3
0
Fork 0
forked from suyu/suyu
suyu/src/video_core/texture_cache.h
ReinUsesLisp d708d03d20 video_core: Implement API agnostic view based texture cache
Implements an API agnostic texture view based texture cache. Classes
defined here are intended to be inherited by the API implementation and
used in API-specific code.

This implementation exposes protected virtual functions to be called
from the implementer.

Before executing any surface copies methods (defined in API-specific code)
it tries to detect if the overlapping surface is a superset and if it
is, it creates a view. Views are references of a subset of a surface, it
can be a superset view (the same as referencing the whole texture).
Current code manages 1D, 1D array, 2D, 2D array, cube maps and cube map
arrays with layer and mipmap level views. Texture 3D slices views are
not implemented.

If the view attempt fails, the fast path is invoked with the overlapping
textures (defined in the implementer). If that one fails (returning
nullptr) it will flush and reload the texture.
2019-03-22 13:34:04 -03:00

586 lines
19 KiB
C++

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <list>
#include <memory>
#include <set>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <boost/icl/interval_map.hpp>
#include <boost/range/iterator_range.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "core/memory.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
namespace Core {
class System;
}
namespace Tegra::Texture {
struct FullTextureInfo;
}
namespace VideoCore {
class RasterizerInterface;
}
namespace VideoCommon {
class HasheableSurfaceParams {
public:
std::size_t Hash() const;
bool operator==(const HasheableSurfaceParams& rhs) const;
protected:
// Avoid creation outside of a managed environment.
HasheableSurfaceParams() = default;
bool is_tiled;
u32 block_width;
u32 block_height;
u32 block_depth;
u32 tile_width_spacing;
u32 width;
u32 height;
u32 depth;
u32 pitch;
u32 unaligned_height;
u32 num_levels;
VideoCore::Surface::PixelFormat pixel_format;
VideoCore::Surface::ComponentType component_type;
VideoCore::Surface::SurfaceType type;
VideoCore::Surface::SurfaceTarget target;
};
class SurfaceParams final : public HasheableSurfaceParams {
public:
/// Creates SurfaceCachedParams from a texture configuration.
static SurfaceParams CreateForTexture(Core::System& system,
const Tegra::Texture::FullTextureInfo& config);
/// Creates SurfaceCachedParams for a depth buffer configuration.
static SurfaceParams CreateForDepthBuffer(
Core::System& system, u32 zeta_width, u32 zeta_height, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type);
/// Creates SurfaceCachedParams from a framebuffer configuration.
static SurfaceParams CreateForFramebuffer(Core::System& system, std::size_t index);
/// Creates SurfaceCachedParams from a Fermi2D surface configuration.
static SurfaceParams CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config);
bool IsTiled() const {
return is_tiled;
}
u32 GetBlockWidth() const {
return block_width;
}
u32 GetTileWidthSpacing() const {
return tile_width_spacing;
}
u32 GetWidth() const {
return width;
}
u32 GetHeight() const {
return height;
}
u32 GetDepth() const {
return depth;
}
u32 GetPitch() const {
return pitch;
}
u32 GetNumLevels() const {
return num_levels;
}
VideoCore::Surface::PixelFormat GetPixelFormat() const {
return pixel_format;
}
VideoCore::Surface::ComponentType GetComponentType() const {
return component_type;
}
VideoCore::Surface::SurfaceTarget GetTarget() const {
return target;
}
VideoCore::Surface::SurfaceType GetType() const {
return type;
}
std::size_t GetGuestSizeInBytes() const {
return guest_size_in_bytes;
}
std::size_t GetHostSizeInBytes() const {
return host_size_in_bytes;
}
u32 GetNumLayers() const {
return num_layers;
}
/// Returns the width of a given mipmap level.
u32 GetMipWidth(u32 level) const;
/// Returns the height of a given mipmap level.
u32 GetMipHeight(u32 level) const;
/// Returns the depth of a given mipmap level.
u32 GetMipDepth(u32 level) const;
/// Returns true if these parameters are from a layered surface.
bool IsLayered() const;
/// Returns the block height of a given mipmap level.
u32 GetMipBlockHeight(u32 level) const;
/// Returns the block depth of a given mipmap level.
u32 GetMipBlockDepth(u32 level) const;
/// Returns the offset in bytes in guest memory of a given mipmap level.
std::size_t GetGuestMipmapLevelOffset(u32 level) const;
/// Returns the offset in bytes in host memory (linear) of a given mipmap level.
