3
0
Fork 0
forked from suyu/suyu
suyu/src/input_common/motion_input.cpp

185 lines
No EOL
4.8 KiB
C++

#include "input_common/motion_input.h"
namespace InputCommon {
MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd) : kp(new_kp), ki(new_ki), kd(new_kd) {
accel = {};
gyro = {};
gyro_drift = {};
gyro_threshold = 0;
rotations = {};
quat.w = 0;
quat.xyz[0] = 0;
quat.xyz[1] = 0;
quat.xyz[2] = -1;
real_error = {};
integral_error = {};
derivative_error = {};
reset_counter = 0;
reset_enabled = true;
}
void MotionInput::SetAcceleration(Common::Vec3f acceleration) {
accel = acceleration;
}
void MotionInput::SetGyroscope(Common::Vec3f gyroscope) {
gyro = gyroscope - gyro_drift;
if (gyro.Length2() < gyro_threshold) {
gyro = {};
}
}
void MotionInput::SetQuaternion(Common::Quaternion<f32> quaternion) {
quat = quaternion;
}
void MotionInput::SetGyroDrift(Common::Vec3f drift) {
drift = gyro_drift;
}
void MotionInput::SetGyroThreshold(f32 threshold) {
gyro_threshold = threshold;
}
void MotionInput::EnableReset(bool reset) {
reset_enabled = reset;
}
void MotionInput::ResetRotations() {
rotations = {};
}
bool MotionInput::IsMoving(f32 sensitivity) {
return gyro.Length2() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
}
bool MotionInput::IsCalibrated(f32 sensitivity) {
return real_error.Length() > sensitivity;
}
void MotionInput::UpdateRotation(u64 elapsed_time) {
rotations += gyro * elapsed_time;
}
void MotionInput::UpdateOrientation(u64 elapsed_time) {
// Short name local variable for readability
f32 q1 = quat.w, q2 = quat.xyz[0], q3 = quat.xyz[1], q4 = quat.xyz[2];
f32 sample_period = elapsed_time / 1000000.0f;
auto normal_accel = accel.Normalized();
auto rad_gyro = gyro * 3.1415926535f;
rad_gyro.z = -rad_gyro.z;
// Ignore drift correction if acceleration is not present
if (normal_accel.Length() == 1.0f) {
f32 ax = -normal_accel.x;
f32 ay = normal_accel.y;
f32 az = -normal_accel.z;
f32 vx, vy, vz;
Common::Vec3f new_real_error;
// Estimated direction of gravity
vx = 2.0f * (q2 * q4 - q1 * q3);
vy = 2.0f * (q1 * q2 + q3 * q4);
vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
// Error is cross product between estimated direction and measured direction of gravity
new_real_error.x = ay * vz - az * vy;
new_real_error.y = az * vx - ax * vz;
new_real_error.x = ax * vy - ay * vx;
derivative_error = new_real_error - real_error;
real_error = new_real_error;
// Prevent integral windup
if (ki != 0.0f) {
integral_error += real_error;
} else {
integral_error = {};
}
// Apply feedback terms
rad_gyro += kp * real_error;
rad_gyro += ki * integral_error;
rad_gyro += kd * derivative_error;
}
f32 gx = rad_gyro.y;
f32 gy = rad_gyro.x;
f32 gz = rad_gyro.z;
// Integrate rate of change of quaternion
f32 pa, pb, pc;
pa = q2;
pb = q3;
pc = q4;
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
quat.w = q1;
quat.xyz[0] = q2;
quat.xyz[1] = q3;
quat.xyz[2] = q4;
quat = quat.Normalized();
}
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() {
std::array<Common::Vec3f, 3> orientation = {};
Common::Quaternion<float> quad;
quad.w = -quat.xyz[2];
quad.xyz[0] = -quat.xyz[1];
quad.xyz[1] = -quat.xyz[0];
quad.xyz[2] = -quat.w;
std::array<float, 16> matrix4x4 = quad.ToMatrix();
orientation[0] = Common::Vec3f(matrix4x4[0], matrix4x4[1], matrix4x4[2]);
orientation[1] = Common::Vec3f(matrix4x4[4], matrix4x4[5], matrix4x4[6]);
orientation[2] = Common::Vec3f(matrix4x4[8], matrix4x4[9], matrix4x4[10]);
return orientation;
}
Common::Vec3f MotionInput::GetAcceleration() {
return accel;
}
Common::Vec3f MotionInput::GetGyroscope() {
return gyro;
}
Common::Quaternion<f32> MotionInput::GetQuaternion() {
return quat;
}
Common::Vec3f MotionInput::GetRotations() {
return rotations;
}
void MotionInput::resetOrientation() {
if (!reset_enabled) {
return;
}
if (!IsMoving(0.5f) && accel.z <= -0.9f) {
++reset_counter;
if (reset_counter > 900) {
// TODO: calculate quaternion from gravity vector
quat.w = 0;
quat.xyz[0] = 0;
quat.xyz[1] = 0;
quat.xyz[2] = -1;
integral_error = {};
reset_counter = 0;
}
} else {
reset_counter = 0;
}
}
} // namespace InputCommon