3
0
Fork 0
forked from suyu/suyu

input_common: Analog button, use time based position instead of frequent updates

This commit is contained in:
german77 2021-05-29 23:35:46 -05:00 committed by german77
parent e41c8b6780
commit a323bc5af8
3 changed files with 146 additions and 81 deletions

View file

@ -27,6 +27,10 @@ struct AnalogProperties {
float range;
float threshold;
};
template <typename StatusType>
struct InputCallback {
std::function<void(StatusType)> on_change;
};
/// An abstract class template for an input device (a button, an analog input, etc.).
template <typename StatusType>
@ -50,6 +54,17 @@ public:
[[maybe_unused]] f32 freq_high) const {
return {};
}
void SetCallback(InputCallback<StatusType> callback_) {
callback = std::move(callback_);
}
void TriggerOnChange() {
if (callback.on_change) {
callback.on_change(GetStatus());
}
}
private:
InputCallback<StatusType> callback;
};
/// An abstract class template for a factory that can create input devices.

View file

@ -21,104 +21,153 @@ public:
: up(std::move(up_)), down(std::move(down_)), left(std::move(left_)),
right(std::move(right_)), modifier(std::move(modifier_)), modifier_scale(modifier_scale_),
modifier_angle(modifier_angle_) {
update_thread_running.store(true);
update_thread = std::thread(&Analog::UpdateStatus, this);
Input::InputCallback<bool> callbacks{
[this]([[maybe_unused]] bool status) { UpdateStatus(); }};
up->SetCallback(callbacks);
down->SetCallback(callbacks);
left->SetCallback(callbacks);
right->SetCallback(callbacks);
}
~Analog() override {
if (update_thread_running.load()) {
update_thread_running.store(false);
if (update_thread.joinable()) {
update_thread.join();
}
}
}
void MoveToDirection(bool enable, float to_angle) {
if (!enable) {
return;
}
bool IsAngleGreater(float old_angle, float new_angle) const {
constexpr float TAU = Common::PI * 2.0f;
// Use wider angle to ease the transition.
constexpr float aperture = TAU * 0.15f;
const float top_limit = to_angle + aperture;
const float bottom_limit = to_angle - aperture;
const float top_limit = new_angle + aperture;
return (old_angle > new_angle && old_angle <= top_limit) ||
(old_angle + TAU > new_angle && old_angle + TAU <= top_limit);
}
if ((angle > to_angle && angle <= top_limit) ||
(angle + TAU > to_angle && angle + TAU <= top_limit)) {
angle -= modifier_angle;
if (angle < 0) {
angle += TAU;
bool IsAngleSmaller(float old_angle, float new_angle) const {
constexpr float TAU = Common::PI * 2.0f;
// Use wider angle to ease the transition.
constexpr float aperture = TAU * 0.15f;
const float bottom_limit = new_angle - aperture;
return (old_angle >= bottom_limit && old_angle < new_angle) ||
(old_angle - TAU >= bottom_limit && old_angle - TAU < new_angle);
}
float GetAngle(std::chrono::time_point<std::chrono::steady_clock> now) const {
constexpr float TAU = Common::PI * 2.0f;
float new_angle = angle;
auto time_difference = static_cast<float>(
std::chrono::duration_cast<std::chrono::microseconds>(now - last_update).count());
time_difference /= 1000.0f * 1000.0f;
if (time_difference > 0.5f) {
time_difference = 0.5f;
}
if (IsAngleGreater(new_angle, goal_angle)) {
new_angle -= modifier_angle * time_difference;
if (new_angle < 0) {
new_angle += TAU;
}
} else if ((angle >= bottom_limit && angle < to_angle) ||
(angle - TAU >= bottom_limit && angle - TAU < to_angle)) {
angle += modifier_angle;
if (angle >= TAU) {
angle -= TAU;
if (!IsAngleGreater(new_angle, goal_angle)) {
return goal_angle;
}
} else if (IsAngleSmaller(new_angle, goal_angle)) {
new_angle += modifier_angle * time_difference;
if (new_angle >= TAU) {
new_angle -= TAU;
}
if (!IsAngleSmaller(new_angle, goal_angle)) {
return goal_angle;
}
} else {
angle = to_angle;
return goal_angle;
}
return new_angle;
}
void SetGoalAngle(bool r, bool l, bool u, bool d) {
// Move to the right
if (r && !u && !d) {
goal_angle = 0.0f;
}
// Move to the upper right