std::size_t GetHostMipmapLevelOffset(u32 level) const;
/// Returns the size of a layer in bytes in guest memory.
std::size_t GetGuestLayerSize() const;
/// Returns the size of a layer in bytes in host memory for a given mipmap level.
std::size_t GetHostLayerSize(u32 level) const;
/// Returns true if another surface can be familiar with this. This is a loosely defined term
/// that reflects the possibility of these two surface parameters potentially being part of a
/// bigger superset.
bool IsFamiliar(const SurfaceParams& view_params) const;
/// Returns true if the pixel format is a depth and/or stencil format.
bool IsPixelFormatZeta() const;
/// Creates a map that redirects an address difference to a layer and mipmap level.
std::map<u64, std::pair<u32, u32>> CreateViewOffsetMap() const;
/// Returns true if the passed surface view parameters is equal or a valid subset of this.
bool IsViewValid(const SurfaceParams& view_params, u32 layer, u32 level) const;
private:
/// Calculates values that can be deduced from HasheableSurfaceParams.
void CalculateCachedValues();
/// Returns the size of a given mipmap level.
std::size_t GetInnerMipmapMemorySize(u32 level, bool as_host_size, bool layer_only,
bool uncompressed) const;
/// Returns the size of all mipmap levels and aligns as needed.
std::size_t GetInnerMemorySize(bool as_host_size, bool layer_only, bool uncompressed) const;
/// Returns true if the passed view width and height match the size of this params in a given
/// mipmap level.
bool IsDimensionValid(const SurfaceParams& view_params, u32 level) const;
/// Returns true if the passed view depth match the size of this params in a given mipmap level.
bool IsDepthValid(const SurfaceParams& view_params, u32 level) const;
/// Returns true if the passed view layers and mipmap levels are in bounds.
bool IsInBounds(const SurfaceParams& view_params, u32 layer, u32 level) const;
std::size_t guest_size_in_bytes;
std::size_t host_size_in_bytes;
u32 num_layers;
};
struct ViewKey {
std::size_t Hash() const;
bool operator==(const ViewKey& rhs) const;
u32 base_layer{};
u32 num_layers{};
u32 base_level{};
u32 num_levels{};
};
} // namespace VideoCommon
namespace std {
template <>
struct hash<VideoCommon::SurfaceParams> {
std::size_t operator()(const VideoCommon::SurfaceParams& k) const noexcept {
return k.Hash();
}
};
template <>
struct hash<VideoCommon::ViewKey> {
std::size_t operator()(const VideoCommon::ViewKey& k) const noexcept {
return k.Hash();
}
};
} // namespace std
namespace VideoCommon {
template <typename TView, typename TExecutionContext>
class SurfaceBase {
static_assert(std::is_trivially_copyable_v<TExecutionContext>);
public:
virtual void LoadBuffer() = 0;
virtual TExecutionContext FlushBuffer(TExecutionContext exctx) = 0;
virtual TExecutionContext UploadTexture(TExecutionContext exctx) = 0;
TView* TryGetView(VAddr view_addr, const SurfaceParams& view_params) {
if (view_addr < cpu_addr || !params.IsFamiliar(view_params)) {
// It can't be a view if it's in a prior address.
return {};
}
const auto relative_offset{static_cast<u64>(view_addr - cpu_addr)};
const auto it{view_offset_map.find(relative_offset)};
if (it == view_offset_map.end()) {
// Couldn't find an aligned view.
