3
0
Fork 0
forked from suyu/suyu
suyu/src/common/tiny_mt.h
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

249 lines
7.7 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include "common/alignment.h"
#include "common/common_types.h"
namespace Common {
// Implementation of TinyMT (mersenne twister RNG).
// Like Nintendo, we will use the sample parameters.
class TinyMT {
public:
static constexpr std::size_t NumStateWords = 4;
struct State {
std::array<u32, NumStateWords> data{};
};
private:
static constexpr u32 ParamMat1 = 0x8F7011EE;
static constexpr u32 ParamMat2 = 0xFC78FF1F;
static constexpr u32 ParamTmat = 0x3793FDFF;
static constexpr u32 ParamMult = 0x6C078965;
static constexpr u32 ParamPlus = 0x0019660D;
static constexpr u32 ParamXor = 0x5D588B65;
static constexpr u32 TopBitmask = 0x7FFFFFFF;
static constexpr int MinimumInitIterations = 8;
static constexpr int NumDiscardedInitOutputs = 8;
static constexpr u32 XorByShifted27(u32 value) {
return value ^ (value >> 27);
}
static constexpr u32 XorByShifted30(u32 value) {
return value ^ (value >> 30);
}
private:
State state{};
private:
// Internal API.
void FinalizeInitialization() {
const u32 state0 = this->state.data[0] & TopBitmask;
const u32 state1 = this->state.data[1];
const u32 state2 = this->state.data[2];
const u32 state3 = this->state.data[3];
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
this->state.data[0] = 'T';
this->state.data[1] = 'I';
this->state.data[2] = 'N';
this->state.data[3] = 'Y';
}
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
this->GenerateRandomU32();
}
}
u32 GenerateRandomU24() {
return (this->GenerateRandomU32() >> 8);
}
static void GenerateInitialValuePlus(TinyMT::State* state, int index, u32 value) {
u32& state0 = state->data[(index + 0) % NumStateWords];
u32& state1 = state->data[(index + 1) % NumStateWords];
u32& state2 = state->data[(index + 2) % NumStateWords];
u32& state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
const u32 y = x + index + value;
state0 = y;
state1 += x;
state2 += y;
}
static void GenerateInitialValueXor(TinyMT::State* state, int index) {
u32& state0 = state->data[(index + 0) % NumStateWords];
u32& state1 = state->data[(index + 1) % NumStateWords];
u32& state2 = state->data[(index + 2) % NumStateWords];
u32& state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
const u32 y = x - index;
state0 = y;
state1 ^= x;
state2 ^= y;
}
public:
constexpr TinyMT() = default;
// Public API.
// Initialization.
void Initialize(u32 seed) {
this->state.data[0] = seed;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
for (int i = 1; i < MinimumInitIterations; i++) {
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
}
this->FinalizeInitialization();
}
void Initialize(const u32* seed, int seed_count) {
this->state.data[0] = 0;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
{
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
GenerateInitialValuePlus(&this->state, 0, seed_count);
for (int i = 0; i < num_init_iterations; i++) {
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords,
(i < seed_count) ? seed[i] : 0);
}
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
GenerateInitialValueXor(&this->state,
(i + 1 + num_init_iterations) % NumStateWords);
}
}
this->FinalizeInitialization();
}
// State management.
void GetState(TinyMT::State& out) const {
out.data = this->state.data;
}
void SetState(const TinyMT::State& state_) {
this->state.data = state_.data;
}
// Random generation.
void GenerateRandomBytes(void* dst, std::size_t size) {
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
const uintptr_t end = start + size;
const uintptr_t aligned_start = Common::AlignUp(start, 4);
const uintptr_t aligned_end = Common::AlignDown(end, 4);
// Make sure we're aligned.
if (start < aligned_start) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(dst, &rnd, aligned_start - start);
}
// Write as many aligned u32s as we can.
{
u32* cur_dst = reinterpret_cast<u32*>(aligned_start);
u32* const end_dst = reinterpret_cast<u32*>(aligned_end);
while (cur_dst < end_dst) {
*(cur_dst++) = this->GenerateRandomU32();
}
}
// Handle any leftover unaligned data.
if (aligned_end < end) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(reinterpret_cast<void*>(aligned_end), &rnd, end - aligned_end);
}
}
u32 GenerateRandomU32() {
// Advance state.
const u32 x0 =
(this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
const u32 y0 = this->state.data[3];
const u32 x1 = x0 ^ (x0 << 1);
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
const u32 state0 = this->state.data[1];
u32 state1 = this->state.data[2];
u32 state2 = x1 ^ (y1 << 10);
const u32 state3 = y1;
if ((y1 & 1) != 0) {
state1 ^= ParamMat1;
state2 ^= ParamMat2;
}
this->state.data[0] = state0;
this->state.data[1] = state1;
this->state.data[2] = state2;
this->state.data[3] = state3;
// Temper.
const u32 t1 = state0 + (state2 >> 8);
u32 t0 = state3 ^ t1;
if ((t1 & 1) != 0) {
t0 ^= ParamTmat;
}
return t0;
}
u64 GenerateRandomU64() {
const u32 lo = this->GenerateRandomU32();
const u32 hi = this->GenerateRandomU32();
return (u64{hi} << 32) | u64{lo};
}
float GenerateRandomF32() {
// Floats have 24 bits of mantissa.
constexpr u32 MantissaBits = 24;
return static_cast<float>(GenerateRandomU24()) * (1.0f / (1U << MantissaBits));
}
double GenerateRandomF64() {
// Doubles have 53 bits of mantissa.
// The smart way to generate 53 bits of random would be to use 32 bits
// from the first rnd32() call, and then 21 from the second.
// Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32()
// call, and (32 - 6) bits from the second. We'll do what they do, but
// There's not a clear reason why.
constexpr u32 MantissaBits = 53;
constexpr u32 Shift1st = (64 - MantissaBits) / 2;
constexpr u32 Shift2nd = (64 - MantissaBits) - Shift1st;
const u32 first = (this->GenerateRandomU32() >> Shift1st);
const u32 second = (this->GenerateRandomU32() >> Shift2nd);
return (1.0 * first * (u64{1} << (32 - Shift2nd)) + second) *
(1.0 / (u64{1} << MantissaBits));
}
};
} // namespace Common