if (r && u && !d) {
goal_angle = Common::PI * 0.25f;
}
// Move up
if (u && !l && !r) {
goal_angle = Common::PI * 0.5f;
}
// Move to the upper left
if (l && u && !d) {
goal_angle = Common::PI * 0.75f;
}
// Move to the left
if (l && !u && !d) {
goal_angle = Common::PI;
}
// Move to the bottom left
if (l && !u && d) {
goal_angle = Common::PI * 1.25f;
}
// Move down
if (d && !l && !r) {
goal_angle = Common::PI * 1.5f;
}
// Move to the bottom right
if (r && !u && d) {
goal_angle = Common::PI * 1.75f;
}
}
void UpdateStatus() {
while (update_thread_running.load()) {
const float coef = modifier->GetStatus() ? modifier_scale : 1.0f;
const float coef = modifier->GetStatus() ? modifier_scale : 1.0f;
bool r = right->GetStatus();
bool l = left->GetStatus();
bool u = up->GetStatus();
bool d = down->GetStatus();
bool r = right->GetStatus();
bool l = left->GetStatus();
bool u = up->GetStatus();
bool d = down->GetStatus();
// Eliminate contradictory movements
if (r && l) {
r = false;
l = false;
}
if (u && d) {
u = false;
d = false;
}
// Move to the right
MoveToDirection(r && !u && !d, 0.0f);
// Move to the upper right
MoveToDirection(r && u && !d, Common::PI * 0.25f);
// Move up
MoveToDirection(u && !l && !r, Common::PI * 0.5f);
// Move to the upper left
MoveToDirection(l && u && !d, Common::PI * 0.75f);
// Move to the left
MoveToDirection(l && !u && !d, Common::PI);
// Move to the bottom left
MoveToDirection(l && !u && d, Common::PI * 1.25f);
// Move down
MoveToDirection(d && !l && !r, Common::PI * 1.5f);
// Move to the bottom right
MoveToDirection(r && !u && d, Common::PI * 1.75f);
// Move if a key is pressed
if (r || l || u || d) {
amplitude = coef;
} else {
amplitude = 0;
}
// Delay the update rate to 100hz
std::this_thread::sleep_for(std::chrono::milliseconds(10));
// Eliminate contradictory movements
if (r && l) {
r = false;
l = false;
}
if (u && d) {
u = false;
d = false;
}
// Move if a key is pressed
if (r || l || u || d) {
amplitude = coef;
} else {
amplitude = 0;
}
const auto now = std::chrono::steady_clock::now();
const auto time_difference = static_cast<u64>(
std::chrono::duration_cast<std::chrono::milliseconds>(now - last_update).count());
if (time_difference < 10) {
// Disable analog mode if inputs are too fast
SetGoalAngle(r, l, u, d);
angle = goal_angle;
} else {
angle = GetAngle(now);
SetGoalAngle(r, l, u, d);
}
last_update = now;
}
std::tuple<float, float> GetStatus() const override {
if (Settings::values.emulate_analog_keyboard) {
return std::make_tuple(std::cos(angle) * amplitude, std::sin(angle) * amplitude);
const auto now = std::chrono::steady_clock::now();
float angle_ = GetAngle(now);
return std::make_tuple(std::cos(angle_) * amplitude, std::sin(angle_) * amplitude);
}
constexpr float SQRT_HALF = 0.707106781f;
int x = 0, y = 0;
@ -166,9 +215,9 @@ private:
float modifier_scale;
float modifier_angle;
float angle{};
float goal_angle{};
float amplitude{};
std::thread update_thread;
std::atomic<bool> update_thread_running{};
std::chrono::time_point<std::chrono::steady_clock> last_update;
};
std::unique_ptr<Input::AnalogDevice> AnalogFromButton::Create(const Common::ParamPackage& params) {
@ -179,7 +228,7 @@ std::unique_ptr<Input::AnalogDevice> AnalogFromButton::Create(const Common::Para
auto right = Input::CreateDevice<Input::ButtonDevice>(params.Get("right", null_engine));
auto modifier = Input::CreateDevice<Input::ButtonDevice>(params.Get("modifier", null_engine));
auto modifier_scale = params.Get("modifier_scale", 0.5f);
auto modifier_angle = params.Get("modifier_angle", 0.035f);
auto modifier_angle = params.Get("modifier_angle", 5.5f);
return std::make_unique<Analog>(std::move(up), std::move(down), std::move(left),
std::move(right), std::move(modifier), modifier_scale,
modifier_angle);

View file

@ -75,6 +75,7 @@ public:
} else {
pair.key_button->UnlockButton();
}
pair.key_button->TriggerOnChange();
}
}
}