return {};
}
const auto [layer, level] = it->second;
if (!params.IsViewValid(view_params, layer, level)) {
return {};
}
return GetView(layer, view_params.GetNumLayers(), level, view_params.GetNumLevels());
}
VAddr GetCpuAddr() const {
ASSERT(is_registered);
return cpu_addr;
}
u8* GetHostPtr() const {
ASSERT(is_registered);
return host_ptr;
}
CacheAddr GetCacheAddr() const {
ASSERT(is_registered);
return cache_addr;
}
std::size_t GetSizeInBytes() const {
return params.GetGuestSizeInBytes();
}
void MarkAsModified(bool is_modified_) {
is_modified = is_modified_;
}
const SurfaceParams& GetSurfaceParams() const {
return params;
}
TView* GetView(VAddr view_addr, const SurfaceParams& view_params) {
TView* view{TryGetView(view_addr, view_params)};
ASSERT(view != nullptr);
return view;
}
void Register(VAddr cpu_addr_, u8* host_ptr_) {
ASSERT(!is_registered);
is_registered = true;
cpu_addr = cpu_addr_;
host_ptr = host_ptr_;
cache_addr = ToCacheAddr(host_ptr_);
}
void Register(VAddr cpu_addr_) {
Register(cpu_addr_, Memory::GetPointer(cpu_addr_));
}
void Unregister() {
ASSERT(is_registered);
is_registered = false;
}
bool IsRegistered() const {
return is_registered;
}
protected:
explicit SurfaceBase(const SurfaceParams& params)
: params{params}, view_offset_map{params.CreateViewOffsetMap()} {}
~SurfaceBase() = default;
virtual std::unique_ptr<TView> CreateView(const ViewKey& view_key) = 0;
bool IsModified() const {
return is_modified;
}
const SurfaceParams params;
private:
TView* GetView(u32 base_layer, u32 num_layers, u32 base_level, u32 num_levels) {
const ViewKey key{base_layer, num_layers, base_level, num_levels};
const auto [entry, is_cache_miss] = views.try_emplace(key);
auto& view{entry->second};
if (is_cache_miss) {
view = CreateView(key);
}
return view.get();
}
const std::map<u64, std::pair<u32, u32>> view_offset_map;
VAddr cpu_addr{};
u8* host_ptr{};
CacheAddr cache_addr{};
bool is_modified{};
bool is_registered{};
std::unordered_map<ViewKey, std::unique_ptr<TView>> views;
};
template <typename TSurface, typename TView, typename TExecutionContext>
class TextureCache {
static_assert(std::is_trivially_copyable_v<TExecutionContext>);
using ResultType = std::tuple<TView*, TExecutionContext>;
using IntervalMap = boost::icl::interval_map<CacheAddr, std::set<TSurface*>>;
using IntervalType = typename IntervalMap::interval_type;
public:
void InvalidateRegion(CacheAddr addr, std::size_t size) {
for (TSurface* surface : GetSurfacesInRegion(addr, size)) {
if (!surface->IsRegistered()) {
// Skip duplicates
continue;
}
Unregister(surface);
}
}
ResultType GetTextureSurface(TExecutionContext exctx,
const Tegra::Texture::FullTextureInfo& config) {
auto& memory_manager{system.GPU().MemoryManager()};
const auto cpu_addr{memory_manager.GpuToCpuAddress(config.tic.Address())};
if (!cpu_addr) {
return {{}, exctx};
}
const auto params{SurfaceParams::CreateForTexture(system, config)};
return GetSurfaceView(exctx, *cpu_addr, params, true);
}
ResultType GetDepthBufferSurface(TExecutionContext exctx, bool preserve_contents) {
const auto& regs{system.GPU().Maxwell3D().regs};
if (!regs.zeta.Address() || !regs.zeta_enable) {
return {{}, exctx};
}
auto& memory_manager{system.GPU().MemoryManager()};
const auto cpu_addr{memory_manager.GpuToCpuAddress(regs.zeta.Address())};
if (!cpu_addr) {
return {{}, exctx};
}
const auto depth_params{SurfaceParams::CreateForDepthBuffer(
system, regs.zeta_width, regs.zeta_height, regs.zeta.format,
regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height,
regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)};
return GetSurfaceView(exctx, *cpu_addr, depth_params, preserve_contents);
}
ResultType GetColorBufferSurface(TExecutionContext exctx, std::size_t index,
bool preserve_contents) {
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
const auto& regs{system.GPU().Maxwell3D().regs};
if (index >= regs.rt_control.count || regs.rt[index].Address() == 0 ||
regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
return {{}, exctx};
}
auto& memory_manager{system.GPU().MemoryManager()};
const auto& config{system.GPU().Maxwell3D().regs.rt[index]};
const auto cpu_addr{memory_manager.GpuToCpuAddress(
config.Address() + config.base_layer * config.layer_stride * sizeof(u32))};
if (!cpu_addr) {
return {{}, exctx};
}
return GetSurfaceView(exctx, *cpu_addr, SurfaceParams::CreateForFramebuffer(system, index),
preserve_contents);
}
ResultType GetFermiSurface(TExecutionContext exctx,
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
