest_surface->addr <= src_surface->addr && dest_surface->end >= src_surface->end);
BlitSurfaces(src_surface, src_surface->GetScaledRect(), dest_surface,
dest_surface->GetScaledSubRect(*src_surface));
dest_surface->invalid_regions -= src_surface->GetInterval();
dest_surface->invalid_regions += src_surface->invalid_regions;
SurfaceRegions regions;
for (auto& pair : RangeFromInterval(dirty_regions, src_surface->GetInterval())) {
if (pair.second == src_surface) {
regions += pair.first;
}
}
for (auto& interval : regions) {
dirty_regions.set({interval, dest_surface});
}
}
void RasterizerCacheOpenGL::ValidateSurface(const Surface& surface, VAddr addr, u64 size) {
if (size == 0)
return;
const SurfaceInterval validate_interval(addr, addr + size);
if (surface->type == SurfaceType::Fill) {
// Sanity check, fill surfaces will always be valid when used
ASSERT(surface->IsRegionValid(validate_interval));
return;
}
while (true) {
const auto it = surface->invalid_regions.find(validate_interval);
if (it == surface->invalid_regions.end())
break;
const auto interval = *it & validate_interval;
// Look for a valid surface to copy from
SurfaceParams params = surface->FromInterval(interval);
Surface copy_surface =
FindMatch<MatchFlags::Copy>(surface_cache, params, ScaleMatch::Ignore, interval);
if (copy_surface != nullptr) {
SurfaceInterval copy_interval = params.GetCopyableInterval(copy_surface);
CopySurface(copy_surface, surface, copy_interval);
surface->invalid_regions.erase(copy_interval);
continue;
}
// D24S8 to RGBA8
if (surface->pixel_format == PixelFormat::RGBA8) {
params.pixel_format = PixelFormat::D24S8;
Surface reinterpret_surface =
FindMatch<MatchFlags::Copy>(surface_cache, params, ScaleMatch::Ignore, interval);
if (reinterpret_surface != nullptr) {
ASSERT(reinterpret_surface->pixel_format == PixelFormat::D24S8);
SurfaceInterval convert_interval = params.GetCopyableInterval(reinterpret_surface);
SurfaceParams convert_params = surface->FromInterval(convert_interval);
auto src_rect = reinterpret_surface->GetScaledSubRect(convert_params);
auto dest_rect = surface->GetScaledSubRect(convert_params);
ConvertD24S8toABGR(reinterpret_surface->texture.handle, src_rect,
surface->texture.handle, dest_rect);
surface->invalid_regions.erase(convert_interval);
continue;
}
}
// Load data from 3DS memory
FlushRegion(params.addr, params.size);
surface->LoadGLBuffer(params.addr, params.end);
surface->UploadGLTexture(surface->GetSubRect(params), read_framebuffer.handle,
draw_framebuffer.handle);
surface->invalid_regions.erase(params.GetInterval());
}
}
void RasterizerCacheOpenGL::FlushRegion(VAddr addr, u64 size, Surface flush_surface) {
if (size == 0)
return;
const SurfaceInterval flush_interval(addr, addr + size);
SurfaceRegions flushed_intervals;
for (auto& pair : RangeFromInterval(dirty_regions, flush_interval)) {
// small sizes imply that this most likely comes from the cpu, flush the entire region
// the point is to avoid thousands of small writes every frame if the cpu decides to access
// that region, anything higher than 8 you're guaranteed it comes from a service
const auto interval = size <= 8 ? pair.first : pair.first & flush_interval;
auto& surface = pair.second;
if (flush_surface != nullptr && surface != flush_surface)
continue;
// Sanity check, this surface is the last one that marked this region dirty
ASSERT(surface->IsRegionValid(interval));
if (surface->type != SurfaceType::Fill) {
SurfaceParams params = surface->FromInterval(interval);
surface->DownloadGLTexture(surface->GetSubRect(params), read_framebuffer.handle,
draw_framebuffer.handle);
}
surface->FlushGLBuffer(boost::icl::first(interval), boost::icl::last_next(interval));
flushed_intervals += interval;
}
// Reset dirty regions
dirty_regions -= flushed_intervals;
}
void RasterizerCacheOpenGL::FlushAll() {
FlushRegion(0, 0xFFFFFFFF);
}
void RasterizerCacheOpenGL::InvalidateRegion(VAddr addr, u64 size, const Surface& region_owner) {
if (size == 0)
return;
const SurfaceInterval invalid_interval(addr, addr + size);
if (region_owner != nullptr) {
ASSERT(region_owner->type != SurfaceType::Texture);
ASSERT(addr >= region_owner->addr && addr + size <= region_owner->end);
// Surfaces can't have a gap
ASSERT(region_owner->width == region_owner->stride);
region_owner->invalid_regions.erase(invalid_interval);
}
for (auto& pair : RangeFromInterval(surface_cache, invalid_interval)) {
for (auto& cached_surface : pair.second) {
if (cached_surface == region_owner)
continue;
// If cpu is invalidating this region we want to remove it
// to (likely) mark the memory pages as uncached
if (region_owner == nullptr && size <= 8) {
FlushRegion(cached_surface->addr, cached_surface->size, cached_surface);
remove_surfaces.emplace(cached_surface);
continue;
}
const auto interval = cached_surface->GetInterval() & invalid_interval;
cached_surface->invalid_regions.insert(interval);
// Remove only "empty" fill surfaces to avoid destroying and recreating OGL textures
if (cached_surface->type == SurfaceType::Fill &&
cached_surface->IsSurfaceFullyInvalid()) {
remove_surfaces.emplace(cached_surface);
}
}
}
if (region_owner != nullptr)
dirty_regions.set({invalid_interval, region_owner});
else
dirty_regions.erase(invalid_interval);
for (auto& remove_surface : remove_surfaces) {
if (remove_surface == region_owner) {
Surface expanded_surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(
surface_cache, *region_owner, ScaleMatch::Ignore);
ASSERT(expanded_surface);
if ((region_owner->invalid_regions - expanded_surface->invalid_regions).empty()) {
DuplicateSurface(region_owner, expanded_surface);
} else {
continue;
}
}
UnregisterSurface(remove_surface);
}
remove_surfaces.clear();
}
Surface RasterizerCacheOpenGL::CreateSurface(const SurfaceParams& params) {
Surface surface = std::make_shared<CachedSurface>();
static_cast<SurfaceParams&>(*surface) = params;
surface->texture.Create();
surface->gl_buffer_size = 0;
surface->invalid_regions.insert(surface->GetInterval());
AllocateSurfaceTexture(surface->texture.handle, GetFormatTuple(surface->pixel_format),
surface->GetScaledWidth(), surface->GetScaledHeight());
return surface;
}
void RasterizerCacheOpenGL::RegisterSurface(const Surface& surface) {
if (surface->registered) {
return;
}
surface->registered = true;
surface_cache.add({surface->GetInterval(), SurfaceSet{surface}});
UpdatePagesCachedCount(surface->addr, surface->size, 1);
}
void RasterizerCacheOpenGL::UnregisterSurface(const Surface& surface) {
if (!surface->registered) {
return;
}
surface->registered = false;
UpdatePagesCachedCount(surface->addr, surface->size, -1);
surface_cache.subtract({surface->GetInterval(), SurfaceSet{surface}});
}
void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
// ASSERT_MSG(false, "Unimplemented");
}