const auto cpu_addr{system.GPU().MemoryManager().GpuToCpuAddress(config.Address())};
ASSERT(cpu_addr);
return GetSurfaceView(exctx, *cpu_addr, SurfaceParams::CreateForFermiCopySurface(config),
true);
}
TSurface* TryFindFramebufferSurface(const u8* host_ptr) const {
const auto it{registered_surfaces.find(ToCacheAddr(host_ptr))};
return it != registered_surfaces.end() ? *it->second.begin() : nullptr;
}
protected:
TextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
: system{system}, rasterizer{rasterizer} {}
~TextureCache() = default;
virtual ResultType TryFastGetSurfaceView(TExecutionContext exctx, VAddr cpu_addr, u8* host_ptr,
const SurfaceParams& params, bool preserve_contents,
const std::vector<TSurface*>& overlaps) = 0;
virtual std::unique_ptr<TSurface> CreateSurface(const SurfaceParams& params) = 0;
void Register(TSurface* surface, VAddr cpu_addr, u8* host_ptr) {
surface->Register(cpu_addr, host_ptr);
registered_surfaces.add({GetSurfaceInterval(surface), {surface}});
rasterizer.UpdatePagesCachedCount(surface->GetCpuAddr(), surface->GetSizeInBytes(), 1);
}
void Unregister(TSurface* surface) {
registered_surfaces.subtract({GetSurfaceInterval(surface), {surface}});
rasterizer.UpdatePagesCachedCount(surface->GetCpuAddr(), surface->GetSizeInBytes(), -1);
surface->Unregister();
}
TSurface* GetUncachedSurface(const SurfaceParams& params) {
if (TSurface* surface = TryGetReservedSurface(params); surface)
return surface;
// No reserved surface available, create a new one and reserve it
auto new_surface{CreateSurface(params)};
TSurface* surface{new_surface.get()};
ReserveSurface(params, std::move(new_surface));
return surface;
}
Core::System& system;
private:
ResultType GetSurfaceView(TExecutionContext exctx, VAddr cpu_addr, const SurfaceParams& params,
bool preserve_contents) {
const auto host_ptr{Memory::GetPointer(cpu_addr)};
const auto cache_addr{ToCacheAddr(host_ptr)};
const auto overlaps{GetSurfacesInRegion(cache_addr, params.GetGuestSizeInBytes())};
if (overlaps.empty()) {
return LoadSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents);
}
if (overlaps.size() == 1) {
if (TView* view = overlaps[0]->TryGetView(cpu_addr, params); view)
return {view, exctx};
}
TView* fast_view;
std::tie(fast_view, exctx) =
TryFastGetSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents, overlaps);
for (TSurface* surface : overlaps) {
if (!fast_view) {
// Flush even when we don't care about the contents, to preserve memory not written
// by the new surface.
exctx = surface->FlushBuffer(exctx);
}
Unregister(surface);
}
if (fast_view) {
return {fast_view, exctx};
}
return LoadSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents);
}
ResultType LoadSurfaceView(TExecutionContext exctx, VAddr cpu_addr, u8* host_ptr,
const SurfaceParams& params, bool preserve_contents) {
TSurface* new_surface{GetUncachedSurface(params)};
Register(new_surface, cpu_addr, host_ptr);
if (preserve_contents) {
exctx = LoadSurface(exctx, new_surface);
}
return {new_surface->GetView(cpu_addr, params), exctx};
}
TExecutionContext LoadSurface(TExecutionContext exctx, TSurface* surface) {
surface->LoadBuffer();
exctx = surface->UploadTexture(exctx);
surface->MarkAsModified(false);
return exctx;
}
std::vector<TSurface*> GetSurfacesInRegion(CacheAddr cache_addr, std::size_t size) const {
if (size == 0) {
return {};
}
const IntervalType interval{cache_addr, cache_addr + size};
std::vector<TSurface*> surfaces;
for (auto& pair : boost::make_iterator_range(registered_surfaces.equal_range(interval))) {
surfaces.push_back(*pair.second.begin());
}
return surfaces;
}
void ReserveSurface(const SurfaceParams& params, std::unique_ptr<TSurface> surface) {
surface_reserve[params].push_back(std::move(surface));
}
TSurface* TryGetReservedSurface(const SurfaceParams& params) {
auto search{surface_reserve.find(params)};
if (search == surface_reserve.end()) {
return {};
}
for (auto& surface : search->second) {
if (!surface->IsRegistered()) {
return surface.get();
}
}
return {};
}
IntervalType GetSurfaceInterval(TSurface* surface) const {
return IntervalType::right_open(surface->GetCacheAddr(),
surface->GetCacheAddr() + surface->GetSizeInBytes());
}
VideoCore::RasterizerInterface& rasterizer;
IntervalMap registered_surfaces;
/// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
/// previously been used. This is to prevent surfaces from being constantly created and
/// destroyed when used with different surface parameters.
std::unordered_map<SurfaceParams, std::list<std::unique_ptr<TSurface>>> surface_reserve;
};
} // namespace VideoCommon